importance of organization and presentation of data in research

The Ultimate Guide to Qualitative Research - Part 2: Handling Qualitative Data

importance of organization and presentation of data in research

  • Handling qualitative data
  • Transcripts
  • Field notes
  • Survey data and responses
  • Visual and audio data
  • Introduction

Data organization

Data reduction, data coding.

  • Coding frame
  • Auto and smart coding
  • Organizing codes
  • Qualitative data analysis
  • Content analysis
  • Thematic analysis
  • Thematic analysis vs. content analysis
  • Narrative research
  • Phenomenological research
  • Discourse analysis
  • Grounded theory
  • Deductive reasoning
  • Inductive reasoning
  • Inductive vs. deductive reasoning
  • Qualitative data interpretation
  • Qualitative analysis software

Data organization refers to the restructuring of raw data to facilitate analysis and derive insights. The collected data often comes in voluminous and unstructured forms such as focus group recordings , field notes , or interview transcripts . This chapter outlines the process of transforming this raw data into an organized and meaningful dataset.

importance of organization and presentation of data in research

Organizing data is an integral part of the qualitative research process . It involves arranging the collected data systematically to enhance comprehension, ease analysis , and unveil meaningful insights.

importance of organization and presentation of data in research

The analogy of sorting and filing documents in an office comes to mind. Without organization, you would have stacks of paper but no quick way to locate needed information. Similarly, unorganized data can make the research process a challenging task.

Why is data organization important?

Understanding the need for qualitative data organization begins by envisioning the collected, original data as raw material. Consider the outputs of your data collection efforts—perhaps voluminous interview transcripts , detailed field notes , lengthy observational records , or audio-visual materials .

All of these are rich sources of qualitative data but, in their raw form, present a challenge. Much like uncut gemstones, these raw inputs hide their actual value beneath a rough exterior and cannot be directly analyzed to yield the research findings we seek.

importance of organization and presentation of data in research

Take, for instance, an audio recording of a focus group. The conversation captured in the recording is a raw form of data. It contains numerous potential insights about the research topic. However, it can be challenging to make sense of in its raw recorded form. Multiple participants might be speaking at the same time, or it can be difficult to keep track of the flow of the conversation throughout the full recording. The audio recording can be transformed into a transcript to unlock its value so the text can be marked up and coded for analysis.

This example underscores the fundamental principle of qualitative data management - that raw data must be processed before it can yield insights. It's akin to refining ore to extract precious metal. The refinement process involves various techniques such as transcription, data reduction, and coding, which help distill the essential elements from the raw data.

Data organization, therefore, is a critical first step in the path that leads from data collection to analysis and, eventually, to the generation of meaningful insights. The meticulous organization, reduction, and coding of data are the essential processes that enable researchers to navigate the vastness of their collected data.

Challenge of data organization

While concepts like consistent file version management, file folders, choosing a file naming convention, and maintaining a data dictionary may seem mundane relative to a deep analysis of research data, ensuring a consistent format for your data's structure will prove immensely important to later data classification and data analysis. By applying these techniques, they transform the unwieldy, unstructured mass of raw data into a manageable, structured dataset ready for in-depth analysis.

What is an example of data organization?

An excellent example of data organization in action is how researchers handle ethnographic field notes . Initially, these notes may contain a mix of observations, direct quotations, personal reflections, and interpretations. However, in their raw form, they can be difficult to navigate.

importance of organization and presentation of data in research

By organizing these notes—perhaps by date, location, or thematic content—researchers transform this mix into a more structured and analyzable form. This organization enables easier access to specific sections of the notes and facilitates a more systematic analysis.

What methods do researchers use to organize data?

Organizing qualitative data can take several forms depending on the data type and the research's specific goals. Methods range from transcription of audio-visual data to the creation of visual diagrams for observed data.

Technology plays an instrumental role in qualitative data organization. Ethnographic research, for instance, deals with field notes, interview transcripts, pictures of artifacts, and reflective memos . These files in an exhaustive study can prove unwieldy without the use of file versioning and keeping track of file names for rigorous organization.

importance of organization and presentation of data in research

Data reduction, which involves condensing data through techniques like summarizing or paraphrasing, is another commonly used method. Then there's coding, a process where data is categorized and labeled, serving as a vital step in organizing qualitative data. The latter will be addressed in more detail later in this guide.

Overall, the chosen method aims to transform the unstructured raw data into a manageable, systematic dataset primed for a more in-depth analysis. The importance of data organization in qualitative research cannot be overstated, as it forms the backbone of efficient, effective data analysis.

importance of organization and presentation of data in research

Analyze your data to develop key insights

ATLAS.ti's intuitive interface makes data analysis easy and powerful. Click here for a free trial.

Data reduction in qualitative research is another pivotal and multi-faceted process. It involves transforming the raw qualitative data into a more digestible, focused, and structured form. As the size of your data increases, analyzing data sets can be more time-consuming than may be necessary. By condensing, classifying, and categorizing data, researchers can make vast amounts of data more comprehensible without losing the essence of the information.

The iterative nature of data reduction

The process of data reduction is not a solitary event that happens at a particular point in time. Instead, it is iterative and continuous, beginning as soon as data collection starts and evolving throughout the research project. As researchers immerse themselves in the data, they start to identify, highlight, and extract crucial information and meaningful segments.

Concurrently, they discern and discard elements that may not significantly contribute to their research objectives. This ongoing process of data reduction is like carving a sculpture, where excess material is progressively removed to reveal the shape and detail of the final piece.

Methods of data reduction

Various techniques are employed in data reduction. Researchers may paraphrase lengthy narratives to focus on key points or main ideas to clarify underlying concepts. Researchers can also create short summaries of long transcripts to capture the gist of discussions. These strategies aim to reduce the volume of data without compromising the integrity of its content.

Data reduction also involves classifying and categorizing data into emergent themes, topics, or patterns. This process is akin to sorting pieces of a jigsaw puzzle into groups based on similar characteristics. Through this method, researchers can filter and condense the data, distilling the main points that are representative of the larger dataset.

Ensuring accuracy in data reduction

In data reduction, there is a delicate balance to be maintained. While the goal is to create a condensed and manageable dataset, researchers must exercise caution to avoid oversimplifying or misrepresenting the data. Despite the need for condensation, it is essential to maintain the richness and depth of the qualitative data. For this reason, researchers should make it a practice to frequently revisit their raw data. This iterative validation process helps cross-check the reduced data to ensure it retains its original meaning, context, and subtleties. Qualitative data analysis software , such as ATLAS.ti, makes it easy to move back to any specific piece of raw data while engaging in data reduction and analysis.

Moreover, it's crucial for researchers to be reflexive during data reduction, recognizing their biases and influences on the data. Regularly discussing the data reduction process with peers or supervisors can also serve as a form of validation, enhancing the quality of the reduced data.

The outcome of data reduction

The culmination of the data reduction process is a curated dataset that is both less voluminous and structured in a way that is more amenable to further analysis. Think of this curated dataset as a carefully pruned tree, where non-essential branches have been removed to expose the tree's core structure. This process enhances the visibility of significant parts and their relationships, allowing for a more effective analysis.

Importantly, the structured dataset, much like a well-pruned tree, maintains the essence and integrity of the original raw data. It serves as the foundation for deriving meaningful insights, conclusions, and recommendations from the qualitative research study, setting the stage for the next phase of the research process—data coding.

importance of organization and presentation of data in research

The next section of this guide will address coding , which is another form of data organization. It is mentioned here because, while it is at times closer to theory development than the more mechanical processes of organizing data, it serves a similar role of taking the mess of raw data and giving it structure to the extent that analysis is possible.

importance of organization and presentation of data in research

Keep all your data files organized with ATLAS.ti

Store important documents for your research in an orderly fashion and save time. See how with a free trial.

Call Us Today! +91 99907 48956 | [email protected]

importance of organization and presentation of data in research

It is the simplest form of data Presentation often used in schools or universities to provide a clearer picture to students, who are better able to capture the concepts effectively through a pictorial Presentation of simple data.

2. Column chart

importance of organization and presentation of data in research

It is a simplified version of the pictorial Presentation which involves the management of a larger amount of data being shared during the presentations and providing suitable clarity to the insights of the data.

3. Pie Charts

pie-chart

Pie charts provide a very descriptive & a 2D depiction of the data pertaining to comparisons or resemblance of data in two separate fields.

4. Bar charts

Bar-Charts

A bar chart that shows the accumulation of data with cuboid bars with different dimensions & lengths which are directly proportionate to the values they represent. The bars can be placed either vertically or horizontally depending on the data being represented.

5. Histograms

importance of organization and presentation of data in research

It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs.

6. Box plots

box-plot

Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with the extraction of data to the minutes of difference.

importance of organization and presentation of data in research

Map Data graphs help you with data Presentation over an area to display the areas of concern. Map graphs are useful to make an exact depiction of data over a vast case scenario.

