Distance Learning

Using technology to develop students’ critical thinking skills.

by Jessica Mansbach

What Is Critical Thinking?

Critical thinking is a higher-order cognitive skill that is indispensable to students, readying them to respond to a variety of complex problems that are sure to arise in their personal and professional lives. The  cognitive skills at the foundation of critical thinking are  analysis, interpretation, evaluation, explanation, inference, and self-regulation.  

When students think critically, they actively engage in these processes:

  • Communication
  • Problem-solving

To create environments that engage students in these processes, instructors need to ask questions, encourage the expression of diverse opinions, and involve students in a variety of hands-on activities that force them to be involved in their learning.

Types of Critical Thinking Skills

Instructors should select activities based on the level of thinking they want students to do and the learning objectives for the course or assignment. The chart below describes questions to ask in order to show that students can demonstrate different levels of critical thinking.

*Adapted from Brown University’s Harriet W Sheridan Center for Teaching and Learning

Using Online Tools to Teach Critical Thinking Skills

Online instructors can use technology tools to create activities that help students develop both lower-level and higher-level critical thinking skills.

  • Example: Use Google Doc, a collaboration feature in Canvas, and tell students to keep a journal in which they reflect on what they are learning, describe the progress they are making in the class, and cite course materials that have been most relevant to their progress. Students can share the Google Doc with you, and instructors can comment on their work.
  • Example: Use the peer review assignment feature in Canvas and manually or automatically form peer review groups. These groups can be anonymous or display students’ names. Tell students to give feedback to two of their peers on the first draft of a research paper. Use the rubric feature in Canvas to create a rubric for students to use. Show students the rubric along with the assignment instructions so that students know what they will be evaluated on and how to evaluate their peers.
  • Example: Use the discussions feature in Canvas and tell students to have a debate about a video they watched. Pose the debate questions in the discussion forum, and give students instructions to take a side of the debate and cite course readings to support their arguments.  
  • Example: Us e goreact , a tool for creating and commenting on online presentations, and tell students to design a presentation that summarizes and raises questions about a reading. Tell students to comment on the strengths and weaknesses of the author’s argument. Students can post the links to their goreact presentations in a discussion forum or an assignment using the insert link feature in Canvas.
  • Example:  Use goreact, a narrated Powerpoint, or a Google Doc and instruct students to tell a story that informs readers and listeners about how the course content they are learning is useful in their professional lives. In the story, tell students to offer specific examples of readings and class activities that they are finding most relevant to their professional work. Links to the goreact presentation and Google doc can be submitted via a discussion forum or an assignment in Canvas. The Powerpoint file can be submitted via a discussion or submitted in an assignment.

Pulling it All Together

Critical thinking is an invaluable skill that students need to be successful in their professional and personal lives. Instructors can be thoughtful and purposeful about creating learning objectives that promote lower and higher-level critical thinking skills, and about using technology to implement activities that support these learning objectives. Below are some additional resources about critical thinking.

Additional Resources

Carmichael, E., & Farrell, H. (2012). Evaluation of the Effectiveness of Online Resources in Developing Student Critical Thinking: Review of Literature and Case Study of a Critical Thinking Online Site.  Journal of University Teaching and Learning Practice ,  9 (1), 4.

Lai, E. R. (2011). Critical thinking: A literature review.  Pearson’s Research Reports ,  6 , 40-41.

Landers, H (n.d.). Using Peer Teaching In The Classroom. Retrieved electronically from https://tilt.colostate.edu/TipsAndGuides/Tip/180

Lynch, C. L., & Wolcott, S. K. (2001). Helping your students develop critical thinking skills (IDEA Paper# 37. In  Manhattan, KS: The IDEA Center.

Mandernach, B. J. (2006). Thinking critically about critical thinking: Integrating online tools to Promote Critical Thinking. Insight: A collection of faculty scholarship , 1 , 41-50.

Yang, Y. T. C., & Wu, W. C. I. (2012). Digital storytelling for enhancing student academic achievement, critical thinking, and learning motivation: A year-long experimental study. Computers & Education , 59 (2), 339-352.

Insight Assessment: Measuring Thinking Worldwide

http://www.insightassessment.com/

Michigan State University’s Office of Faculty  & Organizational Development, Critical Thinking: http://fod.msu.edu/oir/critical-thinking

The Critical Thinking Community

http://www.criticalthinking.org/pages/defining-critical-thinking/766

Related Posts

Featured Tech: ThingLink

Behind the Scenes of a DL Video

Desktop Recording Tips & Tricks

Web 2.0 Digital Tools Selection: Online Presentation Tools

9 responses to “ Using Technology To Develop Students’ Critical Thinking Skills ”

This is a great site for my students to learn how to develop critical thinking skills, especially in the STEM fields.

Great tools to help all learners at all levels… not everyone learns at the same rate.

Thanks for sharing the article. Is there any way to find tools which help in developing critical thinking skills to students?

Technology needs to be advance to develop the below factors:

Understand the links between ideas. Determine the importance and relevance of arguments and ideas. Recognize, build and appraise arguments.

Excellent share! Can I know few tools which help in developing critical thinking skills to students? Any help will be appreciated. Thanks!

  • Pingback: EDTC 6431 – Module 4 – Designing Lessons That Use Critical Thinking | Mr.Reed Teaches Math
  • Pingback: Homepage
  • Pingback: Magacus | Pearltrees

Brilliant post. Will be sharing this on our Twitter (@refthinking). I would love to chat to you about our tool, the Thinking Kit. It has been specifically designed to help students develop critical thinking skills whilst they also learn about the topics they ‘need’ to.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

The Berkeley Well-Being Institute

  • All Access Pass
  • PLR Articles
  • PLR Courses
  • PLR Social Media

Grab Our Free eBook to Learn How to Grow Your Wellness Business Exponentially!

What is critical thinking (a definition).

  • “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or conceptual considerations upon which that judgment is based” (Facione, 1990, p. 3).
  • “skillful, responsible thinking that facilitates good judgment because it 1) relies upon criteria, 2) is self-correcting, and 3) is sensitive to context” (Lipman, 1988, p. 39);
  • “seeing both sides of an issue, being open to new evidence that disconfirms your ideas, reasoning dispassionately, demanding that claims be backed by evidence, deducing and inferring conclusions from available facts, solving problems , and so forth” (Willingham, 2007, p. 8). ​​

Consciousness Examples

  • Hallucinations
  • Transcendent spiritual experiences

Video: What is Critical Thinking?

Why Critical Thinking Is Important

All-Access Pass - Wellness PLR Content Collection

Critical Thinking Benefits

  • Improved creativity
  • More job success
  • Better financial management
  • Reduced probability of imprisonment
  • Greater self-knowledge
  • Improved quality of relationships

Barriers to Critical Thinking

How to think critically.

  • Can you confirm the “facts” presented with multiple other sources?
  • What level of expertise does the person presenting the argument have with the subject matter?
  • Are there other explanations that are simpler or more likely to be true?
  • Does the argument logically follow from the premise?
  • Is there quantifiable evidence in support of the argument?
  • Could the argument be proven false?

Well-Being PLR Courses - Grow Your Business Fast

Critical Thinking Examples

  • You’re scrolling through Instagram and see an ad for a serum that is “guaranteed” to make you’re your eyelashes 10x longer and thicker. Before deciding to purchase the product, you first look up the serum ingredients to determine whether there are any studies that support the claim in the ad.
  • The governor of your state says that a particular virus is not dangerous or readily transmissible. Recognizing that the governor does not have any background in biology or virology, you decide to compare this declaration with what experts in the field have to say to see if the governor’s opinion aligns with the current consensus among scientists.
  • You and your roommate hear a strange noise in the house. Your roommate speculates that the source of the noise was a poltergeist. You offer alternative hypotheses and the two of you discuss the plausibility of each hypothesis to identify which hypothesis is most likely to be true.

Critical Thinking Skills

  • Interpretation – understanding the significance of a wide variety of experiences
  • Analysis – examining ideas to identify the reasons and claims of an argument
  • Explanation – presenting your reasoned argument including the evidence supporting it
  • Evaluation – Assessing the credibility of claims and the quality of arguments made
  • Inference – Formulating alternative hypotheses and drawing logically valid conclusions
  • Self-regulation – Monitoring yourself and updating your viewpoint in accordance with the evidence

Critical Thinking Exercises

Video: 5 tips to improve your critical thinking.

Video: Encourage Critical Thinking with 3 Questions

Quotes on Critical Thinking

  • “It is the mark of an educated mind to be able to entertain a thought without accepting it.” – Aristotle
  • “Critical thinking requires us to use our imagination , seeing things from perspectives other than our own and envisioning the likely consequences of our position.” – Bell Hooks
  • “The opinions that are held with passion are always those for which no good ground exists; indeed the passion is the measure of the holder’s lack of rational conviction.” – Bertrand Russell
  • “Those who can make you believe absurdities can make you commit atrocities.” – Voltaire
  • “Freethinkers are those who are willing to use their minds without prejudice and without fearing to understand things that clash with their own customs, privileges, or beliefs. This state of mind is not common, but it is essential for critical thinking.” – Leo Tolstoy
  • “A great many people think they are thinking when they are merely rearranging their prejudices.” – William James
  • “Skeptical scrutiny is the means, in both science and religion, by which deep thoughts can be winnowed from deep nonsense.” – Carl Sagan
  • “It is morally as bad not to care whether a thing is true or not, so long as it makes you feel good, as it is not to care how you got your money as long as you have got it.” – Edmond Way Teale
  • “… For what a man had rather were true he more readily believes. Therefore he rejects difficult things from impatience of research; sober things, because they narrow hope; the deeper things of nature, from superstition; the light of experience, from arrogance and pride, lest his mind should seem to be occupied with things mean and transitory; things not commonly believed, out of deference to the opinion of the vulgar. Numberless in short are the ways, and sometimes imperceptible, in which the affections colour and infect the understanding.” – Sir Francis Bacon ​

Well-Being PLR Article Packages - Grow Your Business Fast

Articles Related to Critical Thinking

  • Life Skills: Definition, Examples, & Skills to Build
  • Transferable Skills: Definition, Examples & List
  • Introspection: Definition (in Psychology), Examples, and Questions​
  • ​​​ Habits (Good & Bad): Definition, Books & Tips

Books Related to Critical Thinking​

  • Critical Thinking: Tools for Taking Charge of Your Learning and Your Life ​
  • The Miniature Guide to Critical Thinking Concepts and Tools
  • Critical Thinking Beginner's Guide: Learn How Reasoning by Logic Improves Effective Problem Solving. The Tools to Think Smarter, Level up Intuition to Reach Your Potential and Grow Your Mindfulness
  • Critical Thinking (The MIT Press Essential Knowledge series)
  • Critical Thinking Skills For Dummies
  • Critical Thinking Activities for Kids: Fun and Challenging Games to Boost Brain Power

Final Thoughts on Critical Thinking

Don't forget to grab our free ebook to learn how to grow your wellness business exponentially.

  • Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., ... & Zickfeld, K. (2021). Climate Change 2021: The Physical Science Basis . Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
  • Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction . Millbrae, CA: The California Academic Press.
  • Facione, P. A. (2011). Critical thinking: What it is and why it counts . Insight assessment, 2007(1), 1-23.
  • Gilovich, T. (1991). How we know what isn't so . (1 st ed.). Simon and Schuster.
  • Lai, E. R. (2011). Critical thinking: A literature review . Pearson's Research Reports, 6(1), 40-41.
  • Lipman, M. (1988). Critical thinking—What can it be? Educational Leadership, 46(1), 38–43.
  • Wallace, E. D., & Jefferson, R. N. (2015). Developing Critical Thinking Skills: Assessing the Effectiveness of Workbook Exercises . Journal of College Teaching & Learning, 12(2), 101-108.
  • Willingham, D. T. (2007). Critical thinking: Why is it so hard to teach? American Educator, 8–19. ​
  • Happiness ​
  • Stress Management
  • Self-Confidence
  • Manifestation
  • ​ All Articles...
  • All-Access Pass​
  • ​​PLR Content Packages
  • PLR Courses ​

Is technology producing a decline in critical thinking and analysis?

 alt=

Top UCLA News

UCLA transit pass state of the commute

UCLA transit pass programs improved accessibility and reduced emissions in 2023

Group shot of U7+ Alliance members at Bocconi University in Milan, Italy

U7+ Alliance of World Universities urge G7 to increase access to higher education

Alicia Miñana de Lovelace, Laura Gómez and Eloyda Gómez standing together

Historic gift to UCLA School of Law advances Latino legal scholarship

Hands holding up UCLA banner in front of Trust building

UCLA Downtown springs to life as 31 community-focused programs prepare to move in

Stay connected.

Get top research & news headlines four days a week.

(Check your inbox or spam filter for confirmation.)

Subscribe to a UCLA Newsroom RSS feed and our story headlines will be automatically delivered to your news reader.

  • UCLA on Twitter
  • UCLA on Facebook
  • UCLA on LinkedIn
  • @UCLA on Instagram
  • UCLA on YouTube

Does Technology Help Boost Students’ Critical Thinking Skills?

what is critical thinking technology

  • Share article

Technology classroom with diverse students using laptops

Does using technology in school actually help improve students’ thinking skills? Or hurt them?

That’s the question the Reboot Foundation, a nonprofit, asked in a new report examining the impact of technology usage. The foundation analyzed international tests, like the Programme for International Student Assessment or PISA, which compares student outcomes in different nations, and the National Assessment of Educational Progress or NAEP, which is given only in the U.S. and considered the “Nation’s Report Card.”

The Reboot Foundation was started—and funded—by Helen Bouygues , whose background is in business, to explore the role of technology in developing critical thinking skills. It was inspired by Bouygues’ own concerns about her daughter’s education.

The report’s findings: When it comes to the PISA, there’s little evidence that technology use has a positive impact on student scores, and some evidence that it could actually drag it down. As for the NAEP? The results varied widely, depending on the grade level, test, and type of technology used. For instance, students who used computers to do research for reading projects tended to score higher on the reading portion of the NAEP. But there wasn’t a lot of positive impact from using a computer for spelling or grammar practice.

And 4th-graders who used tablets in all or almost all of their classes scored 14 points lower on the reading exam than those who reported never using tablets. That’s the equivalent of a year’s worth of learning, according to the report.

However, 4th-graders students who reported using laptops or desktop computers “in some classes” outscored students who said they “never” used these devices in class by 13 points. That’s also the equivalent of a year’s worth of learning. And 4th-grade students who said they used laptops or desktop computers in “more than half” or “all” classes scored 10 points higher than students who said they never used those devices in class.

Spending too much time on computers wasn’t helpful.

“There were ceiling effects of technology, and moderate use of technology appeared to have the best association with testing outcomes,” the report said. “This occurred across a number of grades, subjects, and reported computer activities.”

In fact, there’s a negative correlation between time spent on the computer during the school day and NAEP score on the 4th-grade reading NAEP.

what is critical thinking technology

That trend was somewhat present, although less clearly, on the 8th-grade reading NAEP.

what is critical thinking technology

“Overall usage of technology is probably not just not great, but actually can lower scores and testing for basic education [subjects like math, reading, science],” said Bouygues. “Even in the middle school, heavy use of technology does lower scores, but if you do have things that are specifically catered to a specific subject, that actually serves a purpose.”

For instance, she said her daughter, a chess enthusiast, has gotten help from digital sources in mastering the game. But asking kids to spend a chunk of every day typing on Microsoft Word, as some classrooms do in France, isn’t going to help teach higher-order thinking skills.

She cautioned though, that the report stops short of making a casual claim and saying that sitting in front of a laptop harms students’ ability to be critical thinkers. The researchers didn’t have the kind of evidence needed to be able to make that leap.

For more research on the impact of technology on student outcomes, take a look at these stories:

  • Technology in Education: An Overview
  • Computers + Collaboration = Student Learning, According to New Meta-Analysis
  • Technology Has No Impact on Teaching and Learning (opinion)

Image: Getty

A version of this news article first appeared in the Digital Education blog.

Sign Up for The Savvy Principal

Digital Learning Collaborative

Using technology to teach critical thinking skills

CriticalThinking.jpg

by Lindsay Marczak

This blog post is a re-post from the Edgenuity blog . We are grateful to have permission to share their work.

Results from the latest Programme for International Student Assessment (PISA) set off alarm bells when they revealed that US high school students lacked critical thinking skills. The test, designed to measure the capacity for 15-year-old students to apply reading, mathematics, and science knowledge to real-world settings, found that American students ranked 31st in math, 24th in science, and 21st in reading, in a comparison with students from 65 other countries. These findings indicated that American students not only struggle to recall rote procedures and facts, but they also had trouble analyzing, reasoning, and communicating effectively as they solved or interpreted problems.

5 Ways Technology Can Help You Teach Critical Thinking Skills

There is little question that critical thinking—the ability to connect new knowledge to previous knowledge, construct and evaluate arguments, and solve problems systematically—is vital for college, career, and beyond. However, ensuring that all students have access to personalized learning environments that build these skills may be nearly impossible without technology. Fortunately, research has uncovered five ways technology can be used to teach critical thinking skills.

1. Interactive activities can stimulate student interest and improve academic achievement.

Education researchers agree that engaging students in interactive, multisensory activities that promote elaboration, questioning, and explanation can simultaneously improve student engagement and academic performance.[i] Games and simulations can be particularly powerful tools to help students activate prior knowledge, apply knowledge in new settings, test hypotheses, search for patterns, use evidence and logic to make arguments, solve problems, and learn from their actions.[ii] This kind of active engagement enables students to take ownership of their learning and improves retention of information.[iii]

2. Multiple representations and models clarify complex concepts and procedures.

Research confirms that students are better able to grasp complex concepts when key information and tasks are explained using a wide array of modalities (verbal, visual, graphical, and symbolic) and instructional formats (video lectures, graphic displays, audio files, and simulations).[iv] Digital learning environments foster critical thinking and increase the accessibility of content by offering learners more options for applying knowledge and skills.[v]

3. Technology-rich environments foster self-regulated learning.

Experts agree that self-regulated learning—the capacity to monitor, evaluate, and control thinking while completing new tasks—helps support critical thinking and transfer of knowledge.[vi] By providing extensive modeling, coaching, scaffolding, and problem solving, technology offers learners richer opportunities to build metacognitive skills.[vii] Effective digital learning environments not only model the thought processes that underlie specific strategies, but also emphasize the conditions for applying a body of factual or procedural knowledge.

4. Scaffolded practice helps students solidify skills.

Cognitive research suggests that extensive student practice is a vital component of learning. Online and blended learning environments provide more opportunities for students to experiment and practice skills and concepts. These experiences help foster critical thinking by transferring knowledge from short-term to long-term memory—an essential process that helps learners remember and apply information to new settings.[viii]

5. Multimedia learning environments enable students to apply knowledge in real-world contexts.

Studies confirm that providing real-world applications of problems that stress student understanding and application of subject matters can increase student achievement.[ix] Experts posit that presenting problems in real-world contexts can make digital learning more meaningful and accessible to students by helping them see the importance of what they are learning. In addition, by allowing students to connect theoretical ideas to everyday experiences, critical thinking is strengthened. 

[i] National Research Council (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century . Committee on Defining Deeper Learning and 21st Century Skills, James Pellegrino and Margaret L. Hilton, eds. Board on Testing and Assessment and Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, D.C.: The National Academies Press.

[ii] Oblinger, D. (2004). The Next Generation of Educational Engagement. Journal of Interactive Media in Education 8, 1–18.

[iii] Rosenshine, B. (1995). Advances in research on instruction. Journal of Educational Research , 88(5), 262–268.

[iv] Center for Applied Special Technology (2011). Universal Design for Learning Guideline, version 2.0. Wakefield, MA: Author.

[v] Rose, D. H., and A. Meyer (2002). Teaching Every Student in the Digital Age . Alexandria, VA: Association for Curriculum Development.

[vi] National Research Council (2000). How people learn: Brain, mind, experience, and school, expanded ed. Committee on Developments in the Science of Learning and Committee on Learning and Educational Practice. J. D. Bransford, A. Brown, and R.R. Cocking, eds. Commission on Behavioral and Social Sciences and Education. Washington, D.C.: National Academy Press.

[vii] Lajoie, S. P. (2008). Metacognition, self-regulation and self-regulated learning: A rose by any other Name. Educational Psychology Review 20, 469–475.

[viii] National Research Council (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century . Committee on Defining Deeper Learning and 21st Century Skills, James Pellegrino and Margaret L. Hilton, eds. Board on Testing and Assessment and Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, D.C. : The National Academies Press.

[ix] National Research Council (2000). How people learn: Brain, mind, experience, and school, expanded ed. Committee on Developments in the Science of Learning and Committee on Learning and Educational Practice. J. D. Bransford, A. Brown, and R.R. Cocking, eds. Commission on Behavioral and Social Sciences and Education. Washington, D.C.: National Academy Press.

About the Author

Lindsay Marczak leads Edgenuity’s efficacy efforts, managing the design, implementation, and publication of research studies that quantify the impact of Edgenuity’s courses on student achievement. In addition, she develops policy briefs, white papers, and data tools for schools implementing the program. Prior to joining Edgenuity, Lindsay worked at Scholastic, the KIPP Foundation, the Ford Foundation, and the National Alliance of Business, conducting research and pinpointing effective educational practices for school leaders and teachers.

Proposal would return flexibility to online learning in Oklahoma

We think this is important, so let's make kids learn it.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Kate Conway

This chapter examines 21st century learning, including contemporary learning environments and constructivist approaches, with a specific focus on partnering, and how they contribute to developing skills like critical thinking, information literacy, decision making, and problem solving among learners. Insights from academics like Dr. Tony Wagner and Dr. Teresa Amabile are touched on, highlighting their proposed characteristics of successful learners. These characteristics include curiosity and innovation, with a focus on traits like creativity, problem solving, knowledge acquisition, and critical thinking skills. Critical thinking is further defined and broken down into its components, including the Australian Council for Educational Research’s (ACER) critical thinking framework. The intended purpose of such operationalized definitions and frameworks is to empower educators to feel confident in teaching and assessing this competency in their students, especially in a digital age where technology plays a huge role in information gathering and knowledge construction. The role of information communication technology (ICT) and information literacy is defined and examined in the context of critical thinking, and demonstrates that they are interconnected. Finally, educational technology tools and platforms are explored, including their possible applications at the curricular level and suggestions for future improvements are made in the context of the Ontario curriculum.

critical thinking, 21st century learning, information literacy

Introduction

Today’s learners are increasingly familiar with using technology to acquire knowledge and to seek answers. As constructivist pedagogies, like partnering, technology-enhanced active learning (TEAL), and inquiry-based learning, become increasingly prevalent in classrooms, these 21st century learners are taking on the roles of researcher, thinker, and sense-maker, among others (Prensky, 2010). This means that students have the responsibility to ensure that the information they are gathering and applying to learning or action is relevant, accurate, and reliable (Tutor2u, 2021). This necessary shift toward student-centered learning calls on teachers to guide and mentor students in ways that develop the critical thinking skills necessary to be successful learners, with particular focus on informed decision-making.

Dr. Tony Wagner believes that the ability to create new knowledge and solve new problems is the single most important skill that students must master today (Fullan, 2013). In order acquire this skill, modern day education is best conducted in ways that engage and motivate students and foster the development of 21st century competencies, like innovation, critical thinking and problem solving. In order for this to be achieved, one must consider what types of learning environments are conducive to competency development in these categories amongst today’s learners.

This chapter outlines what 21st century learning looks like, what competencies it develops, and how critical thinking, as a concept, has been traditionally difficult to characterize and, therefore, teach to and assess for. Also covered in this chapter will be how researchers and educators approach the definition of critical thinking, including how it overlaps and intertwines with problem solving, decision-making, and information-communication technology (ICT) and, therefore, how technology can play a role in critical thinking development amongst learners.

Background Information

In developing this chapter, a literature review was undertaken to examine how critical thinking plays a role in learners’ educational experience. Through examining existing literature, definitions, and frameworks, it became clear that there are a few elements that are key to understanding critical thinking and decision making through the lens of 21st-century learning.

21st Century Learning

The learning environment.

Educators can create and facilitate learning in effective ways that differ from the traditional lecture, or sage-on-the-stage, approach. Partnering is a 21st century way of working together whereby students explore and discover for themselves the answers to questions, while educators provide just enough guidance to allow that to happen with minimal need for outside assistance (Prensky, 2010). For teachers, this might mean teaching self-monitoring and self-correcting skills to encourage self-sufficient learners. With partnering, the students’ job is to make use of any tools, including technology, available to them to find information, make meaning, and create, while teachers guide with questioning, contextualizing, and providing rigor to ensure quality (Prensky, 2010).

Borne of constructivist leanings, which stipulate that students construct meaning through experience and that meaning is influenced by the interaction of prior knowledge and new events (Arends, 1998), partnering shares traits with more popularized approaches like project-based learning, or inquiry-based learning, while underscoring the reciprocal nature of the student-teacher relationship. This aligns with Tam’s outline of constructivist learning environment characteristics, including that knowledge and authority are shared between teachers and students, the teacher acts as a facilitator, and learning groups are small and heterogenous in nature (Tam, 2000). In partnering, teachers empower students to use any available technology to personalize their learning experience and follow their passions while seeking information, answering questions, sharing ideas, practicing, and creating (Prensky, 2010).

It is clear that technology can be a very supportive tool in a 21st-century learning environment as students use it to engage with their learning experience in the role of researcher. However, it is their other roles – thinker and sense maker – that may go overlooked by the students themselves. Teachers should ensure they inform students that thinking logically and critically is one of their primary roles (Prensky, 2010) and should have structures in place to provide the guidance and feedback necessary to further foster these skills.

21st Century Competencies

Being a learner in the 21st century means a shift from traditional skills associated with being a student, like rote learning and memorization, to skills like innovation and creativity. Dr. Tony Wagner highlights curiosity as being a key characteristic of an innovative learner while Dr. Teresa Amabile highlights that knowledge and problem-solving are important to the creative process (Fullan, 2013). Curiosity begets knowledge acquisition, which enables students to tackle problems that need solved or decisions that need to be made.