All these visual presentations share a common goal of creating meaningful insights and a platform to understand and manage the data in relation to the growth and expansion of one’s in-depth understanding of data & details to plan or execute future decisions or actions.

Importance of Data Presentation

Data Presentation could be both can be a deal maker or deal breaker based on the delivery of the content in the context of visual depiction.

Data Presentation tools are powerful communication tools that can simplify the data by making it easily understandable & readable at the same time while attracting & keeping the interest of its readers and effectively showcase large amounts of complex data in a simplified manner.

If the user can create an insightful presentation of the data in hand with the same sets of facts and figures, then the results promise to be impressive.

There have been situations where the user has had a great amount of data and vision for expansion but the presentation drowned his/her vision.

To impress the higher management and top brass of a firm, effective presentation of data is needed.

Data Presentation helps the clients or the audience to not spend time grasping the concept and the future alternatives of the business and to convince them to invest in the company & turn it profitable both for the investors & the company.

Although data presentation has a lot to offer, the following are some of the major reason behind the essence of an effective presentation:-

  • Many consumers or higher authorities are interested in the interpretation of data, not the raw data itself. Therefore, after the analysis of the data, users should represent the data with a visual aspect for better understanding and knowledge.
  • The user should not overwhelm the audience with a number of slides of the presentation and inject an ample amount of texts as pictures that will speak for themselves.
  • Data presentation often happens in a nutshell with each department showcasing their achievements towards company growth through a graph or a histogram.
  • Providing a brief description would help the user to attain attention in a small amount of time while informing the audience about the context of the presentation
  • The inclusion of pictures, charts, graphs and tables in the presentation help for better understanding the potential outcomes.
  • An effective presentation would allow the organization to determine the difference with the fellow organization and acknowledge its flaws. Comparison of data would assist them in decision making.

Recommended Courses

Data-Visualization-Using-PowerBI-Tableau

Data Visualization

Using powerbi &tableau.

tableau-course

Tableau for Data Analysis

mysql-course

MySQL Certification Program

powerbi-course

The PowerBI Masterclass

Need help call our support team 7:00 am to 10:00 pm (ist) at (+91 999-074-8956 | 9650-308-956), keep in touch, email: [email protected].

WhatsApp us

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Present Your Data Like a Pro

  • Joel Schwartzberg

importance of organization and presentation of data in research

Demystify the numbers. Your audience will thank you.

While a good presentation has data, data alone doesn’t guarantee a good presentation. It’s all about how that data is presented. The quickest way to confuse your audience is by sharing too many details at once. The only data points you should share are those that significantly support your point — and ideally, one point per chart. To avoid the debacle of sheepishly translating hard-to-see numbers and labels, rehearse your presentation with colleagues sitting as far away as the actual audience would. While you’ve been working with the same chart for weeks or months, your audience will be exposed to it for mere seconds. Give them the best chance of comprehending your data by using simple, clear, and complete language to identify X and Y axes, pie pieces, bars, and other diagrammatic elements. Try to avoid abbreviations that aren’t obvious, and don’t assume labeled components on one slide will be remembered on subsequent slides. Every valuable chart or pie graph has an “Aha!” zone — a number or range of data that reveals something crucial to your point. Make sure you visually highlight the “Aha!” zone, reinforcing the moment by explaining it to your audience.

With so many ways to spin and distort information these days, a presentation needs to do more than simply share great ideas — it needs to support those ideas with credible data. That’s true whether you’re an executive pitching new business clients, a vendor selling her services, or a CEO making a case for change.

importance of organization and presentation of data in research

  • JS Joel Schwartzberg oversees executive communications for a major national nonprofit, is a professional presentation coach, and is the author of Get to the Point! Sharpen Your Message and Make Your Words Matter and The Language of Leadership: How to Engage and Inspire Your Team . You can find him on LinkedIn and X. TheJoelTruth

Partner Center

Data Collection, Presentation and Analysis

  • First Online: 25 May 2023

Cite this chapter

importance of organization and presentation of data in research

  • Uche M. Mbanaso 4 ,
  • Lucienne Abrahams 5 &
  • Kennedy Chinedu Okafor 6  

645 Accesses

This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions. One of the interesting features of this chapter is the section dealing with using measurement scales in quantitative research, including nominal scales, ordinal scales, interval scales and ratio scales. It explains key facets of qualitative research including ethical clearance requirements. The chapter discusses the importance of data visualization as key to effective presentation of data, including tabular forms, graphical forms and visual charts such as those generated by Atlas.ti analytical software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Abdullah, M. F., & Ahmad, K. (2013). The mapping process of unstructured data to structured data. Proceedings of the 2013 International Conference on Research and Innovation in Information Systems (ICRIIS) , Malaysia , 151–155. https://doi.org/10.1109/ICRIIS.2013.6716700

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6 , 91. https://doi.org/10.1186/s40537-019-0254-8

Article   Google Scholar  

Alsheref, F. K., & Fattoh, I. E. (2020). Medical text annotation tool based on IBM Watson Platform. Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS) , India , 1312–1316. https://doi.org/10.1109/ICACCS48705.2020.9074309

Cinque, M., Cotroneo, D., Della Corte, R., & Pecchia, A. (2014). What logs should you look at when an application fails? Insights from an industrial case study. Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks , USA , 690–695. https://doi.org/10.1109/DSN.2014.69

Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences . Springer.

Google Scholar  

Leedy, P., & Ormrod, J. (2015). Practical research planning and design (12th ed.). Pearson Education.

Madaan, A., Wang, X., Hall, W., & Tiropanis, T. (2018). Observing data in IoT worlds: What and how to observe? In Living in the Internet of Things: Cybersecurity of the IoT – 2018 (pp. 1–7). https://doi.org/10.1049/cp.2018.0032

Chapter   Google Scholar  

Mahajan, P., & Naik, C. (2019). Development of integrated IoT and machine learning based data collection and analysis system for the effective prediction of agricultural residue/biomass availability to regenerate clean energy. Proceedings of the 2019 9th International Conference on Emerging Trends in Engineering and Technology – Signal and Information Processing (ICETET-SIP-19) , India , 1–5. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092156 .

Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3 (2), 85–101. https://doi.org/10.26599/BDMA.2019.9020015

Miswar, S., & Kurniawan, N. B. (2018). A systematic literature review on survey data collection system. Proceedings of the 2018 International Conference on Information Technology Systems and Innovation (ICITSI) , Indonesia , 177–181. https://doi.org/10.1109/ICITSI.2018.8696036

Mosina, C. (2020). Understanding the diffusion of the internet: Redesigning the global diffusion of the internet framework (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/30723

Nkamisa, S. (2021). Investigating the integration of drone management systems to create an enabling remote piloted aircraft regulatory environment in South Africa (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/33883

QuestionPro. (2020). Survey research: Definition, examples and methods . https://www.questionpro.com/article/survey-research.html

Rajanikanth, J. & Kanth, T. V. R. (2017). An explorative data analysis on Bangalore City Weather with hybrid data mining techniques using R. Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) , India , 1121-1125. https://doi/10.1109/CTCEEC.2017.8455008

Rao, R. (2003). From unstructured data to actionable intelligence. IT Professional, 5 , 29–35. https://www.researchgate.net/publication/3426648_From_Unstructured_Data_to_Actionable_Intelligence

Schulze, P. (2009). Design of the research instrument. In P. Schulze (Ed.), Balancing exploitation and exploration: Organizational antecedents and performance effects of innovation strategies (pp. 116–141). Gabler. https://doi.org/10.1007/978-3-8349-8397-8_6

Usanov, A. (2015). Assessing cybersecurity: A meta-analysis of threats, trends and responses to cyber attacks . The Hague Centre for Strategic Studies. https://www.researchgate.net/publication/319677972_Assessing_Cyber_Security_A_Meta-analysis_of_Threats_Trends_and_Responses_to_Cyber_Attacks

Van de Kaa, G., De Vries, H. J., van Heck, E., & van den Ende, J. (2007). The emergence of standards: A meta-analysis. Proceedings of the 2007 40th Annual Hawaii International Conference on Systems Science (HICSS’07) , USA , 173a–173a. https://doi.org/10.1109/HICSS.2007.529

Download references

Author information

Authors and affiliations.