This process requires learners to possess certain competencies, which Wagner refers to as the 7 Survival Skills (Asia Society, 2009), including, but not limited to, critical thinking and problem solving as well as accessing and analyzing information. In the technological age we live in, there is boundless information available to those who seek it. For learners, the ability to effectively search for information and identify what is important and parse it out from that which is superfluous is important to the critical thinking and decision-making processes. Wagner (2008) posits that these survival skills are key to successful careers, continuous learning, and active and informed citizenship and, yet, the education community is unsure how to teach or assess them, posing an obvious challenge.

Critical Thinking & Decision Making

This raises the question of how skills like critical thinking and decision-making are defined and why they are so important in contemporary learning environments. It is important that measurable and consistent definitions are generated in order for educators to effectively teach and assess the skills of critical thinking and decision-making.

Definition and Importance of Critical Thinking

Depending on the source, critical thinking has many definitions, each overlapping with some nuanced differences. Heard et al. (2020) curated a collection of critical thinking definitions and formulated this formal definition to guide the development of the Australian Council for Educational Research’s (ACER) critical thinking framework, which will be touched on shortly:

To think critically is to analyze and evaluate information, reasoning and situations, according to appropriate standards such as truth and logic, for the purpose of constructing sound and insightful new knowledge, understandings, hypotheses and beliefs. Critical thinking encompasses the subject’s ability to process and synthesize information in such a way that it enables them to apply it judiciously to tasks for informed decision-making and effective problem-solving. (p.11)

In addition, Robert Ennis’ definition of critical thinking as “reflective thinking focused on deciding on what to believe or do” (Ennis, 1985, p.45 ) suggests that critical thinking does not only influence individual judgment when it comes to what to think, but also what actions to take. By Ennis’ definition, it would seem that decision-making – deciding what action to take – is intertwined with critical thinking. With respect to problem-solving, researchers agree that while it is related to critical thinking, the term problem solving is more often used in relation to well-defined problems with limited solutions, while critical thinking involves open-ended reasoning and ill-defined problems (Heard et al., 2020).

With the aforementioned definitions in mind, Edward Glaser’s summary of critical thinking can serve as a good basis to understanding what critical thinking is in a nutshell. The three characteristics Glaser considers hallmarks of critical thinking ability include: a disposition towards thoughtfully considering the problems and subjects in one’s life experiences and not just in specific contexts or situations, knowledge of the methods of logical inquiry and reasoning, and some skill in applying those methods (Heard et al., 2020).

Teaching and Assessing Critical Thinking

It is clear from these interpretations that critical thinking and decision-making are vital to the success of contemporary learners, both in school and beyond in their personal and professional lives. However, in order to teach and assess critical thinking, an operational definition is required so that assessment tools and intervention techniques can be devised (Heard et al, 2020).

This was the driving force behind the development of the ACER’s critical thinking framework, which is evidence-based and outlines critical thinking processes by strands and aspects, with the intention of providing areas of focus for the teaching and assessing of critical thinking skills. The framework considers critical thinking to be a series of cognitive processes that are goal-oriented and purpose-driven, not just reflective thought (Facione, 1990). These cognitive processes can be broken down into six areas, including interpretation, analysis, evaluation, inference, explanation, and self-regulation, each of which encapsulates a set of subskills. For example, in order for learners to evaluate, they should be able to question the evidence, speculate as to possible alternatives, and draw logical conclusions (Facione, 1990).

For the purposes of the ACER’s critical thinking skills development framework, these cognitive processes were taken into account. In its structure, the critical thinking framework is divided into three strands, further broken down into three aspects each. These aspects encapsulate the knowledge, skills, and understanding that are consistent across definitions of critical thinking (Heard et al, 2020). The three strands are knowledge construction, evaluating reasoning, and decision-making. The aspects of knowledge construction are the identification of gaps in knowledge, discriminating information, and identifying patterns and making connections. The aspects involved in evaluating reasoning include applying logic, identifying assumptions and motivations, and justifying arguments. Finally, the aspects of decision-making are identifying criteria for decision-making, evaluating options, and testing and monitoring implementation (Heard et al, 2020). For reference, the framework is available as a graphical representation in Appendix A.

This framework shares many of the same characteristics of critical thinking that Wagner (2008) discusses when describing the “5 Habits of Mind”. Wagner’s habits of weighing evidence, seeing connections and speculating on possibilities align very closely with the framework’s knowledge construction strand, while Wagner’s habit of being aware of varying viewpoints aligns with the evaluating reasoning strand, and finally, Wagner’s habit of assessing value shares similar aspects to the decision-making strand (Heard et al, 2020; Wagner, 2008). The ACER’s critical thinking framework and Wagner’s “5 Habits of Mind” may be used when considering how to teach and assess critical thinking and decision-making in their classrooms. Wagner (2008) refers to critical thinking as “learning to answer the right questions”, which can be accomplished through an educator’s application of rigor in the classroom when guiding students who are developing critical thinking skills.

This brings us back to the pedagogical approach of partnering when designing the learning environment. To recapitulate, partnering is when students take on the role of researcher, technology user, thinker, and sense maker, while teachers guide, question, provide context, and apply rigor. Educators should make it clear to their students that thinking logically and more critically is one of their primary roles (Prensky, 2010). Learners’ skills of logical and critical thinking can be nurtured and encouraged when educators have a functional definition of critical thinking and clearly articulated subskills that they can draw on when guiding, questioning, and assessing students. The ACER’s framework and Wagner’s “5 Habits of Mind” are two resources that can provide a solid foundation and starting point for teaching and assessing critical thinking.

Applications

Critical thinking includes knowledge construction, which involves identifying gaps in knowledge and discriminating information. In contemporary society, much of our knowledge construction and information acquisition occurs in the digital space. That is why Information-Communications Technology (ICT) has relevant applications in relation to critical thinking and decision-making. Understanding information literacy and the role critical thinking plays in navigating the vast digital world of information is vital. Furthermore, having relevant resources and tools that support the development of critical thinking skills and information literacy can help educators nurture these 21st-century skills amongst learners

Information Communication Technology (ICT)

Typically, when we speak about information literacy, we think of skills that are procedural, like retrieving, managing, referencing, and communicating information (CILIP, 2018), but it is important that individuals apply critical thinking in order to assess the information they are collecting (Paul et al, 2007). Information literacy and critical thinking are interrelated in that information literacy emphasizes the ability to identify and articulate the information needed for a purpose, understanding how to find and identify appropriate information sources, and how to critically assess the information gathered (Grafstein, 2017).  Therefore, information-communication technology can play a vital role in developing key 21st-century competencies like knowledge construction and decision making.

As technology has become more versatile and accessible in educational settings, it has become a fixture in many classrooms. In a class following a partnering approach to learning and instruction, students are encouraged to use any technology at their disposal to personalize their learning experience, to aid in seeking information, answering questions, sharing ideas, and creating (Prensky, 2010). Students may use computers, tablets, or personal devices like smartphones to accomplish this.

The ability to put students in the roles of researcher, technology expert, thinker, and sense-maker is largely due to recent changes in the way information can be accessed, thanks to the advent of the internet (Heard et al, 2020). However, with the expansion of technology and the rise of internet use comes challenges. The ease with which users can access information is matched by the ease with which users can manipulate open-access online information sources (Heard et al., 2020). For this reason, the Chartered Institute of Library and Information Professionals has updated the definition of information literacy to align more closely with critical thinking. They now define information literacy as the “ability to think critically and make balanced judgments about any information we find and use” (CILIP, 2018).

Educational Technology Example

One way that learners may be guided to develop their critical thinking skills in the context of ICT and information literacy, is through the provision of resources that can help broaden their opportunities for constructing knowledge and evaluating information. AllSides for Schools is a web-based platform of resources that provides educators with information and curricular guidance to help guide learners in developing skills like critical thinking (AllSides for Schools, 2022). It originated in 2019 as a nonprofit joint initiative by AllSides and Living Room Conversations to aid educators in addressing digital media literacy and communication skills with their students (AllSides for Schools, 2022). The mission of AllSides for Schools is to teach students how to critically evaluate news, media content, and other information as well as how to use their acquired knowledge to engage in productive dialogue, both in the educational setting and in their communities, professionally and in their personal lives (AllSides for Schools, 2022). To accomplish this mission, the platform has centralized and expanded upon the resources available across AllSides and Living Room Conversations and offers classroom activities and lesson plans (AllSides for Schools, 2022) that educators can draw on when providing guidance, context, and rigor for their learners.

Conclusions and Future Recommendations

As outlined throughout this chapter, contemporary learners require a modernized approach to instruction and learning. It is important that educators understand which skills to foster and help develop. The ability to memorize and regurgitate information is no longer an effective or valuable skill, nor is it a motivating concept for most 21st-century learners. Rather, today’s students thrive best when they are put at the center of their learning experience in the roles of researcher, thinker, and creator. Educators, then, should fill the roles of guide and contextualizer, encouraging students to think logically and critically as one of their primary roles (Prensky, 2010). The goal, as posited by Dr. Wagner and Dr. Amabile is to create innovative, creative, and knowledgable learners with strong critical thinking, problem-solving, and decision-making skills.

In order to nurture these 21st-century competencies, educators must be able to teach and assess them using clearly defined metrics. That is where operationalized definitions like the one created by Glaser or Heard et al (2020) and critical thinking frameworks, like the ACER’s, are essential. They provide a structure from which educators can guide students, offer feedback, and assess progress. Additionally, educators can steer students to seek information using whatever technology is available to them, including web-based educational technology and platforms, like AllSides for Schools, a critical thinking and media literacy online resource designed to aid in the development of knowledge acquisition, information literacy, and critical thinking skills.

Moving forward, curricular documents and assessment tools should be constructed with more constructivist and student-centered approaches in mind. As an example, current elementary curriculum documents and assessment guides from the Ontario Ministry of Education do mention critical thinking, albeit briefly, including a definition and where critical thinking fits in when considering assessment, though in some documents critical thinking only appears in the glossary (Ontario, 2010; Ontario, 2007; Ontario, 2006). Beyond this cursory mention, no concrete means of teaching or assessing critical thinking, especially in a student-centered fashion are brought forth. This is an oversight that should be addressed in future renditions of the Ontario curriculum for the reasons outlined throughout this chapter.

AllSides for Schools. (2022). About All Sides for schools . https://allsidesforschools.org/about/

Arends, R. I. (1998). Resource handbook. Learning to teach (4th ed.). McGraw-Hill.

Asia Society. (2009). 7 Skills students need for their future . [Video]. https://youtu.be/NS2PqTTxFFc

Chartered Institute of Library and Information Professionals. (2018). CILIP definition of information literacy. https://infolit.org.uk/ILdefinitionCILIP2018.pdf

Ennis, R. (1985). A logical basis for measuring critical thinking skills. Assessing Critical Thinking . https://jgregorymcverry.com/readings/ennis1985assessingcriticalthinking.pdf

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. California Academic Press.

Fullan, M. (2013). Pedagogy and change: Essence as easy. Stratosphere (pp. 17-32). Pearson.

Grafstein, A. (2017). Information literacy and critical thinking. In D. Sales & M. Pinto (Eds.), Pathways into information literacy and communities of practice (pp. 3–28). https://doi.org/10.1016/B978-0-08-100673- 3.00001-0

Heard, J., Scoular, C., Duckworth, D., Ramalingam, D., & Teo, I. (2020). Critical thinking: Skill development framework. Australian Council for Educational Research. https://research.acer.edu.au/ar_misc/41

Ontario. (2010). Growing success: Assessment, evaluation and reporting in Ontario’s schools: covering grades 1 to 12 . Ministry of Education. http://www.edu.gov.on.ca/eng/policyfunding/growsuccess.pdf

Ontario. (2006). Language: Ontario curriculum grades 1-8. Ministry of Education. http://www.edu.gov.on.ca/eng/curriculum/elementary/language18currb.pdf

Ontario. (2007). Science and technology: Ontario curriculum grades 1-8. Ministry of Education. http://www.edu.gov.on.ca/eng/curriculum/elementary/scientec18currb.pdf

Paul, R. W., Elder, L., Bartell, T. (1997). A brief history of the idea of critical thinking . https://www.criticalthinking.org/pages/a-brief-history-of-the-idea-of-critical-thinking/408

Prensky, M. (2010). Partnering. Teaching digital natives. Partnering for real learning (pp. 9-29). Corwin Press.

Tam, M. (2000). Constructivism, Instructional Design, and Technology: Implications for Transforming Distance Learning. Educational Technology and Society, 3 (2).

Tutor2u. (2021, March 22). ICT: What is good information? https://www.tutor2u.net/business/reference/ict-what-is-good-information

Wagner, T. (2008). The global achievement gap: Why even our best schools don’t teach the new survival skills our children need, and what we can do about it. Basic Books (pp. 1-41).

Wagner, T. (2008). The global achievement gap . [PowerPoint Slides]. https://asiasociety.org/education/seven-skills-students-need-their-future

Appendix A: ACER Critical thinking skill development framework

ACER critical thinking skill development framework

Figure 1: ACER Critical thinking skill development framework

Technology and the Curriculum: Summer 2022 Copyright © 2022 by Kate Conway is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Back Home

  • Search Search Search …
  • Search Search …

How Does Technology Affect Critical Thinking?

How Does Technology Affect Critical Thinking?