Centre for Cybersecurity Studies, Nasarawa State University, Keffi, Nigeria

Uche M. Mbanaso

LINK Centre, University of the Witwatersrand, Johannesburg, South Africa

Lucienne Abrahams

Department of Mechatronics Engineering, Federal University of Technology, Owerri, Nigeria

Kennedy Chinedu Okafor

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Mbanaso, U.M., Abrahams, L., Okafor, K.C. (2023). Data Collection, Presentation and Analysis. In: Research Techniques for Computer Science, Information Systems and Cybersecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-30031-8_7

Download citation

DOI : https://doi.org/10.1007/978-3-031-30031-8_7

Published : 25 May 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-30030-1

Online ISBN : 978-3-031-30031-8

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Variation
  • Language Families
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Culture
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business History
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic Methodology
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Making Data Talk: The Science and Practice of Translating Public Health Research and Surveillance Findings to Policy Makers, the Public, and the Press

  • < Previous chapter
  • Next chapter >

4 Presenting Data

  • Published: July 2009
  • Cite Icon Cite
  • Permissions Icon Permissions

Data presentation can greatly influence audiences. This chapter reviews principles and approaches for presenting data, focusing on whether data needs to be used. Data can presented using words alone (e.g., metaphors or narratives), numbers (e.g., tables), symbols (e.g., bar charts or line graphs), or some combination that integrates these methods. Although new software packages and advanced techniques are available, visual symbols that can most readily and effectively communicate public health data are pie charts, bar charts, line graphs, icons/icon arrays, visual scales, and maps. Perceptual cues, especially proximity, continuation, and closure, influence how people process information. Contextual cues help enhance meaning by providing sufficient context to help audiences better understand data. Effective data presentation depends upon articulating the purpose for communicating, understanding audiences and context, and developing storylines to be communicated, taking into account the need to present data ethically and in a manner easily understood.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 10
November 2022 4
December 2022 4
March 2023 1
April 2023 8
May 2023 4
June 2023 2
July 2023 6
September 2023 2
October 2023 1
December 2023 3
January 2024 3
February 2024 2
March 2024 1
April 2024 5
June 2024 1
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Data presentation: A comprehensive guide

Learn how to create data presentation effectively and communicate your insights in a way that is clear, concise, and engaging.

Raja Bothra

Building presentations

team preparing data presentation

Hey there, fellow data enthusiast!

Welcome to our comprehensive guide on data presentation.

Whether you're an experienced presenter or just starting, this guide will help you present your data like a pro. We'll dive deep into what data presentation is, why it's crucial, and how to master it. So, let's embark on this data-driven journey together.

What is data presentation?

Data presentation is the art of transforming raw data into a visual format that's easy to understand and interpret. It's like turning numbers and statistics into a captivating story that your audience can quickly grasp. When done right, data presentation can be a game-changer, enabling you to convey complex information effectively.

Why are data presentations important?

Imagine drowning in a sea of numbers and figures. That's how your audience might feel without proper data presentation. Here's why it's essential:

  • Clarity : Data presentations make complex information clear and concise.
  • Engagement : Visuals, such as charts and graphs, grab your audience's attention.
  • Comprehension : Visual data is easier to understand than long, numerical reports.
  • Decision-making : Well-presented data aids informed decision-making.
  • Impact : It leaves a lasting impression on your audience.

Types of data presentation:

Now, let's delve into the diverse array of data presentation methods, each with its own unique strengths and applications. We have three primary types of data presentation, and within these categories, numerous specific visualization techniques can be employed to effectively convey your data.

1. Textual presentation

Textual presentation harnesses the power of words and sentences to elucidate and contextualize your data. This method is commonly used to provide a narrative framework for the data, offering explanations, insights, and the broader implications of your findings. It serves as a foundation for a deeper understanding of the data's significance.

2. Tabular presentation

Tabular presentation employs tables to arrange and structure your data systematically. These tables are invaluable for comparing various data groups or illustrating how data evolves over time. They present information in a neat and organized format, facilitating straightforward comparisons and reference points.

3. Graphical presentation

Graphical presentation harnesses the visual impact of charts and graphs to breathe life into your data. Charts and graphs are powerful tools for spotlighting trends, patterns, and relationships hidden within the data. Let's explore some common graphical presentation methods:

  • Bar charts: They are ideal for comparing different categories of data. In this method, each category is represented by a distinct bar, and the height of the bar corresponds to the value it represents. Bar charts provide a clear and intuitive way to discern differences between categories.
  • Pie charts: It excel at illustrating the relative proportions of different data categories. Each category is depicted as a slice of the pie, with the size of each slice corresponding to the percentage of the total value it represents. Pie charts are particularly effective for showcasing the distribution of data.
  • Line graphs: They are the go-to choice when showcasing how data evolves over time. Each point on the line represents a specific value at a particular time period. This method enables viewers to track trends and fluctuations effortlessly, making it perfect for visualizing data with temporal dimensions.
  • Scatter plots: They are the tool of choice when exploring the relationship between two variables. In this method, each point on the plot represents a pair of values for the two variables in question. Scatter plots help identify correlations, outliers, and patterns within data pairs.

The selection of the most suitable data presentation method hinges on the specific dataset and the presentation's objectives. For instance, when comparing sales figures of different products, a bar chart shines in its simplicity and clarity. On the other hand, if your aim is to display how a product's sales have changed over time, a line graph provides the ideal visual narrative.

Additionally, it's crucial to factor in your audience's level of familiarity with data presentations. For a technical audience, more intricate visualization methods may be appropriate. However, when presenting to a general audience, opting for straightforward and easily understandable visuals is often the wisest choice.

In the world of data presentation, choosing the right method is akin to selecting the perfect brush for a masterpiece. Each tool has its place, and understanding when and how to use them is key to crafting compelling and insightful presentations. So, consider your data carefully, align your purpose, and paint a vivid picture that resonates with your audience.

What to include in data presentation?

When creating your data presentation, remember these key components:

  • Data points : Clearly state the data points you're presenting.
  • Comparison : Highlight comparisons and trends in your data.
  • Graphical methods : Choose the right chart or graph for your data.
  • Infographics : Use visuals like infographics to make information more digestible.
  • Numerical values : Include numerical values to support your visuals.
  • Qualitative information : Explain the significance of the data.
  • Source citation : Always cite your data sources.

How to structure an effective data presentation?

Creating a well-structured data presentation is not just important; it's the backbone of a successful presentation. Here's a step-by-step guide to help you craft a compelling and organized presentation that captivates your audience:

1. Know your audience

Understanding your audience is paramount. Consider their needs, interests, and existing knowledge about your topic. Tailor your presentation to their level of understanding, ensuring that it resonates with them on a personal level. Relevance is the key.

2. Have a clear message

Every effective data presentation should convey a clear and concise message. Determine what you want your audience to learn or take away from your presentation, and make sure your message is the guiding light throughout your presentation. Ensure that all your data points align with and support this central message.

3. Tell a compelling story

Human beings are naturally wired to remember stories. Incorporate storytelling techniques into your presentation to make your data more relatable and memorable. Your data can be the backbone of a captivating narrative, whether it's about a trend, a problem, or a solution. Take your audience on a journey through your data.

4. Leverage visuals

Visuals are a powerful tool in data presentation. They make complex information accessible and engaging. Utilize charts, graphs, and images to illustrate your points and enhance the visual appeal of your presentation. Visuals should not just be an accessory; they should be an integral part of your storytelling.

5. Be clear and concise

Avoid jargon or technical language that your audience may not comprehend. Use plain language and explain your data points clearly. Remember, clarity is king. Each piece of information should be easy for your audience to digest.

6. Practice your delivery

Practice makes perfect. Rehearse your presentation multiple times before the actual delivery. This will help you deliver it smoothly and confidently, reducing the chances of stumbling over your words or losing track of your message.

A basic structure for an effective data presentation

Armed with a comprehensive comprehension of how to construct a compelling data presentation, you can now utilize this fundamental template for guidance:

In the introduction, initiate your presentation by introducing both yourself and the topic at hand. Clearly articulate your main message or the fundamental concept you intend to communicate.

Moving on to the body of your presentation, organize your data in a coherent and easily understandable sequence. Employ visuals generously to elucidate your points and weave a narrative that enhances the overall story. Ensure that the arrangement of your data aligns with and reinforces your central message.

As you approach the conclusion, succinctly recapitulate your key points and emphasize your core message once more. Conclude by leaving your audience with a distinct and memorable takeaway, ensuring that your presentation has a lasting impact.

Additional tips for enhancing your data presentation

To take your data presentation to the next level, consider these additional tips:

  • Consistent design : Maintain a uniform design throughout your presentation. This not only enhances visual appeal but also aids in seamless comprehension.
  • High-quality visuals : Ensure that your visuals are of high quality, easy to read, and directly relevant to your topic.
  • Concise text : Avoid overwhelming your slides with excessive text. Focus on the most critical points, using visuals to support and elaborate.
  • Anticipate questions : Think ahead about the questions your audience might pose. Be prepared with well-thought-out answers to foster productive discussions.

By following these guidelines, you can structure an effective data presentation that not only informs but also engages and inspires your audience. Remember, a well-structured presentation is the bridge that connects your data to your audience's understanding and appreciation.

Do’s and don'ts on a data presentation

  • Use visuals : Incorporate charts and graphs to enhance understanding.
  • Keep it simple : Avoid clutter and complexity.
  • Highlight key points : Emphasize crucial data.
  • Engage the audience : Encourage questions and discussions.
  • Practice : Rehearse your presentation.