Technology is always quickly advancing. New apps, new updates, and platforms emerge to help us connect to each other, automate our tasks, or just have fun. But does technology help or hinder critical thinking skills?

Your critical thinking skills will be affected by technology depending on factors, including the kind of technology you’re using and the context of the technology.

Impact of Technology on Critical Thinking

You use technology in one form or another every day. As time goes on, it plays a more significant role in our lives and changes the way we consume and process information. Critical thinking is all about analyzing the information in front of you, thinking about it rationally and without bias, and always asking questions.

Technology brings information right into your hands more effortless than ever through your phone, tablet, or laptop. Even reading has evolved from physical books to an e-reader, and news comes through Twitter and Facebook.

Critical thinking includes soft skills like problem-solving, finding cause and effect relationships, interpret data, evaluate arguments, and keep opinions and views malleable and fluid. Technology can both reinforce these skills and also threaten them.

How Does Technology Improve Critical Thinking?

The type of technology you’re using and what environment you’re using will affect what kinds of positive benefits you will experience.

Education and Learning

Schools are introducing more and more technology in the classroom to keep up with advances. They hope to better prepare students for the world of growing technology.

In a classroom setting, activities and learning can be more interactive with the use of technology. Technology is capable of engaging multiple senses and can improve student’s investment in the material.

Appropriate technology in classrooms increases students’ academic achievement, self-confidence, motivation in class, and attendance. Technology helps students move beyond sitting attentively and listening and promotes more hands-on learning.

It affects critical thinking by helping students apply what they’ve learned to real-life situations and develop problem-solving skills – two essential elements of critical thinking.

Beyond school-age children, adults benefit from technological learning as well. As new developments arise in technology, people need to have lifelong learning skills, adapt themselves to change, and grow or refresh their existing knowledge.

Audible Plus

  • Unlimited access to a vast library of over 10,000 audiobooks, podcasts, and exclusive Audible Originals, providing endless hours of entertainment and learning opportunities.
  • Ad-free listening experience allows users to fully immerse themselves in their favorite books and podcasts without any interruptions or distractions.
  • Flexible listening options on any device, with the ability to download and listen offline, making it convenient to enjoy content while commuting, traveling, or working out.

Simulations

Simulation programming is growing in popularity to emulate real-life situations virtually. There are many professional fields, such as aviation and medicine, where certain conditions are rare, but you need to prepare for them. Simulations can virtually simulate flight errors for pilot training or rare diseases for medical students to learn how to address them.

Simulations provide a site for learning from mistakes in a high-stakes environment and encourages experimental learning. It takes what is usually a theoretical concept and makes it concrete, ensuring better reasoning and deeper understanding.

The learner, with simulations, can develop and apply critical thinking skills such as making judgments, interpreting information, making decisions objectively, and evaluating outcomes.

Social Media

Social networks open up the world. You can interact with people halfway around the globe with whom you share things in common. Information sharing and interactions have radically changed since the beginnings of social media.

There are many social media sites for people to have conversations, share ideas or interests, make new friends, or professional connections.

Whether you’re a student in the same class or talking with someone with a shared interest, opening yourself up to others’ opinions and ideas and processing them is vital to critical thinking.

Is Technology Killing Critical Thinking?

Depending on what technology you’re using and how you’re using it, technology can be damaging to critical thinking.

In schools, the type of technology that students use can boost their learning quality or harm it. Having classrooms wired for student internet access has been shown to decrease learning. Students that use the internet during a class lecture do not pay as much attention to the speaker. In contrast, students without the internet pay more attention.

This distraction is because technology promotes multi-tasking, but it prevents people from understanding information in a meaningful way.

When it comes to critical thinking, social media is both a positive and a negative. Social media offers the opportunity to access multiple viewpoints, but algorithms tend to show you more of what you’ve already seen.

Critical thinking is essential when it comes to social media. Being a conscious consumer of information means questioning everything we come across. When using social media, you need to take the time to evaluate the news and information you read. The source likely doesn’t go through the same rigorous standards of reliability-checking and validation as other content.

When you replace print news or books with social media, you lose a lot of value. Non-fiction books may seem outdated to some, and podcasts are taking over. But books go through research, editing for accuracy, and fact-checking.

Reading fiction just for enjoyment is also on the decline with the rise of technology. However, reading fiction can captivate your imagination in ways that visual media – like video games and television – do not.

Any kind of reading is full of positive benefits, including reflection, vocabulary, and critical thinking. Print literacy is on the decline while visual literacy is on the rise, and just relying on visual media is not enough to fully develop and master critical thinking.

Real-time media, such as movies and video games, also do not offer time for reflection or analysis. So, while visual media allows you to process information faster, you should still read books or lose out on the other skills that can benefit you.

Final Thoughts

The world of technology is so infinite that it can seem overwhelming. All forms of media don’t work in every setting. There needs to be a balance of modern technology in life, or you run the risk of losing out on developing fundamental skills.

Technology is an excellent boost to your critical thinking skills, but you should be aware of some of the pitfalls that come along with some forms of technology.

You may also like

Best Children's Books on Critical Thinking

Best Children’s Books on Critical Thinking: Top Picks for Young Minds in 2023

Introducing children to critical thinking at an early age is essential for their cognitive development. Engaging in thought-provoking activities not only helps […]

cognitive bias

Master cognitive biases and improve your critical thinking

If you are seeking to improve your critical thinking abilities, you need to learn how to recognize, reduce, and redirect cognitive biases. […]

Critical Reading vs. Critical Thinking

Critical Reading vs. Critical Thinking

In the digital age, we are presented with information from all scopes and spectrums. In order to understand the meaning behind texts, […]

Best Movies for Critical Thinking

Best Movies for Critical Thinking: Top Picks to Challenge Your Mind

In today’s fast-paced world, movies have become an essential source of entertainment and learning, providing viewers with thought-provoking stories that challenge their […]

SkillsYouNeed

  • LEARNING SKILLS
  • Study Skills
  • Critical Thinking

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches

Critical Thinking Skills

  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Top Tips for Study
  • Staying Motivated When Studying
  • Student Budgeting and Economic Skills
  • Getting Organised for Study
  • Finding Time to Study
  • Sources of Information
  • Assessing Internet Information
  • Using Apps to Support Study
  • What is Theory?
  • Styles of Writing
  • Effective Reading
  • Critical Reading
  • Note-Taking from Reading
  • Note-Taking for Verbal Exchanges
  • Planning an Essay
  • How to Write an Essay
  • The Do’s and Don’ts of Essay Writing
  • How to Write a Report
  • Academic Referencing
  • Assignment Finishing Touches
  • Reflecting on Marked Work
  • 6 Skills You Learn in School That You Use in Real Life
  • Top 10 Tips on How to Study While Working
  • Exam Skills
  • Writing a Dissertation or Thesis
  • Research Methods
  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

What is Critical Thinking?

Critical thinking is the ability to think clearly and rationally, understanding the logical connection between ideas.  Critical thinking has been the subject of much debate and thought since the time of early Greek philosophers such as Plato and Socrates and has continued to be a subject of discussion into the modern age, for example the ability to recognise fake news .

Critical thinking might be described as the ability to engage in reflective and independent thinking.

In essence, critical thinking requires you to use your ability to reason. It is about being an active learner rather than a passive recipient of information.

Critical thinkers rigorously question ideas and assumptions rather than accepting them at face value. They will always seek to determine whether the ideas, arguments and findings represent the entire picture and are open to finding that they do not.

Critical thinkers will identify, analyse and solve problems systematically rather than by intuition or instinct.

Someone with critical thinking skills can:

Understand the links between ideas.

Determine the importance and relevance of arguments and ideas.

Recognise, build and appraise arguments.

Identify inconsistencies and errors in reasoning.

Approach problems in a consistent and systematic way.

Reflect on the justification of their own assumptions, beliefs and values.

Critical thinking is thinking about things in certain ways so as to arrive at the best possible solution in the circumstances that the thinker is aware of. In more everyday language, it is a way of thinking about whatever is presently occupying your mind so that you come to the best possible conclusion.

Critical Thinking is:

A way of thinking about particular things at a particular time; it is not the accumulation of facts and knowledge or something that you can learn once and then use in that form forever, such as the nine times table you learn and use in school.

The Skills We Need for Critical Thinking

The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making.

Specifically we need to be able to:

Think about a topic or issue in an objective and critical way.

Identify the different arguments there are in relation to a particular issue.

Evaluate a point of view to determine how strong or valid it is.

Recognise any weaknesses or negative points that there are in the evidence or argument.

Notice what implications there might be behind a statement or argument.

Provide structured reasoning and support for an argument that we wish to make.

The Critical Thinking Process

You should be aware that none of us think critically all the time.

Sometimes we think in almost any way but critically, for example when our self-control is affected by anger, grief or joy or when we are feeling just plain ‘bloody minded’.

On the other hand, the good news is that, since our critical thinking ability varies according to our current mindset, most of the time we can learn to improve our critical thinking ability by developing certain routine activities and applying them to all problems that present themselves.

Once you understand the theory of critical thinking, improving your critical thinking skills takes persistence and practice.

Try this simple exercise to help you to start thinking critically.

Think of something that someone has recently told you. Then ask yourself the following questions:

Who said it?

Someone you know? Someone in a position of authority or power? Does it matter who told you this?

What did they say?

Did they give facts or opinions? Did they provide all the facts? Did they leave anything out?

Where did they say it?

Was it in public or in private? Did other people have a chance to respond an provide an alternative account?

When did they say it?

Was it before, during or after an important event? Is timing important?

Why did they say it?

Did they explain the reasoning behind their opinion? Were they trying to make someone look good or bad?

How did they say it?

Were they happy or sad, angry or indifferent? Did they write it or say it? Could you understand what was said?

What are you Aiming to Achieve?

One of the most important aspects of critical thinking is to decide what you are aiming to achieve and then make a decision based on a range of possibilities.

Once you have clarified that aim for yourself you should use it as the starting point in all future situations requiring thought and, possibly, further decision making. Where needed, make your workmates, family or those around you aware of your intention to pursue this goal. You must then discipline yourself to keep on track until changing circumstances mean you have to revisit the start of the decision making process.

However, there are things that get in the way of simple decision making. We all carry with us a range of likes and dislikes, learnt behaviours and personal preferences developed throughout our lives; they are the hallmarks of being human. A major contribution to ensuring we think critically is to be aware of these personal characteristics, preferences and biases and make allowance for them when considering possible next steps, whether they are at the pre-action consideration stage or as part of a rethink caused by unexpected or unforeseen impediments to continued progress.

The more clearly we are aware of ourselves, our strengths and weaknesses, the more likely our critical thinking will be productive.

The Benefit of Foresight

Perhaps the most important element of thinking critically is foresight.

Almost all decisions we make and implement don’t prove disastrous if we find reasons to abandon them. However, our decision making will be infinitely better and more likely to lead to success if, when we reach a tentative conclusion, we pause and consider the impact on the people and activities around us.

The elements needing consideration are generally numerous and varied. In many cases, consideration of one element from a different perspective will reveal potential dangers in pursuing our decision.

For instance, moving a business activity to a new location may improve potential output considerably but it may also lead to the loss of skilled workers if the distance moved is too great. Which of these is the more important consideration? Is there some way of lessening the conflict?

These are the sort of problems that may arise from incomplete critical thinking, a demonstration perhaps of the critical importance of good critical thinking.

Further Reading from Skills You Need

The Skills You Need Guide for Students

The Skills You Need Guide for Students

Skills You Need

Develop the skills you need to make the most of your time as a student.

Our eBooks are ideal for students at all stages of education, school, college and university. They are full of easy-to-follow practical information that will help you to learn more effectively and get better grades.

In Summary:

Critical thinking is aimed at achieving the best possible outcomes in any situation. In order to achieve this it must involve gathering and evaluating information from as many different sources possible.

Critical thinking requires a clear, often uncomfortable, assessment of your personal strengths, weaknesses and preferences and their possible impact on decisions you may make.

Critical thinking requires the development and use of foresight as far as this is possible. As Doris Day sang, “the future’s not ours to see”.

Implementing the decisions made arising from critical thinking must take into account an assessment of possible outcomes and ways of avoiding potentially negative outcomes, or at least lessening their impact.

  • Critical thinking involves reviewing the results of the application of decisions made and implementing change where possible.

It might be thought that we are overextending our demands on critical thinking in expecting that it can help to construct focused meaning rather than examining the information given and the knowledge we have acquired to see if we can, if necessary, construct a meaning that will be acceptable and useful.

After all, almost no information we have available to us, either externally or internally, carries any guarantee of its life or appropriateness.  Neat step-by-step instructions may provide some sort of trellis on which our basic understanding of critical thinking can blossom but it doesn’t and cannot provide any assurance of certainty, utility or longevity.

Continue to: Critical Thinking and Fake News Critical Reading

See also: Analytical Skills Understanding and Addressing Conspiracy Theories Introduction to Neuro-Linguistic Programming (NLP)

Advertisement

Advertisement

Thinking critically about critical thinking dispositions in technology education

  • Published: 05 February 2020
  • Volume 31 , pages 465–488, ( 2021 )

Cite this article

what is critical thinking technology

  • Willem Rauscher   ORCID: orcid.org/0000-0001-5741-160X 1 &
  • Hendri Badenhorst 1  

1453 Accesses

3 Citations

Explore all metrics

While much research has been done on Critical Thinking (CT) skills, the disposition toward CT has not been adequately investigated. The paucity of literature regarding technology teachers’ disposition toward CT is particularly problematic as these teachers have to assist learners with the designing and making of solutions (artefacts) to problems that are often ill structured. Solving these problems is complicated and involves critical thinking. Helping learners to find solutions to these problems, therefore, requires teachers to be willing to think critically and encourage critical thinking in the classroom. Profiling these teachers’ dispositions could reveal their inclination to employ critical thinking, and give an indication of the likelihood that they may foster CT skills and the disposition toward CT in the classroom. In addition, such profiling could provide a descriptive baseline for further investigation into the relationship that seems to exist between CT dispositions and professions. This study, therefore, aimed to investigate technology teachers’ disposition to think critically in terms of their habits of mind. Quantitative research, using an online survey, was employed in this study. A Likert Scale instrument comprising 42 statements, derived from Facione’s (Informal Log 20(1): 61–84, 2000 ) seven habits of mind, was administered to South African technology teachers. The participants had to rate their level of agreement with each statement on a six-point scale. The research findings revealed that this sample had a positive disposition toward CT. The habits of mind that ranked the strongest were CT Self-confidence and Inquisitiveness, while Mature Judgment ranked the weakest (although still in a positive direction). Further research is needed to establish which dispositions should be emphasised in order to address the dispositional needs in technology education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA) Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

what is critical thinking technology

Similar content being viewed by others

what is critical thinking technology

Strategies for fostering critical thinking dispositions in the technology classroom

what is critical thinking technology

Critical Thinking in Postgraduate Degree Work at the Israel Technological University, Ecuador

what is critical thinking technology

Teaching Critical Thinking– A Task-Based Approach: Work in Progress

American Philosophical Association. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction . Recommendations prepared for the committee on pre - college philosophy . California State University, Fullerton. ERIC Doc. No. ED 315-423.

Ary, D., Jacobs, L. C., & Sorensen, C. (2010). Introduction to research in education . Belmont: Wadsworth.

Google Scholar  

Beyer, B. (1990). What philosophy offers to the teaching of thinking. Educational Leadership, 47 (5), 55–60.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., et al. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills . Dordrecht: Springer.

Department of Basic Education. (2011). National curriculum statement: Curriculum and assessment policy statement (CAPS) . Technology Grades 7–9. Pretoria: Government Printing Works.

Dewey, J. (1910). How we think . Boston: D.C. Heath & Co.

Book   Google Scholar  

Dwyer, C. P., Hogan, M. J., Harney, O. M., & Kavanagh, C. (2017). Facilitating a student-educator conceptual model of dispositions towards critical thinking through interactive management. Educational Technology Research and Development, 65, 47–73.

Article   Google Scholar  

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2015). The effects of argument mapping-infused critical thinking instruction on reflective judgement. Thinking Skills and Creativity, 16, 11–26.

Ennis, R. (1996). Critical thinking dispositions: Their nature and assessability. Informal Logic, 18 (2), 165–182.

Ennis, R. (2018). Critical thinking across the curriculum: A vision. Topoi: An International Review of Philosophy, 37 (1), 165–184.

Facione, P. A. (1990). The delphi report: Executive summary; critical thinking: A statement of expert consensus for purposes of educational assessment and instruction . California: California Academic Press.

Facione, P. A. (2000). The disposition toward critical thinking: Its character, measurement, and relationship to critical chinking skill. Informal Logic, 20 (1), 61–84.

Facione, P. A. (2015). Critical thinking: What it is and why it counts (pp. 1–30). Insight Assessment.

Facione, P. A., Sánchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44 (1), 1–25.

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage Publications Ltd.

Halpern, D. F. (2014). Thought and knowledge: An introduction to critical thinking (5th ed.). New York: Psychology Press.

Jonassen, D. H. (1997). Instructional design models for well-structured and iII-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65–94.

Jonsson, A., & Lindén, S. (2009). The quest for the best consumer confidence indicator. European economy - economic papers (Vol. 372). Brussels: European Commission Directorate-General for Economic and Financial Affairs.

Mcbride, R. E., Xiang, P., & Wittenburg, D. (2002). Dispositions toward critical thinking: the preservice teacher’s perspective. Teachers and Teaching: Theory and Practice, 8 (1), 29–40.

Paul, R. W. (1995). Critical thinking: How to prepare students for a rapidly changing world . Santa Rosa, CA: Foundation for Critical Thinking.

Paul, R. W. (2012). Critical thinking: What every person needs to survive in a rapidly changing world (4th ed.). Tomales, CA: Foundation for Critical Thinking.

Perkins, D., Jay, E., & Tishman, S. (1993). Beyond abilities: A dispositional theory of thinking. Merrill-Palmer Quarterly, 39 (1), 1–21.

Schooner, P., Nordlöf, C., Klasander, C., & Hallström, J. (2017). Design, system, value: The role of problem-solving and critical thinking capabilities in technology education, as perceived by teachers. Design and Technology Education: An International Journal, 22, 60–75.

Siegel, H. (1999). What (good) are thinking dispositions? Educational Theory, 49 (2), 207–221.

Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times . San Francisco, CA: Jossey-Bass.

Van Niekerk, E., Ankiewicz, P., & De Swart, E. (2010). A process-based assessment framework for technology education: A case study. International Journal of Technology and Design Education, 20 (2), 191–215.

Watson, L. (2015). What is inquisitiveness. American Philosophical Quarterly, 52 (3), 273–287.

Wright, K. B. (2005). Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication, 10 (3). https://doi.org/10.1111/j.1083-6101.2005.tb00259.x .

Download references

This publication was produced with support from the Teaching and Learning Development Capacity Improvement Programme, a partnership programme between the Department of Higher Education and Training and the European Union. Its contents are the sole responsibility of the authors and do not necessarily reflect the views of the Department or the European Union.

Author information

Authors and affiliations.

Department of Science, Mathematics and Technology Education, Faculty of Education, University of Pretoria, Pretoria, South Africa

Willem Rauscher & Hendri Badenhorst

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Willem Rauscher .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Rauscher, W., Badenhorst, H. Thinking critically about critical thinking dispositions in technology education. Int J Technol Des Educ 31 , 465–488 (2021). https://doi.org/10.1007/s10798-020-09564-3

Download citation

Accepted : 29 January 2020

Published : 05 February 2020

Issue Date : July 2021

DOI : https://doi.org/10.1007/s10798-020-09564-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical thinking
  • Disposition
  • Habits of mind
  • Technology education
  • Find a journal
  • Publish with us
  • Track your research

Search form

Critical thinking and problem solving with technology.

Brief Summary: Critical thinking and problem solving is a crucial skill in a technical world that can immediately be applied to academics and careers. A highly skilled individual in this competency can choose the appropriate tool to accomplish a task, easily switch between tools, has a basic understanding of different file types, and can troubleshoot technology when it’s not working properly. They can also differentiate between true information and falsified information online and has basic proficiency in data gathering, processing and interpretation. 

Learners with proficient skills in critical thinking and problem solving should be able to: 

  • Troubleshoot computers and mobile devices when issues arise, like restarting the device and checking if it requires a software or operating system update 
  • Move across tools to complete a task (for example, adding PowerPoint slides into a note taking app for annotation) 
  • Differentiate between legitimate and falsified information online 
  • Understand basic file types and know when to use them (for example, the difference between .doc and .pdf files) 

Market/Employer Trends: Employers indicate value in employee ability to problem solve using technology, particularly related to drawing information from data to identify and solve challenges. Further, knowing how to leverage technology tools to see a problem, break it down into manageable pieces, and work toward solving is of important value. Employers expect new employees to be able to navigate across common toolsets, making decisions to use the right tool for the right task.  

Self-Evaluation: 

Key questions for reflection: 

  • How comfortable are you when technology doesn’t work the way you expect?  
  • Do you know basic troubleshooting skills to solve tech issues?  
  • Do you know the key indicators of whether information you read online is reliable? 

Strong digital skills in this area could appear as: 

  • Updating your computer after encountering a problem and resolving the issue 
  • Discerning legitimate news sources from illegitimate ones to successfully meet goals 
  • Converting a PowerPoint presentation into a PDF for easy access for peers who can’t use PowerPoint 
  • Taking notes on a phone and seamlessly completing them on a computer

Ways to Upskill: 

Ready to grow your strength in this competency? Try: 

  • Reviewing University Libraries’ resources on research and information literacy  
  • Read about troubleshooting in college in the Learner Technology Handbook 
  • Registering for ESEPSY 1359: Critical Thinking and Collaboration in Online Learning  

Educator Tips to Support Digital Skills: 

  • Create an assignment in Carmen prompting students to find legitimate peer-reviewed research  
  • Provide links to information literacy resources on research-related assignments or projects for student review 
  • Develop assignments that require using more than one tech tool to accomplish a single task 

Thinking and Analysis

Thinking with technology.

Photo of one woman sitting in front of a computer station in a lab, with another woman leaning over her. Both are smiling and looking at a monitor, with other people at other computers around them

The number-one benefit of information technology is that it empowers people to do what they want to do. It lets people be creative. It lets people be productive. It lets people learn things they didn’t think they could learn before, and so in a sense it is all about potential. —Steve Ballmer, American businessman and former CEO of the Microsoft Corporation

Learning Objectives

By the end of this section, you will be able to:

  • Identify technology tools that enhance student learning
  • Explain how technology skills relate to critical/creative thinking skills
  • Examine online learning in the context of organizing, communicating, reading, and researching online
  • Assess student readiness to use technology

Technology for College Learning

In November 2001, an exciting $700 million-dollar project began in Oklahoma City, Oklahoma: The public school system would be modernized and upgraded. Part of the renovation would take place in the Emerson School, a 120-year-old building—one of the first public schools built in the city. Slated to be removed and replaced with Smart Boards were four old green chalkboards still hanging on several classroom walls.

When the contractors removed the green chalkboards, though, they made an amazing discovery: They found a set of untouched blackboards hanging behind the green chalkboards, which contained writings and drawing of students and teachers in 1917. On one board, for instance, were notes in a treble clef, apparently from a music class. On another blackboard were illustrations of Thanksgiving pilgrims. On still another was a multiplication wheel—a teaching device of yesteryear that the then-current school employees did not understand. And the Pledge of Allegiance was written on one of the boards in pristine cursive penmanship. The renovators also found old report cards, as well as a newspaper clipping advertising “Women’s shoes, $3.00!”

Teacher Sherry Read reflected on the meaning of this discovery: “I think they [the teachers in 1917] left them there on purpose to send a message to us, to say, ‘This is what was going on in our time.’”

Today, the formerly hidden chalkboards are protected with acrylic glass. Controls are also in place for light and temperature exposure. With this care, the chalkboards could last another one hundred years. To see photographs of the find, visit Oklahoma’s Hidden Chalkboards of Yesteryear .

Indeed, 1917 was another era of classroom teaching. Just imagine if the students and teachers from that day were to visit your college classrooms today. How much culture shock would they experience? Do you think they would be able to catch on to your level of technology skill and awareness?

Clearly, the technological differences between 1917 and now are staggering. Today we have online classes, blended learning, and flipped classrooms, MOOCs, microlectures, and mobile learning. We have blogs, wikis, podcasts, clickers, cloud computing, virtual reality and gaming. And we have laptops, tablets, smartphones, 3D printing, eye tracking, and LCD touch boards. Then there’s the explosion of social networking explosion—Facebook, Instagram, LinkedIn, YouTube, Twitter, Tumblr, Flickr, and Google+—not to mention the invention of Apple, Microsoft, and the Internet, and, well, online dating!

What’s next, and how soon will it come?

Word cloud. Phrases it contains: cloud, virtual, printing, tracking, reality, class, supplement, Web, Gaming, touchboard, Webe-enhanced [sic], MOOCs, CD-ROM, Web-based, blended, smartphone, instructor-led, micro-lecture, wifi, asynchronous, purely, mobile, learning, internet, computing, classroom, tablet, tape, online, video/audio, synchronous, laptop, eye, device.

It’s no wonder that colleges and universities today place a heavy emphasis on teaching and learning with technology. Consider the following statistics:

  • 85 percent of college-bound students say technology in the classroom and the availability of online classes are their top determinants in choosing a college. [1]
  • The total of 5.8 million distance-education students in fall 2014 was composed of 2.85 million taking all of their courses at a distance, and 2.97 million taking some, but not all, courses at a distance.
  • One in every seven students studies exclusively online; more than one in four students takes at least one online course.
  • Public institutions command the largest portion of distance-education students, with 72.7 percent of undergraduate and 38.7 percent of graduate-level distance students.
  • Students favor laptops as their digital technology of choice. In a study conducted by Harris Poll for AMD (a technology company), 85 percent of study respondents own a laptop, used variously for taking notes during class, doing homework and projects, watching television shows and videos, and conducting multiple other tasks. Forty-one percent of the AMD study respondents reported that they consider the laptop to be more important than a TV, bicycle, car, or tablet. [2]
  • Distance-education enrollments continue to grow.