Don'ts:

  • Overload with data : Less is often more; don't overwhelm your audience.
  • Fit Unrelated data : Stay on topic; don't include irrelevant information.
  • Neglect the audience : Ensure your presentation suits your audience's level of expertise.
  • Read word-for-word : Avoid reading directly from slides.
  • Lose focus : Stick to your presentation's purpose.

Summarizing key takeaways

  • Definition : Data presentation is the art of visualizing complex data for better understanding.
  • Importance : Data presentations enhance clarity, engage the audience, aid decision-making, and leave a lasting impact.
  • Types : Textual, Tabular, and Graphical presentations offer various ways to present data.
  • Choosing methods : Select the right method based on data, audience, and purpose.
  • Components : Include data points, comparisons, visuals, infographics, numerical values, and source citations.
  • Structure : Know your audience, have a clear message, tell a compelling story, use visuals, be concise, and practice.
  • Do's and don'ts : Do use visuals, keep it simple, highlight key points, engage the audience, and practice. Don't overload with data, include unrelated information, neglect the audience's expertise, read word-for-word, or lose focus.

FAQ's on a data presentation

1. what is data presentation, and why is it important in 2024.

Data presentation is the process of visually representing data sets to convey information effectively to an audience. In an era where the amount of data generated is vast, visually presenting data using methods such as diagrams, graphs, and charts has become crucial. By simplifying complex data sets, presentation of the data may helps your audience quickly grasp much information without drowning in a sea of chart's, analytics, facts and figures.

2. What are some common methods of data presentation?

There are various methods of data presentation, including graphs and charts, histograms, and cumulative frequency polygons. Each method has its strengths and is often used depending on the type of data you're using and the message you want to convey. For instance, if you want to show data over time, try using a line graph. If you're presenting geographical data, consider to use a heat map.

3. How can I ensure that my data presentation is clear and readable?

To ensure that your data presentation is clear and readable, pay attention to the design and labeling of your charts. Don't forget to label the axes appropriately, as they are critical for understanding the values they represent. Don't fit all the information in one slide or in a single paragraph. Presentation software like Prezent and PowerPoint can help you simplify your vertical axis, charts and tables, making them much easier to understand.

4. What are some common mistakes presenters make when presenting data?

One common mistake is trying to fit too much data into a single chart, which can distort the information and confuse the audience. Another mistake is not considering the needs of the audience. Remember that your audience won't have the same level of familiarity with the data as you do, so it's essential to present the data effectively and respond to questions during a Q&A session.

5. How can I use data visualization to present important data effectively on platforms like LinkedIn?

When presenting data on platforms like LinkedIn, consider using eye-catching visuals like bar graphs or charts. Use concise captions and e.g., examples to highlight the single most important information in your data report. Visuals, such as graphs and tables, can help you stand out in the sea of textual content, making your data presentation more engaging and shareable among your LinkedIn connections.

Create your data presentation with prezent

Prezent can be a valuable tool for creating data presentations. Here's how Prezent can help you in this regard:

  • Time savings : Prezent saves up to 70% of presentation creation time, allowing you to focus on data analysis and insights.
  • On-brand consistency : Ensure 100% brand alignment with Prezent's brand-approved designs for professional-looking data presentations.
  • Effortless collaboration : Real-time sharing and collaboration features make it easy for teams to work together on data presentations.
  • Data storytelling : Choose from 50+ storylines to effectively communicate data insights and engage your audience.
  • Personalization : Create tailored data presentations that resonate with your audience's preferences, enhancing the impact of your data.

In summary, Prezent streamlines the process of creating data presentations by offering time-saving features, ensuring brand consistency, promoting collaboration, and providing tools for effective data storytelling. Whether you need to present data to clients, stakeholders, or within your organization, Prezent can significantly enhance your presentation-making process.

So, go ahead, present your data with confidence, and watch your audience be wowed by your expertise.

Thank you for joining us on this data-driven journey. Stay tuned for more insights, and remember, data presentation is your ticket to making numbers come alive! Sign up for our free trial or book a demo ! ‍

More zenpedia articles

importance of organization and presentation of data in research

Best practices to create and deliver effective presentations

importance of organization and presentation of data in research

Sales pitch presentation: A comprehensive guide

importance of organization and presentation of data in research

Leadership meeting presentation: A comprehensive guide

Get the latest from Prezent community

Join thousands of subscribers who receive our best practices on communication, storytelling, presentation design, and more. New tips weekly. (No spam, we promise!)

websights

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Data Collection | Definition, Methods & Examples

Data Collection | Definition, Methods & Examples

Published on June 5, 2020 by Pritha Bhandari . Revised on June 21, 2023.

Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem .

While methods and aims may differ between fields, the overall process of data collection remains largely the same. Before you begin collecting data, you need to consider:

  • The  aim of the research
  • The type of data that you will collect
  • The methods and procedures you will use to collect, store, and process the data

To collect high-quality data that is relevant to your purposes, follow these four steps.

Table of contents

Step 1: define the aim of your research, step 2: choose your data collection method, step 3: plan your data collection procedures, step 4: collect the data, other interesting articles, frequently asked questions about data collection.

Before you start the process of data collection, you need to identify exactly what you want to achieve. You can start by writing a problem statement : what is the practical or scientific issue that you want to address and why does it matter?

Next, formulate one or more research questions that precisely define what you want to find out. Depending on your research questions, you might need to collect quantitative or qualitative data :

  • Quantitative data is expressed in numbers and graphs and is analyzed through statistical methods .
  • Qualitative data is expressed in words and analyzed through interpretations and categorizations.

If your aim is to test a hypothesis , measure something precisely, or gain large-scale statistical insights, collect quantitative data. If your aim is to explore ideas, understand experiences, or gain detailed insights into a specific context, collect qualitative data. If you have several aims, you can use a mixed methods approach that collects both types of data.

  • Your first aim is to assess whether there are significant differences in perceptions of managers across different departments and office locations.
  • Your second aim is to gather meaningful feedback from employees to explore new ideas for how managers can improve.

Prevent plagiarism. Run a free check.

Based on the data you want to collect, decide which method is best suited for your research.

  • Experimental research is primarily a quantitative method.
  • Interviews , focus groups , and ethnographies are qualitative methods.
  • Surveys , observations, archival research and secondary data collection can be quantitative or qualitative methods.

Carefully consider what method you will use to gather data that helps you directly answer your research questions.

Data collection methods
Method When to use How to collect data
Experiment To test a causal relationship. Manipulate variables and measure their effects on others.
Survey To understand the general characteristics or opinions of a group of people. Distribute a list of questions to a sample online, in person or over-the-phone.
Interview/focus group To gain an in-depth understanding of perceptions or opinions on a topic. Verbally ask participants open-ended questions in individual interviews or focus group discussions.
Observation To understand something in its natural setting. Measure or survey a sample without trying to affect them.
Ethnography To study the culture of a community or organization first-hand. Join and participate in a community and record your observations and reflections.
Archival research To understand current or historical events, conditions or practices. Access manuscripts, documents or records from libraries, depositories or the internet.
Secondary data collection To analyze data from populations that you can’t access first-hand. Find existing datasets that have already been collected, from sources such as government agencies or research organizations.

When you know which method(s) you are using, you need to plan exactly how you will implement them. What procedures will you follow to make accurate observations or measurements of the variables you are interested in?

For instance, if you’re conducting surveys or interviews, decide what form the questions will take; if you’re conducting an experiment, make decisions about your experimental design (e.g., determine inclusion and exclusion criteria ).

Operationalization

Sometimes your variables can be measured directly: for example, you can collect data on the average age of employees simply by asking for dates of birth. However, often you’ll be interested in collecting data on more abstract concepts or variables that can’t be directly observed.

Operationalization means turning abstract conceptual ideas into measurable observations. When planning how you will collect data, you need to translate the conceptual definition of what you want to study into the operational definition of what you will actually measure.

  • You ask managers to rate their own leadership skills on 5-point scales assessing the ability to delegate, decisiveness and dependability.
  • You ask their direct employees to provide anonymous feedback on the managers regarding the same topics.

You may need to develop a sampling plan to obtain data systematically. This involves defining a population , the group you want to draw conclusions about, and a sample, the group you will actually collect data from.

Your sampling method will determine how you recruit participants or obtain measurements for your study. To decide on a sampling method you will need to consider factors like the required sample size, accessibility of the sample, and timeframe of the data collection.

Standardizing procedures

If multiple researchers are involved, write a detailed manual to standardize data collection procedures in your study.

This means laying out specific step-by-step instructions so that everyone in your research team collects data in a consistent way – for example, by conducting experiments under the same conditions and using objective criteria to record and categorize observations. This helps you avoid common research biases like omitted variable bias or information bias .

This helps ensure the reliability of your data, and you can also use it to replicate the study in the future.