Critical and Creative Thinking with Technology

Why is there such a powerful thrust behind technology in education? How significantly is technology contributing to our ability to be critical and creative thinkers? After all, technology, by itself, cannot create critical or creative thinkers. But when it’s used with the guidance of a teacher who understands how to use it, and by students who also have sufficient technology skills and resources, the teaching and learning process can be considerably enhanced. Consider the following:

  • Computer software and Internet resources allow students to record, defend, and challenge their thinking.
  • Digital camcorders allow students to observe and analyze the world—to resee and reimagine it in a way that appeals to them.
  • Interactive whiteboards are helpful for class discussions about ideas or Web content; they facilitate whole-class display and hands-on participation.
  • Student-response systems, like clickers , allow students to respond to questions and then debate the answers.
  • Blogs can serve as personal journals, where students can record, share, and reflect on field experiences and research activities. Students can also use blogs as a preestablished environment for critically responding to assigned readings.
  • Wikis can help students coordinate, compile, synthesize, and present individual or group projects or research, as well as build and share group resources and knowledge. Wikis can also help students provide peer review, feedback, and critiques.
  • Discussion boards can help students establish a sense of community with their class and engage in ongoing threaded conversations on assigned readings and topics highlighting diverse points of view.

The following graphic illustrates how different digital technologies can help faculty and students with critical and creative thinking. Notice the six main categories in the graphic. They correspond with Bloom’s taxonomy, discussed in the section on Patterns of Thought.

The red and blue arrows outside the diagram indicate the fluidity with which the tools can travel through the different levels in the taxonomy. All in all, the diagram, below, shows the interconnectedness of technology resources in helping users increase their critical and creative thinking skills.

A rhomboid shape contains logos from various technology tools, corresponding to Bloom's Taxonomy levels. From the top: "Creating": Prezi, Wikispaces, VoiceThread, iTunes, YouTube, Powerpoint, Blogger, Moodle, Lectora, Camtasia. "Evaluating": Moodle, Ning, YouTube, Tumblr, Del.i.cious, elgg. "Analyzing": Mindomo, Zoho, Dmdm, YouTube, elgg, VoiceThread, Del.i.cious. "Applying": Prezi, Jing, iTunes, iGoogle, Ning. "Understanding": Skype, Tumblr, RSS, Gmail, Evernote, Blogger, Ning, YouTube. "Remembering": Firefox, YouTube, Flickr, Del.i.cious. Outside the rhombus, a blue arrow on the left points down from the top; a red arrow on the right points up from the bottom. At the bottom is a credit for the image from https://visualblooms.wikispaces.com/home

Getting Tech-Ready

If you are thinking about taking an online course or even a blended or hybrid-format course, you already know that it will require some basic technological skills. And while you don’t necessarily need to be a computer scientist to take a class that involves a lot of online work, you should have a solid understanding of the basic technical skills needed to succeed. Understanding what these skills are up front will make things much easier for you as a student.

The Getting Tech-Ready tutorial, below, is from the California Community College system. It is specially designed to help California’s online community college students, but it is widely applicable to college students taking technology-enhanced courses anywhere. It will help you becoming familiar with the following:

  • the hardware and software requirements of most online and hybrid courses
  • the value of a fast Internet connection
  • how to locate and download the free plugins that your course might require
  • the basics of email
  • how to obtain tech support when you need it

When you have finished this first Getting Tech-Ready tutorial, complete the computer-readiness activity, below.

NOTE : You will find additional tutorials, below, from the OEI Online Learner Readiness project. All are geared to help students develop skills required to be successful online learners. Remember that even though you may be a savvy smartphone, tablet, and/or computer user, you may not be prepared for the particular challenge of college-level learning in the online environment. The tutorials below are engaging and interactive, and are designed to address the real challenges that both experienced and novice online students may encounter.

Activity: Online Learning and Computer Software Readiness

  • Test your computer software to ensure that you are ready to access online resources
  • Assess your readiness to participate in online learning
  • Identify key factors in being a successful online learner
  • Start by going to the Computer Readiness Test . It will test your current browser for specific plugins and versions of Adobe PDF Reader, the Adobe Flash Player, Oracle Java, Microsoft Silverlight and Apple QuickTime Play. These plugins help you better navigate and participate in typical technology-enhanced activities in college. When you are finished with the quick test, it will output the results.
  • Now visit the Online Learning Readiness Questionnaire . You will be queried about your interests in and aptitudes for online learning. Your answers will help you determine what you need to do to succeed at online learning. Post-survey feedback will also provide you with information on what you can expect from an online course.

Introduction to Online Learning

In tutorial #2, below, also from the OEI Online Learner Readiness project, you will investigate online learning as an alternative to a traditional classroom. What will this mean for you as a student? In the tutorial you will be introduced to the world of online learning: how it works, a few of the common misconceptions about online learning environments, and some differences you will encounter when taking courses online rather than in a traditional classroom.

Organizing with Technology

Tutorial #3, below, will help you organize for online learning success. This is important for online learners because the format is quite different from a face-to-face (f2f) course on campus. In a “f2f” course, for instance, you’ll typically meet with your instructor and the other students in your class at least once a week and receive frequent reminders about when assignments are due.

In an online environment, though, it’s up to you to remind yourself. Luckily, there are a lot of tools available to help you get started. But first it’s important to get organized.

Tutorial #3 will help you to do the following:

  • organize your physical study space
  • organize your course materials
  • develop a scheduling system that will help you turn all of your coursework in on time

Communicating with Technology

Good communication skills are essential in online and blended courses. There are many different ways you’ll communicate with your instructor and other students in your class. Tutorial #4 introduces you to common terms you’ll need to know and some concepts that can lead you to success in your class. The following important topics are covered:

  • the vocabulary that may be used to describe communication in your online class
  • how communication is different for you as a student when you’re learning online
  • some of the advantages and disadvantages of academic online communication
  • how to become an effective communicator in an online or blended course

Reading and Researching with Technology

In an online learning environment, you’re probably going to do more reading than listening. You may do some of your reading in printed form—say, an assigned novel or textbook—but some of it might also be online in the form of a Web page. Reading online isn’t the same as reading in print, so it’s important to practice some strategies that will improve your online reading comprehension and speed. Some of the strategies described in the next tutorial will help you with any kind of reading you’re doing—not just online material. Tutorial #5 discusses the following:

  • some of the differences between reading print and reading online
  • strategies for staying focused when reading online
  • ways to maximize your reading speed and comprehension

Below are two additional resources that complement the online reading strategies tutorial. They will help you use the Internet to find scholarly material and evaluate Web sites for accuracy, relevance, etc.

Mobile Learning and Social Networking

Mobile learning and social networking are both major players in college life and learning. You are likely quite adept at both! Consider the following statistics:

  • Mobile Learning : By the time the class of 2016 graduates, close to 91.4 percent of U.S. college students will own a smartphone. See the eMarketer data graph showing U.S. college student smartphone users, 2010–2016. In 2010, the number was 8.14 million; the number projected for 2016 is 17 million. Students want and need to use their mobile device for learning. [3]
  • Social Networking : See the eMarketer.com data graph showing the daily time spent on select social networks by U.S. college student Internet users, as of May 2015. The graph answers the question about whether or not young people have given up on Facebook. Clearly, Facebook is still a winner. Social networking can readily facilitate learning. [4]
  • Top 100 Tools for Learning
  • Are You Ready To Be An Online Student?
  • UCF Knights Online Course Tours
  • Student Success – Thinking Critically In Class and Online
  • Technology and Classroom: MOOCS, Flipped Classroom and Micro-lecture
  • The Case Files: What college was like before modern technology
  • "Digital Capabilities at Universities Key to Draw Students." CareerIndia . 28 Nov 2014. Web. 16 Feb 2016. ↵
  • "Survey Reveals How Much College Students Rely on Technology." SchoolGuides . 13 Jul 2014. Web. 16 Feb 2016. ↵
  • "College Students Adopt Mobile Across the Board." Newsroom . eMarketer, 28 Aug 2012. Web. 16 Feb 2016. ↵
  • "College Students Still Spend Most Social Time with Facebook." eMarketer . 8 Sept 2015. Web. 16 Feb 2016. ↵
  • Technology Wordle. Authored by : Linda Bruce. License : CC BY-SA: Attribution-ShareAlike
  • Thinking with Technology. Authored by : Linda Bruce. Provided by : Lumen Learning. License : CC BY: Attribution
  • Image of two women looking at computer monitor. Authored by : US Department of Education. Located at : https://flic.kr/p/fDex85 . License : CC BY: Attribution
  • Using Technology to Promote Creative and Critical Thinking Skills. Provided by : Fostering Creativity and Critical Thinking with Technology. Located at : https://creativecriticalthinking.wikispaces.com/ . License : Other . License Terms : GNU Free Documentation License
  • Image of technology paired with Bloom's Taxonomy. Authored by : M. Fisher. Located at : https://visualblooms.wikispaces.com/home . License : CC BY-SA: Attribution-ShareAlike
  • Getting Tech Ready. Provided by : California Community Colleges. Located at : https://apps.3cmediasolutions.org/oei/02-Getting-Tech-Ready/index.html . Project : Online Education Initiative. License : CC BY: Attribution
  • Guidelines for Communicating with Instructors. Authored by : Ronda Dorsey Neugebauer. Provided by : Chadron State College. Project : Kaleidoscope Open Course Initiative. License : CC BY: Attribution
  • Internet Skills 3: How to Use the Internet to Find Scholarly Material. Authored by : UBC LEAP. Located at : https://youtu.be/y4JWpcIr5DQ . License : CC BY: Attribution
  • Internet Skills 1: How to Evaluate a Website. Authored by : UBC LEAP. Located at : https://youtu.be/0UuShwtYpGg . License : CC BY: Attribution

University of the People Logo

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important? A Survival Guide

Updated: December 7, 2023

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

You’ve surely heard of critical thinking, but you might not be entirely sure what it really means, and that’s because there are many definitions. For the most part, however, we think of critical thinking as the process of analyzing facts in order to form a judgment. Basically, it’s thinking about thinking.

How Has The Definition Evolved Over Time?

The first time critical thinking was documented is believed to be in the teachings of Socrates , recorded by Plato. But throughout history, the definition has changed.

Today it is best understood by philosophers and psychologists and it’s believed to be a highly complex concept. Some insightful modern-day critical thinking definitions include :

  • “Reasonable, reflective thinking that is focused on deciding what to believe or do.”
  • “Deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Woman deep into thought as she looks out the window, using her critical thinking skills to do some self-reflection.

6. The Basis Of Science & Democracy

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How to Think Critically

Now that you know the benefits of thinking critically, how do you actually do it?

How To Improve Your Critical Thinking

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do. However, much of this important skill is encouraged to be practiced at school, and rightfully so! Critical thinking goes beyond just thinking clearly — it’s also about thinking for yourself.

When a teacher asks a question in class, students are given the chance to answer for themselves and think critically about what they learned and what they believe to be accurate. When students work in groups and are forced to engage in discussion, this is also a great chance to expand their thinking and use their critical thinking skills.

How Does Critical Thinking Apply To Your Career?

Once you’ve finished school and entered the workforce, your critical thinking journey only expands and grows from here!

Impress Your Employer

Employers value employees who are critical thinkers, ask questions, offer creative ideas, and are always ready to offer innovation against the competition. No matter what your position or role in a company may be, critical thinking will always give you the power to stand out and make a difference.

Careers That Require Critical Thinking

Some of many examples of careers that require critical thinking include:

  • Human resources specialist
  • Marketing associate
  • Business analyst

Truth be told however, it’s probably harder to come up with a professional field that doesn’t require any critical thinking!

Photo by  Oladimeji Ajegbile  from  Pexels

What is someone with critical thinking skills capable of doing.

Someone with critical thinking skills is able to think rationally and clearly about what they should or not believe. They are capable of engaging in their own thoughts, and doing some reflection in order to come to a well-informed conclusion.

A critical thinker understands the connections between ideas, and is able to construct arguments based on facts, as well as find mistakes in reasoning.

The Process Of Critical Thinking

The process of critical thinking is highly systematic.

What Are Your Goals?

Critical thinking starts by defining your goals, and knowing what you are ultimately trying to achieve.

Once you know what you are trying to conclude, you can foresee your solution to the problem and play it out in your head from all perspectives.

What Does The Future Of Critical Thinking Hold?

The future of critical thinking is the equivalent of the future of jobs. In 2020, critical thinking was ranked as the 2nd top skill (following complex problem solving) by the World Economic Forum .

We are dealing with constant unprecedented changes, and what success is today, might not be considered success tomorrow — making critical thinking a key skill for the future workforce.

Why Is Critical Thinking So Important?

Why is critical thinking important? Critical thinking is more than just important! It’s one of the most crucial cognitive skills one can develop.

By practicing well-thought-out thinking, both your thoughts and decisions can make a positive change in your life, on both a professional and personal level. You can hugely improve your life by working on your critical thinking skills as often as you can.

Related Articles

Nichols College

Critical Thinking & Why It’s So Important

Critical thinking is a cognitive skill with the power to unlock the full potential of your mind. In today’s rapidly evolving society, where information is abundant but discerning its validity is becoming increasingly challenging, the art of critical thinking has never been more crucial.