Creating a data management plan

Before beginning data collection, you should also decide how you will organize and store your data.

  • If you are collecting data from people, you will likely need to anonymize and safeguard the data to prevent leaks of sensitive information (e.g. names or identity numbers).
  • If you are collecting data via interviews or pencil-and-paper formats, you will need to perform transcriptions or data entry in systematic ways to minimize distortion.
  • You can prevent loss of data by having an organization system that is routinely backed up.

Finally, you can implement your chosen methods to measure or observe the variables you are interested in.

The closed-ended questions ask participants to rate their manager’s leadership skills on scales from 1–5. The data produced is numerical and can be statistically analyzed for averages and patterns.

To ensure that high quality data is recorded in a systematic way, here are some best practices:

  • Record all relevant information as and when you obtain data. For example, note down whether or how lab equipment is recalibrated during an experimental study.
  • Double-check manual data entry for errors.
  • If you collect quantitative data, you can assess the reliability and validity to get an indication of your data quality.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

importance of organization and presentation of data in research

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 21). Data Collection | Definition, Methods & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/methodology/data-collection/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, sampling methods | types, techniques & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Patterns (N Y)
  • v.1(9); 2020 Dec 11

Logo of patterns

Principles of Effective Data Visualization

Stephen r. midway.

1 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

We live in a contemporary society surrounded by visuals, which, along with software options and electronic distribution, has created an increased importance on effective scientific visuals. Unfortunately, across scientific disciplines, many figures incorrectly present information or, when not incorrect, still use suboptimal data visualization practices. Presented here are ten principles that serve as guidance for authors who seek to improve their visual message. Some principles are less technical, such as determining the message before starting the visual, while other principles are more technical, such as how different color combinations imply different information. Because figure making is often not formally taught and figure standards are not readily enforced in science, it is incumbent upon scientists to be aware of best practices in order to most effectively tell the story of their data.

The Bigger Picture

Visuals are an increasingly important form of science communication, yet many scientists are not well trained in design principles for effective messaging. Despite challenges, many visuals can be improved by taking some simple steps before, during, and after their creation. This article presents some sequential principles that are designed to improve visual messages created by scientists.

Many scientific visuals are not as effective as they could be because scientists often lack basic design principles. This article reviews the importance of effective data visualization and presents ten principles that scientists can use as guidance in developing effective visual messages.

Introduction

Visual learning is one of the primary forms of interpreting information, which has historically combined images such as charts and graphs (see Box 1 ) with reading text. 1 However, developments on learning styles have suggested splitting up the visual learning modality in order to recognize the distinction between text and images. 2 Technology has also enhanced visual presentation, in terms of the ability to quickly create complex visual information while also cheaply distributing it via digital means (compared with paper, ink, and physical distribution). Visual information has also increased in scientific literature. In addition to the fact that figures are commonplace in scientific publications, many journals now require graphical abstracts 3 or might tweet figures to advertise an article. Dating back to the 1970s when computer-generated graphics began, 4 papers represented by an image on the journal cover have been cited more frequently than papers without a cover image. 5

Regarding terminology, the terms graph , plot , chart , image , figure , and data visual(ization) are often used interchangeably, although they may have different meanings in different instances. Graph , plot , and chart often refer to the display of data, data summaries, and models, while image suggests a picture. Figure is a general term but is commonly used to refer to visual elements, such as plots, in a scientific work. A visual , or data visualization , is a newer and ostensibly more inclusive term to describe everything from figures to infographics. Here, I adopt common terminology, such as bar plot, while also attempting to use the terms figure and data visualization for general reference.

There are numerous advantages to quickly and effectively conveying scientific information; however, scientists often lack the design principles or technical skills to generate effective visuals. Going back several decades, Cleveland 6 found that 30% of graphs in the journal Science had at least one type of error. Several other studies have documented widespread errors or inefficiencies in scientific figures. 7 , 8 , 9 In fact, the increasing menu of visualization options can sometimes lead to poor fits between information and its presentation. These poor fits can even have the unintended consequence of confusing the readers and setting them back in their understanding of the material. While objective errors in graphs are hopefully in the minority of scientific works, what might be more common is suboptimal figure design, which takes place when a design element may not be objectively wrong but is ineffective to the point of limiting information transfer.

Effective figures suggest an understanding and interpretation of data; ineffective figures suggest the opposite. Although the field of data visualization has grown in recent years, the process of displaying information cannot—and perhaps should not—be fully mechanized. Much like statistical analyses often require expert opinions on top of best practices, figures also require choice despite well-documented recommendations. In other words, there may not be a singular best version of a given figure. Rather, there may be multiple effective versions of displaying a single piece of information, and it is the figure maker's job to weigh the advantages and disadvantages of each. Fortunately, there are numerous principles from which decisions can be made, and ultimately design is choice. 7

The data visualization literature includes many great resources. While several resources are targeted at developing design proficiency, such as the series of columns run by Nature Communications , 10 Wilkinson's The Grammar of Graphics 11 presents a unique technical interpretation of the structure of graphics. Wilkinson breaks down the notion of a graphic into its constituent parts—e.g., the data, scales, coordinates, geometries, aesthetics—much like conventional grammar breaks down a sentence into nouns, verbs, punctuation, and other elements of writing. The popularity and utility of this approach has been implemented in a number of software packages, including the popular ggplot2 package 12 currently available in R. 13 (Although the grammar of graphics approach is not explicitly adopted here, the term geometry is used consistently with Wilkinson to refer to different geometrical representations, whereas the term aesthetics is not used consistently with the grammar of graphics and is used simply to describe something that is visually appealing and effective.) By understanding basic visual design principles and their implementation, many figure authors may find new ways to emphasize and convey their information.

The Ten Principles

Principle #1 diagram first.

The first principle is perhaps the least technical but very important: before you make a visual, prioritize the information you want to share, envision it, and design it. Although this seems obvious, the larger point here is to focus on the information and message first, before you engage with software that in some way starts to limit or bias your visual tools. In other words, don't necessarily think of the geometries (dots, lines) you will eventually use, but think about the core information that needs to be conveyed and what about that information is going to make your point(s). Is your visual objective to show a comparison? A ranking? A composition? This step can be done mentally, or with a pen and paper for maximum freedom of thought. In parallel to this approach, it can be a good idea to save figures you come across in scientific literature that you identify as particularly effective. These are not just inspiration and evidence of what is possible, but will help you develop an eye for detail and technical skills that can be applied to your own figures.

Principle #2 Use the Right Software

Effective visuals typically require good command of one or more software. In other words, it might be unrealistic to expect complex, technical, and effective figures if you are using a simple spreadsheet program or some other software that is not designed to make complex, technical, and effective figures. Recognize that you might need to learn a new software—or expand your knowledge of a software you already know. While highly effective and aesthetically pleasing figures can be made quickly and simply, this may still represent a challenge to some. However, figure making is a method like anything else, and in order to do it, new methodologies may need to be learned. You would not expect to improve a field or lab method without changing something or learning something new. Data visualization is the same, with the added benefit that most software is readily available, inexpensive, or free, and many come with large online help resources. This article does not promote any specific software, and readers are encouraged to reference other work 14 for an overview of software resources.

Principle #3 Use an Effective Geometry and Show Data

Geometries are the shapes and features that are often synonymous with a type of figure; for example, the bar geometry creates a bar plot. While geometries might be the defining visual element of a figure, it can be tempting to jump directly from a dataset to pairing it with one of a small number of well-known geometries. Some of this thinking is likely to naturally happen. However, geometries are representations of the data in different forms, and often there may be more than one geometry to consider. Underlying all your decisions about geometries should be the data-ink ratio, 7 which is the ratio of ink used on data compared with overall ink used in a figure. High data-ink ratios are the best, and you might be surprised to find how much non-data-ink you use and how much of that can be removed.

Most geometries fall into categories: amounts (or comparisons), compositions (or proportions), distributions , or relationships . Although seemingly straightforward, one geometry may work in more than one category, in addition to the fact that one dataset may be visualized with more than one geometry (sometimes even in the same figure). Excellent resources exist on detailed approaches to selecting your geometry, 15 and this article only highlights some of the more common geometries and their applications.

Amounts or comparisons are often displayed with a bar plot ( Figure 1 A), although numerous other options exist, including Cleveland dot plots and even heatmaps ( Figure 1 F). Bar plots are among the most common geometry, along with lines, 9 although bar plots are noted for their very low data density 16 (i.e., low data-ink ratio). Geometries for amounts should only be used when the data do not have distributional information or uncertainty associated with them. A good use of a bar plot might be to show counts of something, while poor use of a bar plot might be to show group means. Numerous studies have discussed inappropriate uses of bar plots, 9 , 17 noting that “because the bars always start at zero, they can be misleading: for example, part of the range covered by the bar might have never been observed in the sample.” 17 Despite the numerous reports on incorrect usage, bar plots remain one of the most common problems in data visualization.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

Examples of Visual Designs

(A) Clustered bar plots are effective at showing units within a group (A–C) when the data are amounts.