At Nichols College, we believe that cultivating strong critical thinking abilities is not just a pursuit for the academically inclined, but a fundamental necessity for individuals across all walks of life. Join us as we explore the significance of critical thinking and the remarkable impact it can have on your decision-making, problem-solving, and overall cognitive prowess.

Discover why our Graduate Certificate program in Advanced Critical Thinking and Decision Making is your gateway to becoming a perceptive and adept thinker, ready to tackle the complex challenges of today’s world with confidence and ingenuity.

What is critical thinking?

Critical thinking is a fundamental skill that allows individuals to analyze, evaluate, and interpret information objectively and rationally. It goes beyond merely accepting information at face value; instead, critical thinkers are equipped to delve deeper, question assumptions, and explore various perspectives before arriving at well-informed conclusions. This ability to think critically is highly valued across various domains, including education, business, and everyday life.

Benefits of using critical thinking

The countless advantages of critical thinking extend far beyond the realms of academia. For starters, critical thinking fosters superior decision-making by equipping individuals with the tools to weigh options, assess consequences, and arrive at better choices. Critical thinkers also benefit from heightened self-reflection, gaining a profound understanding of their own biases and areas for improvement.

Critical thinkers become well-informed individuals who can navigate the sea of information with discernment, adeptly identifying misinformation and unreliable sources. Furthermore, this invaluable skill enables creative problem-solving, allowing thinkers to craft innovative solutions to intricate challenges. Some of the most important benefits of using critical thinking include:

Better decision making

Critical thinkers excel at weighing pros and cons, considering alternatives, and anticipating potential consequences. This leads to more informed and effective decision-making processes, both in personal and professional realms.

Better self-reflection

By fostering a habit of introspection, critical thinkers become more self-aware, recognizing their own biases and limitations. This heightened self-awareness allows them to continually improve and adapt their thinking patterns.

Being well-informed

Critical thinkers actively seek out diverse sources of information, ensuring they have a comprehensive understanding of complex issues. This empowers them to engage in meaningful discussions and contribute constructively to their communities.

The ability to identify misinformation

In a world filled with misinformation, critical thinkers possess the skills to discern fact from fiction. They scrutinize sources, verify information, and avoid being misled by deceptive content.

Building creative problem solving skills

Critical thinking encourages innovative and outside-the-box problem-solving approaches. By considering multiple angles and challenging conventional ideas, critical thinkers arrive at inventive solutions to complex challenges.

What skills do critical thinkers have?

Critical thinkers possess a remarkable set of skills that elevate their cognitive abilities and enable them to approach complex issues with acuity. Embracing these skills empowers them to tackle challenges, unravel complexities, and make meaningful insights and well-informed decisions. Some of the most valuable skills critical thinkers have include:

Critical thinkers have a natural inclination to ask questions and explore topics in-depth. Their thirst for knowledge drives them to seek out answers and continually expand their understanding.

Proficient in conducting thorough research, critical thinkers gather information from reliable sources and assess its validity. They are skilled at distinguishing credible data from biased or unsubstantiated claims.

Pattern recognition

Critical thinkers recognize recurring patterns and connections between seemingly unrelated pieces of information. This allows them to draw meaningful insights and make well-founded predictions.

Bias identification

Having honed the ability to identify biases, critical thinkers remain open-minded and impartial in their assessments. They acknowledge their own biases and strive to approach each situation objectively.

How to use critical thinking skills in the workplace

In any work environment, critical thinking is a valuable asset that can enhance productivity and foster a more innovative and collaborative workplace. Employees with strong critical thinking skills contribute to problem-solving sessions, provide constructive feedback, and make informed decisions based on thorough analysis. By promoting critical thinking, organizations encourage employees to challenge assumptions, seek out novel solutions, and contribute to the overall growth and success of the company.

Examples of good critical thinking in action

The real-world application of critical thinking can be awe-inspiring, as it empowers individuals to approach various scenarios with astute judgment and creativity. In the business realm and with regard to project management, critical thinkers demonstrate their prowess by:

  • Analyzing Market Trends : A marketing professional employs critical thinking skills to assess market trends, consumer behavior, and competitor strategies before devising a successful marketing campaign that aligns with the target audience’s needs.
  • Problem-Solving in Project Management : A project manager utilizes critical thinking to identify potential roadblocks, consider alternative approaches, and ensure projects are executed efficiently and within budget.

Furthermore, critical thinkers shine in scientific research, meticulously evaluating data, and drawing evidence-based conclusions that contribute to groundbreaking discoveries. In everyday life, they navigate the digital landscape with discernment, identifying misinformation and making informed decisions about their health, finances, and general well-being. These examples illustrate the power of critical thinking to transform not only individual lives but also entire industries, making it an indispensable skill in the pursuit of success and progress.

Get a critical thinking graduate certificate from Nichols College

If you are eager to enhance your problem-solving abilities, decision-making processes, and overall cognitive skills, the Nichols College graduate certificate in critical thinking may be right for you. Designed to equip individuals with the necessary tools to excel in today’s complex world, this program will empower you to think critically, analyze data effectively, and approach challenges with creativity and confidence. Elevate your potential and join Nichols College in cultivating a new generation of sharp-minded leaders, ready to make a positive impact on the world. Enroll in the Advanced Critical Thinking and Decision Making certificate program today and unlock a brighter future for yourself and your community.

what is critical thinking technology

  • Master of Science in Counterterrorism
  • Critical Thinking Certificate
  • Career Paths
  • Financial Aid
  • Request Information

what is critical thinking technology

Advertisement

What is thought and how does thinking manifest in the brain?

We can describe different kinds of thought and how they arise, to some extent, but the relationship between neural activity and the nature of what we are thinking isn't well understood

By Kate Douglas

20 May 2024

New Scientist Default Image

Stepan Popov/stock.adobe

We’re all at it, all the time. Yet thinking, or how we should think about thought, is surprisingly hard to pin down. When I did a vox pop, for instance, a couple of friends described thoughts as “wispy things”. Another saw them as sparklers, fizzing with chaotic flashes but containing a central light source that is controllable.

All of which is decidedly unscientific. But then even the experts aren’t so sure about what thoughts are, and what we can surmise from the latest neuroimaging studies suggests we may never truly pin down how they manifest in the brain.

“The short answer is that no one really knows what thought is, ” says Tim Bayne , a philosopher at Monash University in Australia and author of Thought: A very short introduction . Even so, it is useful to consider two aspects of thought, he says: their content and their nature.

The new evidence that explains what anxiety really is

Kalina Christoff ‘s definition does exactly that. “Thought is a mental state, or series of mental states, that has some kind of content to it, with some personal attitudes towards the content – like an attitude of remembering or believing or imagining,” says Christoff, who runs the Cognitive Neuroscience of Thought Laboratory at the University of British Columbia in Canada.

First, let’s consider content. Thinking isn’t the same as perceiving or sensing: all involve holding something before one’s mind, so to speak, but thoughts are distinct in that they are independent of any stimulus produced by the thing being thought about.

In terms of how they arise, Christoff identifies three streams…

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

To continue reading, subscribe today with our introductory offers

No commitment, cancel anytime*

Offer ends 2nd of July 2024.

*Cancel anytime within 14 days of payment to receive a refund on unserved issues.

Inclusive of applicable taxes (VAT)

Existing subscribers

More from New Scientist

Explore the latest news, articles and features

Frozen human brain tissue can now be revived without damage

Most brain monitors sold to consumers don't keep your data private.

Subscriber-only

Brain activity seems to be more complex in baby girls than boys

A new understanding of tinnitus and deafness could help reverse both, popular articles.

Trending New Scientist articles

AI is leading to the 'revenge of the liberal arts,' says a Goldman tech exec with a history degree

  • Goldman's George Lee said AI will empower non-technical workers, including those in risk management.
  • The history major turned tech banker said AI enhances skills like critical thinking, creativity, and logic.
  • Banks are increasingly using AI for fraud and credit risk amid rising regulatory demands.

Insider Today

A longtime tech banker with a history degree says AI could be a boon for non-technical workers.

George Lee, the co-head of applied innovation at Goldman Sachs, told Bloomberg Television on Tuesday that he thinks AI will lead to the "revenge of the liberal arts" in the workforce.

"Some of the skills that are really salient to cooperate with this new of intelligence in the world are critical thinking, understanding logic and rhetoric, the ability to be creative," Lee said. "AI will allow non-technical people to accomplish a lot more — and, by the way, begin to perform what were formerly believed to be technical tasks."

Related stories

Lee, who studied history at Middlebury College and got an MBA from the Wharton School of the University of Pennsylvania, sits on liberal arts-focused Middlebury's board of trustees. He joined Goldman in 1994 after his MBA and was previously the firm's co-chief information officer.

Lee told Bloomberg that AI could help people who are focused on operations and risk management.

As regulatory requirements have intensified globally and threats like cybersecurity take center stage, banks' risk management teams have swelled. In an annual bank risk management survey by EY and the International Institute of Finance released in February, a majority of banks said they're already using AI to monitor fraud and credit risk.

AI is increasingly seen as a threat to knowledge workers, including investment bankers. Junior investment-banking analyst classes — a highly-paid, high-stress job — could be cut by as much as two-thirds , while those who make it into the banks could be paid less for jobs assisted with AI.

As Business Insider has previously reported, banks from  Goldman Sachs  to  Deutsche Bank  have been exploring ways to streamline tedious tasks often   assigned to junior investment bankers, like updating charts for pitch books or company valuation comparison tables.

A Goldman spokesperson previously told BI the bank has no plans to scale back its incoming class.

Watch: How Twitter panic took down Silicon Valley Bank

what is critical thinking technology

  • Main content

Main navigation

  • Our Articles
  • Dr. Joe's Books
  • Media and Press
  • Our History
  • Public Lectures
  • Past Newsletters

Subscribe to the OSS Weekly Newsletter!

Register for the oss 25th anniversary event, reports of the death of dental cavities are greatly exaggerated.

X-ray of upper and lower teeth with glowing spots representing cavities.

  • Add to calendar
  • Tweet Widget

If I asked you to name the most common chronic disease in children, what would you say? Asthma comes top of mind, but there is something  five times more common  in kids: cavities.

We don’t typically think of dental cavities as a chronic disease—in part because of the separation between medicine and dentistry—but it is. And it doesn’t just affect children: most adults in industrialized countries, where sugary food is commonly available, have to deal with this disease process.

I write the word “cavity,” but the phrase “dental caries” is actually more encompassing. First documented in  1634  and coming from the Latin meaning “to decay,” caries refers to the process that can eventually lead to a hole in a tooth, an actual cavity.

Few people enjoy going to the dentist and being told to reduce their sugar consumption. So, what if there was a pain-free way of avoiding dental caries forever? There is a product you can buy right now that essentially—through interviews and social media endorsements—promises to do just that. It’s a bacterium that you paint onto your teeth. It superinfects your mouth, taking over for the bacteria responsible for caries. A single application lasts a lifetime.

There is, however, a big problem with this product, called Lumina, and it has to do with what happens when we become so focused on a potential solution, dedicating our life to making it work, that we miss important changes in our understanding of the problem itself.

The perfect replacement

  In  1924 , an Irish bacteriologist by the name of James Kilian Clarke isolated a bacterium he found in a dental cavity. It looked like some sort of mutated version of a streptococcus, so he named it  Streptococcus mutans , or  S. mutans  for short.

A few decades later,  S. mutans  had established itself in the minds of the scientific community as the great culprit behind dental caries, what experts call its etiology, meaning its cause. The bacterium was able to stick to the surface of our teeth and, in processing the sugars in our mouth, it would produce large amounts of acid, specifically lactic acid. Normally, our saliva is able to neutralize a lot of this acid, but  S. mutans  secretes complex sugars that create a sort of film over our teeth called plaque, trapping its acid underneath. Over time, the tooth, eroded by the acid, would cavitate and develop a hole.

In the late 1970s, however, a chance event would promise to change the game. Dr. Jeffrey Hillman, a dentist and researcher then based in Boston, had found  a version of  S. mutans   that had a very specific mutation, which meant that it produced less acid when metabolizing sugars. This opened the door to  replacement therapy . A destructive approach to the problem of dental carries would be to use an antibiotic to kill the culprit; with replacement therapy, the idea is to  replace  the culprit with a version of it that is harmless. An example of this has been explored recently with  genetically engineered mosquitoes  that do not bite and that can only produce male offspring in an attempt to reduce the spread of diseases like Zika and yellow fever. Could we colonize the human mouth with this naturally mutated  S. mutans  and thus bid goodbye to cavities?

A good replacement strain, it turns out, needs to meet a number of criteria, not unlike the robots of Isaac Asimov’s fictional universe which had to abide by the Laws of Robotics. The chosen bacterium must not cause disease, obviously. It should not predispose us to other diseases by disrupting the bacterial ecosystem that exists in our mouth. It has to stay in the mouth for a long time and ensure that the bacterium it is replacing doesn’t grow back. And because mutations do arise naturally, it has to be genetically stable: it should not be able to regain the ability to produce massive amounts of acid by picking up the gene from a neighbouring bacterium (which does happen in the wild!). Figuring out that the mutated  S. mutans  did not fulfill all of these criteria and finding a strain that did led Hillman and colleagues down a very long path.