(B) Histograms are effective at showing the distribution of data, which in this case is a random draw of values from a Poisson distribution and which use a sequential color scheme that emphasizes the mean as red and values farther from the mean as yellow.

(C) Scatterplot where the black circles represent the data.

(D) Logistic regression where the blue line represents the fitted model, the gray shaded region represents the confidence interval for the fitted model, and the dark-gray dots represent the jittered data.

(E) Box plot showing (simulated) ages of respondents grouped by their answer to a question, with gray dots representing the raw data used in the box plot. The divergent colors emphasize the differences in values. For each box plot, the box represents the interquartile range (IQR), the thick black line represents the median value, and the whiskers extend to 1.5 times the IQR. Outliers are represented by the data.

(F) Heatmap of simulated visibility readings in four lakes over 5 months. The green colors represent lower visibility and the blue colors represent greater visibility. The white numbers in the cells are the average visibility measures (in meters).

(G) Density plot of simulated temperatures by season, where each season is presented as a small multiple within the larger figure.

For all figures the data were simulated, and any examples are fictitious.

Compositions or proportions may take a wide range of geometries. Although the traditional pie chart is one option, the pie geometry has fallen out of favor among some 18 due to the inherent difficulties in making visual comparisons. Although there may be some applications for a pie chart, stacked or clustered bar plots ( Figure 1 A), stacked density plots, mosaic plots, and treemaps offer alternatives.

Geometries for distributions are an often underused class of visuals that demonstrate high data density. The most common geometry for distributional information is the box plot 19 ( Figure 1 E), which shows five types of information in one object. Although more common in exploratory analyses than in final reports, the histogram ( Figure 1 B) is another robust geometry that can reveal information about data. Violin plots and density plots ( Figure 1 G) are other common distributional geometries, although many less-common options exist.

Relationships are the final category of visuals covered here, and they are often the workhorse of geometries because they include the popular scatterplot ( Figures 1 C and 1D) and other presentations of x - and y -coordinate data. The basic scatterplot remains very effective, and layering information by modifying point symbols, size, and color are good ways to highlight additional messages without taking away from the scatterplot. It is worth mentioning here that scatterplots often develop into line geometries ( Figure 1 D), and while this can be a good thing, presenting raw data and inferential statistical models are two different messages that need to be distinguished (see Data and Models Are Different Things ).

Finally, it is almost always recommended to show the data. 7 Even if a geometry might be the focus of the figure, data can usually be added and displayed in a way that does not detract from the geometry but instead provides the context for the geometry (e.g., Figures 1 D and 1E). The data are often at the core of the message, yet in figures the data are often ignored on account of their simplicity.

Principle #4 Colors Always Mean Something

The use of color in visualization can be incredibly powerful, and there is rarely a reason not to use color. Even if authors do not wish to pay for color figures in print, most journals still permit free color figures in digital formats. In a large study 20 of what makes visualizations memorable, colorful visualizations were reported as having a higher memorability score, and that seven or more colors are best. Although some of the visuals in this study were photographs, other studies 21 also document the effectiveness of colors.

In today's digital environment, color is cheap. This is overwhelmingly a good thing, but also comes with the risk of colors being applied without intention. Black-and-white visuals were more accepted decades ago when hard copies of papers were more common and color printing represented a large cost. Now, however, the vast majority of readers view scientific papers on an electronic screen where color is free. For those who still print documents, color printing can be done relatively cheaply in comparison with some years ago.

Color represents information, whether in a direct and obvious way, or in an indirect and subtle way. A direct example of using color may be in maps where water is blue and land is green or brown. However, the vast majority of (non-mapping) visualizations use color in one of three schemes: sequential , diverging , or qualitative . Sequential color schemes are those that range from light to dark typically in one or two (related) hues and are often applied to convey increasing values for increasing darkness ( Figures 1 B and 1F). Diverging color schemes are those that have two sequential schemes that represent two extremes, often with a white or neutral color in the middle ( Figure 1 E). A classic example of a diverging color scheme is the red to blue hues applied to jurisdictions in order to show voting preference in a two-party political system. Finally, qualitative color schemes are found when the intensity of the color is not of primary importance, but rather the objective is to use different and otherwise unrelated colors to convey qualitative group differences ( Figures 1 A and 1G).

While it is recommended to use color and capture the power that colors convey, there exist some technical recommendations. First, it is always recommended to design color figures that work effectively in both color and black-and-white formats ( Figures 1 B and 1F). In other words, whenever possible, use color that can be converted to an effective grayscale such that no information is lost in the conversion. Along with this approach, colors can be combined with symbols, line types, and other design elements to share the same information that the color was sharing. It is also good practice to use color schemes that are effective for colorblind readers ( Figures 1 A and 1E). Excellent resources, such as ColorBrewer, 22 exist to help in selecting color schemes based on colorblind criteria. Finally, color transparency is another powerful tool, much like a volume knob for color ( Figures 1 D and 1E). Not all colors have to be used at full value, and when not part of a sequential or diverging color scheme—and especially when a figure has more than one colored geometry—it can be very effective to increase the transparency such that the information of the color is retained but it is not visually overwhelming or outcompeting other design elements. Color will often be the first visual information a reader gets, and with this knowledge color should be strategically used to amplify your visual message.

Principle #5 Include Uncertainty

Not only is uncertainty an inherent part of understanding most systems, failure to include uncertainty in a visual can be misleading. There exist two primary challenges with including uncertainty in visuals: failure to include uncertainty and misrepresentation (or misinterpretation) of uncertainty.

Uncertainty is often not included in figures and, therefore, part of the statistical message is left out—possibly calling into question other parts of the statistical message, such as inference on the mean. Including uncertainty is typically easy in most software programs, and can take the form of common geometries such as error bars and shaded intervals (polygons), among other features. 15 Another way to approach visualizing uncertainty is whether it is included implicitly into the existing geometries, such as in a box plot ( Figure 1 E) or distribution ( Figures 1 B and 1G), or whether it is included explicitly as an additional geometry, such as an error bar or shaded region ( Figure 1 D).

Representing uncertainty is often a challenge. 23 Standard deviation, standard error, confidence intervals, and credible intervals are all common metrics of uncertainty, but each represents a different measure. Expressing uncertainty requires that readers be familiar with metrics of uncertainty and their interpretation; however, it is also the responsibility of the figure author to adopt the most appropriate measure of uncertainty. For instance, standard deviation is based on the spread of the data and therefore shares information about the entire population, including the range in which we might expect new values. On the other hand, standard error is a measure of the uncertainty in the mean (or some other estimate) and is strongly influenced by sample size—namely, standard error decreases with increasing sample size. Confidence intervals are primarily for displaying the reliability of a measurement. Credible intervals, almost exclusively associated with Bayesian methods, are typically built off distributions and have probabilistic interpretations.

Expressing uncertainty is important, but it is also important to interpret the correct message. Krzywinski and Altman 23 directly address a common misconception: “a gap between (error) bars does not ensure significance, nor does overlap rule it out—it depends on the type of bar.” This is a good reminder to be very clear not only in stating what type of uncertainty you are sharing, but what the interpretation is. Others 16 even go so far as to recommend that standard error not be used because it does not provide clear information about standard errors of differences among means. One recommendation to go along with expressing uncertainty is, if possible, to show the data (see Use an Effective Geometry and Show Data ). Particularly when the sample size is low, showing a reader where the data occur can help avoid misinterpretations of uncertainty.

Principle #6 Panel, when Possible (Small Multiples)

A particularly effective visual approach is to repeat a figure to highlight differences. This approach is often called small multiples , 7 and the technique may be referred to as paneling or faceting ( Figure 1 G). The strategy behind small multiples is that because many of the design elements are the same—for example, the axes, axes scales, and geometry are often the same—the differences in the data are easier to show. In other words, each panel represents a change in one variable, which is commonly a time step, a group, or some other factor. The objective of small multiples is to make the data inevitably comparable, 7 and effective small multiples always accomplish these comparisons.

Principle #7 Data and Models Are Different Things

Plotted information typically takes the form of raw data (e.g., scatterplot), summarized data (e.g., box plot), or an inferential statistic (e.g., fitted regression line; Figure 1 D). Raw data and summarized data are often relatively straightforward; however, a plotted model may require more explanation for a reader to be able to fully reproduce the work. Certainly any model in a study should be reported in a complete way that ensures reproducibility. However, any visual of a model should be explained in the figure caption or referenced elsewhere in the document so that a reader can find the complete details on what the model visual is representing. Although it happens, it is not acceptable practice to show a fitted model or other model results in a figure if the reader cannot backtrack the model details. Simply because a model geometry can be added to a figure does not mean that it should be.

Principle #8 Simple Visuals, Detailed Captions

As important as it is to use high data-ink ratios, it is equally important to have detailed captions that fully explain everything in the figure. A study of figures in the Journal of American Medicine 8 found that more than one-third of graphs were not self-explanatory. Captions should be standalone, which means that if the figure and caption were looked at independent from the rest of the study, the major point(s) could still be understood. Obviously not all figures can be completely standalone, as some statistical models and other procedures require more than a caption as explanation. However, the principle remains that captions should do all they can to explain the visualization and representations used. Captions should explain any geometries used; for instance, even in a simple scatterplot it should be stated that the black dots represent the data ( Figures 1 C–1E). Box plots also require descriptions of their geometry—it might be assumed what the features of a box plot are, yet not all box plot symbols are universal.

Principle #9 Consider an Infographic

It is unclear where a figure ends and an infographic begins; however, it is fair to say that figures tend to be focused on representing data and models, whereas infographics typically incorporate text, images, and other diagrammatic elements. Although it is not recommended to convert all figures to infographics, infographics were found 20 to have the highest memorability score and that diagrams outperformed points, bars, lines, and tables in terms of memorability. Scientists might improve their overall information transfer if they consider an infographic where blending different pieces of information could be effective. Also, an infographic of a study might be more effective outside of a peer-reviewed publication and in an oral or poster presentation where a visual needs to include more elements of the study but with less technical information.

Even if infographics are not adopted in most cases, technical visuals often still benefit from some text or other annotations. 16 Tufte's works 7 , 24 provide great examples of bringing together textual, visual, and quantitative information into effective visualizations. However, as figures move in the direction of infographics, it remains important to keep chart junk and other non-essential visual elements out of the design.

Principle #10 Get an Opinion

Although there may be principles and theories about effective data visualization, the reality is that the most effective visuals are the ones with which readers connect. Therefore, figure authors are encouraged to seek external reviews of their figures. So often when writing a study, the figures are quickly made, and even if thoughtfully made they are not subject to objective, outside review. Having one or more colleagues or people external to the study review figures will often provide useful feedback on what readers perceive, and therefore what is effective or ineffective in a visual. It is also recommended to have outside colleagues review only the figures. Not only might this please your colleague reviewers (because figure reviews require substantially less time than full document reviews), but it also allows them to provide feedback purely on the figures as they will not have the document text to fill in any uncertainties left by the visuals.

What About Tables?

Although often not included as data visualization, tables can be a powerful and effective way to show data. Like other visuals, tables are a type of hybrid visual—they typically only include alphanumeric information and no geometries (or other visual elements), so they are not classically a visual. However, tables are also not text in the same way a paragraph or description is text. Rather, tables are often summarized values or information, and are effective if the goal is to reference exact numbers. However, the interest in numerical results in the form of a study typically lies in comparisons and not absolute numbers. Gelman et al. 25 suggested that well-designed graphs were superior to tables. Similarly, Spence and Lewandowsky 26 compared pie charts, bar graphs, and tables and found a clear advantage for graphical displays over tabulations. Because tables are best suited for looking up specific information while graphs are better for perceiving trends and making comparisons and predictions, it is recommended that visuals are used before tables. Despite the reluctance to recommend tables, tables may benefit from digital formats. In other words, while tables may be less effective than figures in many cases, this does not mean tables are ineffective or do not share specific information that cannot always be displayed in a visual. Therefore, it is recommended to consider creating tables as supplementary or appendix information that does not go into the main document (alongside the figures), but which is still very easily accessed electronically for those interested in numerical specifics.

Conclusions

While many of the elements of peer-reviewed literature have remained constant over time, some elements are changing. For example, most articles now have more authors than in previous decades, and a much larger menu of journals creates a diversity of article lengths and other requirements. Despite these changes, the demand for visual representations of data and results remains high, as exemplified by graphical abstracts, overview figures, and infographics. Similarly, we now operate with more software than ever before, creating many choices and opportunities to customize scientific visualizations. However, as the demand for, and software to create, visualizations have both increased, there is not always adequate training among scientists and authors in terms of optimizing the visual for the message.

Figures are not just a scientific side dish but can be a critical point along the scientific process—a point at which the figure maker demonstrates their knowledge and communication of the data and results, and often one of the first stopping points for new readers of the information. The reality for the vast majority of figures is that you need to make your point in a few seconds. The longer someone looks at a figure and doesn't understand the message, the more likely they are to gain nothing from the figure and possibly even lose some understanding of your larger work. Following a set of guidelines and recommendations—summarized here and building on others—can help to build robust visuals that avoid many common pitfalls of ineffective figures ( Figure 2 ).

An external file that holds a picture, illustration, etc.
Object name is gr2.jpg

Overview of the Principles Presented in This Article

The two principles in yellow (bottom) are those that occur first, during the figure design phase. The six principles in green (middle) are generally considerations and decisions while making a figure. The two principles in blue (top) are final steps often considered after a figure has been drafted. While the general flow of the principles follows from bottom to top, there is no specific or required order, and the development of individual figures may require more or less consideration of different principles in a unique order.

All scientists seek to share their message as effectively as possible, and a better understanding of figure design and representation is undoubtedly a step toward better information dissemination and fewer errors in interpretation. Right now, much of the responsibility for effective figures lies with the authors, and learning best practices from literature, workshops, and other resources should be undertaken. Along with authors, journals play a gatekeeper role in figure quality. Journal editorial teams are in a position to adopt recommendations for more effective figures (and reject ineffective figures) and then translate those recommendations into submission requirements. However, due to the qualitative nature of design elements, it is difficult to imagine strict visual guidelines being enforced across scientific sectors. In the absence of such guidelines and with seemingly endless design choices available to figure authors, it remains important that a set of aesthetic criteria emerge to guide the efficient conveyance of visual information.

Acknowledgments

Thanks go to the numerous students with whom I have had fun, creative, and productive conversations about displaying information. Danielle DiIullo was extremely helpful in technical advice on software. Finally, Ron McKernan provided guidance on several principles.

Author Contributions

S.R.M. conceived the review topic, conducted the review, developed the principles, and wrote the manuscript.

Steve Midway is an assistant professor in the Department of Oceanography and Coastal Sciences at Louisiana State University. His work broadly lies in fisheries ecology and how sound science can be applied to management and conservation issues. He teaches a number of quantitative courses in ecology, all of which include data visualization.

  • Systems Accreditation
  • Quality Assurances Accreditation
  • Person-Centered Excellence Accreditation
  • Person-Centered Excellence Accreditation, With Distinction
  • Network Accreditation
  • Accredited Organizations
  • Promoting Your Accreditation
  • Accreditation Inquiry
  • CQL-Hosted Training
  • Organization-Hosted Training
  • E-Learning Courses
  • Certification
  • Research Projects
  • Research Articles
  • PORTAL Data System
  • Consultation
  • Personal Outcome Measures®
  • Basic Assurances®
  • Capstone Newsletters
  • Rights Conversation Cards
  • Sex & Relationships Conversation Cards
  • The CQL POST App
  • Partnerships

A Decrease font size. A Reset font size. A Increase font size.

The Council on Quality and Leadership

12 Reasons Why Data Is Important

Learn why data is important, what you can do with it, and how it relates to the field

Posted on March 3, 2018

'12 Reasons Why Data Is Important

If you work in human services because you hate math, terms like “data,” “quantitative analysis,” or “pivot table” might sound scary. Don’t be intimidated! Data does not have to be complicated. Simply stated, data is useful information that you collect to support organizational decision-making and strategy.

The list below shares twelve reasons why data is important, what you can do with it, and how it relates to the human services field. You can also download ’12 Reasons Why Data Is Important’ to print out copies and share with your colleagues and other stakeholders.

1. Improve People’s Lives

Data will help you to improve quality of life for people you support: Improving quality is first and foremost among the reasons why organizations should be using data. By allowing you to measure and take action, an effective data system can enable your organization to improve the quality of people’s lives.

2. Make Informed Decisions

Data = Knowledge. Good data provides indisputable evidence, while anecdotal evidence, assumptions, or abstract observation might lead to wasted resources due to taking action based on an incorrect conclusion.

3. Stop Molehills From Turning Into Mountains

Data allows you to monitor the health of important systems in your organization: By utilizing data for quality monitoring , organizations are able to respond to challenges before they become full-blown crisis. Effective quality monitoring will allow your organization to be proactive rather than reactive and will support the organization to maintain best practices over time.

4. Get The Results You Want

Data allows organizations to measure the effectiveness of a given strategy: When strategies are put into place to overcome a challenge, collecting data will allow you to determine how well your solution is performing, and whether or not your approach needs to be tweaked or changed over the long-term.

5. Find Solutions To Problems

Data allows organizations to more effectively determine the cause of problems. Data allows organizations to visualize relationships between what is happening in different locations, departments, and systems. If the number of medication errors has gone up, is there an issue such as staff turnover or vacancy rates that may suggest a cause? Looking at these data points side-by-side allows us to develop more accurate theories, and put into place more effective solutions.

6. Back Up Your Arguments

Data is a key component to systems advocacy. Utilizing data will help present a strong argument for systems change. Whether you are advocating for increased funding from public or private sources, or making the case for changes in regulation, illustrating your argument through the use of data will allow you to demonstrate why changes are needed.

7. Stop The Guessing Game

Data will help you explain (both good and bad) decisions to your stakeholders. Whether or not your strategies and decisions have the outcome you anticipated, you can be confident that you developed your approach based not upon guesses, but good solid data.

8. Be Strategic In Your Approaches

Data increases efficiency. Effective data collection and analysis will allow you to direct scarce resources where they are most needed. If an increase in significant incidents is noted in a particular service area, this data can be dissected further to determine whether the increase is widespread or isolated to a particular site . If the issue is isolated, training, staffing, or other resources can be deployed precisely where they are needed, as opposed to system-wide. Data will also support organizations to determine which areas should take priority over others.

9. Know What You Are Doing Well

Data allows you to replicate areas of strength across your organization. Data analysis will support you to identify high-performing programs, service areas, and people. Once you identify your high-performers, you can study them in order to develop strategies to assist programs, service areas and people that are low-performing.

10. Keep Track Of It All

Good data allows organizations to establish baselines, benchmarks, and goals to keep moving forward. Because data allows you to measure, you will be able to establish baselines, find benchmarks and set performance goals. A baseline is what a certain area looks like before a particular solution is implemented. Benchmarks establish where others are at in a similar demographic, such as Personal Outcome Measures® national data. Collecting data will allow your organization to set goals for performance and celebrate your successes when they are achieved.

11. Make The Most Of Your Money

Funding is increasingly outcome and data-driven . With the shift from funding that is based on services provided to funding that is based on outcomes achieved, it is increasingly important for organizations to implement evidence-based practice and develop systems to collect and analyze data.

12. Access The Resources Around You

Your organization probably already has most of the data and expertise you need to begin analysis. Your HR office probably already tracks data regarding your staff. You are probably already reporting data regarding incidents to your state oversight agency. You probably have at least one person in your organization who has experience with Excel. But, if you don’t do any of these things, there is still hope! There are lots of free resources online that can get you started. Do a web search for “how to analyze data” or “how to make a chart in Excel.”

IMAGES

  1. Organization and Presentation of Data

    importance of organization and presentation of data in research

  2. Chapter 2 Organization and Presentation of Data

    importance of organization and presentation of data in research

  3. Data organization and presentation (statistics for research)

    importance of organization and presentation of data in research

  4. Organization and Presentation of Data Part 1

    importance of organization and presentation of data in research

  5. PPT

    importance of organization and presentation of data in research

  6. Data Presentation

    importance of organization and presentation of data in research

VIDEO

  1. The importance of financial data collection and standardization

  2. Data Management Overview, Part 3 of 4

  3. Data Management Overview, Part 4 of 4

  4. Data Management Overview, Part 2 of 4

  5. Importance Of Human Resource Management (HRM)

  6. Data Management Overview, Part 1 of 4

COMMENTS

  1. Data organization and presentation (statistics for research)

    The document discusses various methods of presenting data, including textual, tabular, and graphical displays. It provides examples and definitions of key terms used in data presentation, such as frequency distribution tables, class intervals, class boundaries, class marks, and cumulative frequencies. The document also outlines steps for ...

  2. Data Organization in Research

    Data organization. Organizing data is an integral part of the qualitative research process. It involves arranging the collected data systematically to enhance comprehension, ease analysis, and unveil meaningful insights. Organizing data is little more than sorting data and making it easier to read. Photo by Sarah Brown.

  3. Data Presentation

    Data Analysis and Data Presentation have a practical implementation in every possible field. It can range from academic studies, commercial, industrial and marketing activities to professional practices. In its raw form, data can be extremely complicated to decipher and in order to extract meaningful insights from the data, data analysis is an important step towards breaking down data into ...

  4. PDF The Organization and Graphic Presentation of Data

    The Organization and Graphic Presentation of Data—23 A proportion is a relative frequency obtained by dividing the frequency in each category by the total number of cases. To find a proportion (p), divide the frequency (f) in each category by the total number of cases (N):p ¼ f N where f = frequency N = total number of cases Thus, the proportion of foreign born originally from Latin America is

  5. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  6. Present Your Data Like a Pro

    TheJoelTruth. While a good presentation has data, data alone doesn't guarantee a good presentation. It's all about how that data is presented. The quickest way to confuse your audience is by ...

  7. PDF THE ORGANIZATION AND GRAPHIC PRESENTATION OF DATA

    the United States. To make sense out of these data, a researcher must organize and summarize the data in some systematic fashion. In this chapter, we review three such methods used by social scientists: (1) the creation of frequency distributions, (2) the construction of bivar - iate tables and (3) the use of graphic presentation.

  8. Data Collection, Presentation and Analysis

    Some of the most important components of postgraduate research are data collection, data presentation and data analysis, because these are the foundations that the 'new knowledge' stands on. These components establish the basis on which reviewers, examiners and readers evaluate the final research report, dissertation or thesis.

  9. How To Present Research Data?

    Start with response rate and description of research participants (these information give the readers an idea of the representativeness of the research data), then the key findings and relevant statistical analyses. Data should answer the research questions identified earlier. Leave the process of data collection to the methods section.

  10. Presenting Data

    A large body of research about how people process information demonstrates that data selection and presentation influence comprehension, decision making, and behavior in health and other areas. 2-8 Conversely, poor data selection and presentation can lead to audience confusion, 9-12 medical errors, 13-15 flawed policy making, 10, 16, 17 ...

  11. Presenting data in tables and charts

    Among the essential stages of epidemiological research, one of the most important is the identification of data with which the researcher is working, as well as a clear and synthetic description of these data using graphs and tables. ... The forms of data presentation that have been described up to this point illustrated the distribution of a ...

  12. Data Presentation: A Comprehensive Guide

    Data presentation is the art of transforming raw data into a visual format that's easy to understand and interpret. It's like turning numbers and statistics into a captivating story that your audience can quickly grasp. When done right, data presentation can be a game-changer, enabling you to convey complex information effectively. ‍ ‍

  13. Effective data presentation increases research impact

    Summary: Effective presentation of data is very important for the reader to understand the impact of a situation or an experiment. Sometimes, authors might not be able to identify the most impactful way to present data. They should do some careful thinking about the best way to represent data and ask for suggestions from experienced colleagues ...

  14. (PDF) CHAPTER FOUR DATA PRESENTATION, ANALYSIS AND ...

    DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are presented in ...

  15. Data Presentation in Research Reports: Key Principles and Tips

    2. Follow the design principles. 3. Adapt to your audience. 4. Here's what else to consider. Data presentation is a crucial aspect of any research report, as it communicates the results and ...

  16. (PDF) Organizing research data

    Abstract. Research relies on ever larger amounts of data from experiments, automated production equipment, questionnaries, times series such as weather records, and so on. A major task in science ...

  17. Data Collection

    Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem. While methods and aims may differ between fields, the overall process of ...

  18. Principles of Effective Data Visualization

    Introduction. Visual learning is one of the primary forms of interpreting information, which has historically combined images such as charts and graphs (see Box 1) with reading text. 1 However, developments on learning styles have suggested splitting up the visual learning modality in order to recognize the distinction between text and images. 2 Technology has also enhanced visual presentation ...

  19. (PDF) Statistical data presentation

    Data Presentation. Data can be presented in one of the three wa ys: - as text; - in tabular form; or. - in graphical form. Methods of presenta tion must be determined according. to the data ...

  20. Improving Qualitative Research Findings Presentations:

    In summary, the genre of the qualitative research findings presentation is important in terms of personal reputation and career progression, methodologically, and for the growth and reputation of qualitative methods. Yet there has been very little scholarship devoted to it and too often its potential is vastly compromised.

  21. What Is Data Presentation? (Definition, Types And How-To)

    Data presentation is a process of comparing two or more data sets with visual aids, such as graphs. Using a graph, you can represent how the information relates to other data. This process follows data analysis and helps organise information by visualising and putting it into a more readable format.

  22. (PDF) CHAPTER FOUR DATA PRESENTATION, ANALYSIS AND ...

    CHAPTER FOUR. DATA PRESENTATION, ANALYSIS A ND DISCUSSION OF FINDINGS. 4.1 Introduction. This section gives a detailed description of the data collected for the st udy and t he procedure used to ...

  23. 12 Reasons Why Data Is Important

    Data will help you to improve quality of life for people you support: Improving quality is first and foremost among the reasons why organizations should be using data. By allowing you to measure and take action, an effective data system can enable your organization to improve the quality of people's lives. 2. Make Informed Decisions.