For a few decades, they laboured to find (or engineer) a strain of  S. mutans  that apparently checked all of the right boxes. Eventually, they arrived at  strain BCS3-L1 . It did not produce the dreaded lactic acid but instead metabolized sugars into ethanol and a molecule called acetoin, which is responsible for the flavour of butter. It also secreted a compound called Mutacin-1140 which kills other strains of  S. mutans  but which, importantly, does not destroy BCS3-L1. In rats, it colonized the mouth easily and the animals looked fine after six months. A strain that preceded BCS3-L1 was also tested in  five human volunteers  in the 1980s and the bacterium stuck to their teeth for many years ( at least 14  in two cases).

It was time to see if BCS3-L1 could be sold to Americans as a novel drug.

Safety first 

It may seem like BCS3-L1 was the perfect candidate, but in an  independent paper  looking at this body of research, multiple concerns were highlighted. The toxicity of this Mutacin-1140 compound had not been tested. What would be the consequences of millions of bacteria in the mouth releasing this compound? The answer wasn’t clear, even though the archetypal compound in the family Mutacin-1140 belonged to was known to be very safe. BCS3-L1 also had the possibility to disturb the microbiome in the mouth in ways that were not predicted and allow disease-causing microorganisms to grow and thrive. And the fact that this bacterium did not produce acid could theoretically be reversed if it acquired the gene from a neighbouring bacterium.

Still, a new drug application was filed with the Food and Drug Administration (FDA), and thus began a decade of back-and-forth. The FDA wanted a big red “abort” button in case something went wrong, a way to kill BCS3-L1. So Hillman, who was now the director and chief scientific officer for a company called  Oragenics , made a change to BCS3-L1: the bacterium now needed an amino acid to survive, one that wasn’t typically found in the human diet but which would be given to research participants in the form of a mouthwash. By withholding the mouthwash, the bacterium would die. Once on the market, though, the strain that would be sold to people would not need this amino acid to survive: this safeguard was only meant for the safety trials. (It turns out that  when tested in rats , this safeguarded bacterial strain was still occasionally able to colonize the mouth in the absence of this amino acid in the rat’s diet, possibly because it was getting it from the poop the rat was eating. Hence the safeguard was not foolproof.)

More than that, the FDA insisted on participants with no real teeth, only dentures, so that they could be bleached if something went wrong. Oragenics thus aimed to recruit volunteers under 55 years of age who had a full set of dentures. They managed to find one.

They then tried to design a new trial where people with actual teeth would be quarantined to a hospital-like setting, but there too not enough participants showed interest. By  2014 , the company admitted that the only possibility moving forward was to partner with someone else. Otherwise, the work would have to be abandoned.

Around that time, the patent they had for this bacterial strain expired. Aaron Silverbook, who founded a company called Lantern Bioworks, saw a way to rescue this technology from the regulatory red tape: what if it wasn’t filed as a drug but as a probiotic? He made a  deal  with Oragenics to acquire the recipe and aimed to get it approved by the FDA through its much less stringent probiotic pathway. He first sold it in  Próspera , a libertarian charter city on a Central American island where any biotech product can be sold as long as the buyer signs a waiver, and now the product, renamed Lumina, is gaining hype on social media among cryptocurrency enthusiasts and DIY experimenters. You can even  preorder  the product for USD 250, to be shipped in June of this year.

Goodbye, dentist!

Only, there is a slight problem.

Beyond  Streptococcus mutans  

This whole technology is predicated on the assumption that dental caries are caused only (or, at the very least, mostly) by  S. mutans.  That was, after all, the accepted theory in the 1970s when Hillman got the ball rolling. Our understanding of dental caries, however, has greatly advanced in the interim.

We went from calling caries an infectious disease that was specifically caused by  S. mutans —much like how the influenza virus causes the flu—to gaining a more ecological perspective on the disease.  S. mutans  is not the only acid-producing oral bacterium that can cause caries: in fact, it forms  less than 2%  of all the bacteria that cause caries, and  a little over one in seven people with caries  do not have  S. mutans  in their mouth. There is even a scientific paper on dental caries literally titled  “Beyond  Streptococcus mutans ” !

Caries occur because of a catastrophic shift in the balance of our mouth’s bacterial and fungal ecosystem. It is not due to any one bacterium, and any bacterium capable of releasing acid after ingesting sugars can contribute to this. Even if you could reliably stop  S. mutans  from producing acid, you could not guarantee the absence of future dental caries. The reason why  S. mutans  became the Big Bad of the 1970s dentistry world is because researchers were stuck studying the mouth bacteria they could grow in the laboratory, and  S. mutans grows well in the conditions scientists were selecting back then. But now, with DNA technology, scientists have been able to detect  800 different species  of bacteria in the human mouth.

We are thus left with a product, Lumina, that cannot guarantee the prevention of future caries and whose safety can be summarized by a giant question mark. Is the Mutacin-1140 it releases into the mouth safe in the long term? Can the bacterium be transmitted to a partner via kissing? Is it safe in people with a compromised immune system? Will it upset the oral microbiome in ways that have not been tested for? I wish I had answers.

The idea of replacement therapy has not gone away, with  different strains of oral bacteria  being manipulated in the lab to see if it might reduce the potential for caries. But in terms of what works to reduce the chances of a dentist announcing you have a cavity, it’s fairly straightforward: reduce your sugar consumption and use a toothpaste that contains fluoride. Our teeth are constantly in the midst of getting demineralized and remineralizing themselves. The acid produced by bacteria in the mouth interferes with remineralization, but the presence of fluoride helps those precious minerals diffuse into the tooth to form new crystals and thus protect the tooth from cavities. That’s why fluoride is so good for our teeth.

Or you could paint your teeth with an experimental bacterium and see what happens.

Take-home message: - Lumina is a genetically engineered version of the Streptococcus mutans bacterium that lives in the mouth, and it is supposed to prevent you from developing dental caries because it does not produce acid - It has been poorly studied for safety and effectiveness - Streptococcus mutans is actually neither necessary nor sufficient for the development of dental caries; the disease actually comes about because of a shift in the equilibrium of bacteria in the mouth which encourages the demineralization of our teeth

@CrackedScience

What to read next

Methylene chloride can strip paint but can also strip years off your life 15 may 2024.

what is critical thinking technology

No, Eating French Fries is Not the Same as Smoking Cigarettes 10 May 2024

what is critical thinking technology

Navigating the Twisted World of Varicose Veins 10 May 2024

what is critical thinking technology

Twisting Facts About Cancer 8 May 2024

what is critical thinking technology

The Truth About Truth Serum 3 May 2024

what is critical thinking technology

Taking a Bite Out of the Carnivore Diet 3 May 2024

what is critical thinking technology

Department and University Information

Office for science and society.

Office for Science and Society

what is critical thinking technology

USA Today Crossword May 19 2024 Answers (5/19/24)

O ur USA Today Crossword May 19, 2024 answers guide should help you finish today’s crossword if you’ve found yourself stuck on a crossword clue. USA Today Crossword is a popular daily puzzle that tests the player’s vocabulary, spelling, and general knowledge skills. The puzzle is available in print and digital format and is enjoyed by people of all ages. The clues can range from easy to challenging and the player must use their critical thinking abilities to solve the puzzle. It is a great way to pass the time and challenge oneself.

USA Today Crossword May 19, 2024 Answers

If you need help solving the USA Today Crossword on 5/19/24, we’ve listed all of the crossword clues below so you can find the answer(s) you need. You can search for the clue and then select the appropriate clue to get the answer. We have done it this way so that if you’re just looking for a handful of clues, you won’t spoil other ones you’re working on!

Looking for answers to another USA Today Crossword puzzle? Check out our archive of USA Today Crossword Answers .

The USA Today Crossword is a daily crossword puzzle that is published in the USA Today newspaper and on its website. The puzzle is known for its contemporary and pop culture references, as well as its accessibility to solvers of all skill levels.

The USA Today Crossword was first introduced in 2002, and has since become a popular source of entertainment and mental stimulation for crossword enthusiasts of all ages. The puzzle is created by a team of experienced crossword constructors, who are known for their creativity and skill in the field of crossword puzzles.

One of the unique features of the USA Today Crossword is its use of a non-standard grid, which can include circles or other shapes. This can make the puzzle even more challenging and interesting to solve. The puzzle also includes a variety of themed sections, which can add an extra layer of complexity to the solving experience.

If you’ve enjoyed this crossword, consider playing one of the other popular crosswords we cover, including: New York Times Crossword (and Mini ), Daily Themed Crossword (and Mini ), LA Times Crossword , and WSJ Crossword .

Our USA Today Crossword May 19, 2024 answers guide should help you finish today’s crossword if you’ve found yourself stuck on a crossword clue. USA Today Crossword is a popular daily puzzle that tests the player’s vocabulary, spelling, and general knowledge skills. The puzzle is available in print and digital format and is enjoyed by people of all ages. The clues can range from easy to challenging and the player must use their critical thinking abilities to solve the puzzle. It is a great way to pass the time and challenge oneself. USA Today Crossword May 19, 2024 Answers If […]

IMAGES

  1. Critical Thinking Definition, Skills, and Examples

    what is critical thinking technology

  2. 6 Main Types of Critical Thinking Skills (With Examples)

    what is critical thinking technology

  3. Critical Thinking Skills

    what is critical thinking technology

  4. How to Improve Critical Thinking

    what is critical thinking technology

  5. Teaching Critical Thinking Skills (and How Technology Can Help

    what is critical thinking technology

  6. Home

    what is critical thinking technology

VIDEO

  1. Thinking Technology ,Computer Fundamental Vidio Part 2

  2. Thinking Technology 🤔, Mspaint Basic to Bignor complete जानकारी in hindi

  3. 21st Century Education Example

  4. Sydney International Conference on Teaching, Education & Learning

  5. Foundations of Critical Thinking

  6. Thinking Technology, What is Application software in हिन्दी ,Hardware and Software class 4

COMMENTS

  1. Using Technology To Develop Students' Critical Thinking Skills

    Critical thinking is a higher-order cognitive skill that is indispensable to students, readying them to respond to a variety of complex problems that are sure to arise in their personal and professional lives. The cognitive skills at the foundation of critical thinking are analysis, interpretation, evaluation, explanation, inference, and self ...

  2. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  3. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  4. Critical Thinking: Definition, Examples, & Skills

    Critical thinking is a faculty that is thought to be unique to humans, granted to us by our higher-order and most recently evolved brain structure: the pre-frontal cortex. It's the pre-frontal cortex that gives us the ability to deliberate, compare new information with what we know to be true, and to opt-out of the base patterns of behavior ...

  5. Is technology producing a decline in critical thinking and analysis

    January 27, 2009. As technology has played a bigger role in our lives, our skills in critical thinking and analysis have declined, while our visual skills have improved, according to research by Patricia Greenfield, UCLA distinguished professor of psychology and director of the Children's Digital Media Center, Los Angeles. Learners have changed ...

  6. Does Technology Help Boost Students' Critical Thinking Skills?

    The Reboot Foundation was started—and funded—by Helen Bouygues , whose background is in business, to explore the role of technology in developing critical thinking skills. It was inspired by ...

  7. Using technology to teach critical thinking skills

    Fortunately, research has uncovered five ways technology can be used to teach critical thinking skills. 1. Interactive activities can stimulate student interest and improve academic achievement. Education researchers agree that engaging students in interactive, multisensory activities that promote elaboration, questioning, and explanation can ...

  8. Leveraging Technology to Develop Students' Critical Thinking Skills

    This article describes the nexus of the Technological Pedagogical and Content Knowledge (TPACK) framework, principles of the Backward Curriculum Design process, and the Education 1.0, 2.0, & 3.0 communication flows working together to help TK-12 educators leverage technology tools to support the development of students' critical thinking skills.

  9. Critical Thinking & Informed Decision-Making

    The goal, as posited by Dr. Wagner and Dr. Amabile is to create innovative, creative, and knowledgable learners with strong critical thinking, problem-solving, and decision-making skills. In order to nurture these 21st-century competencies, educators must be able to teach and assess them using clearly defined metrics.

  10. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  11. How Does Technology Affect Critical Thinking?

    Appropriate technology in classrooms increases students' academic achievement, self-confidence, motivation in class, and attendance. Technology helps students move beyond sitting attentively and listening and promotes more hands-on learning. It affects critical thinking by helping students apply what they've learned to real-life situations ...

  12. Critical Thinking

    Critical thinking might be described as the ability to engage in reflective and independent thinking. In essence, critical thinking requires you to use your ability to reason. It is about being an active learner rather than a passive recipient of information. Critical thinkers rigorously question ideas and assumptions rather than accepting them ...

  13. Using technology to encourage critical thinking

    areas of technology; databases, spreadsheets, concept maps, and the Internet. This review. begins with a study of how databases, spreadsheets, and concept maps are used to support. critical thinking. Databases seem to be the most common area of technology utilized to facilitate. critical thinking.

  14. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  15. Critical thinking

    Critical thinking, in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a

  16. Enhancing critical thinking skills with AI-assisted technology

    This example demonstrates how AI can be used to enhance learners' critical thinking skills . At every point in the activity, learners are asked to question the assumptions behind the chatbot's answer and learn to be more critical of the information that they come across. By putting learners in control of the materials that they are using to ...

  17. Thinking critically about critical thinking dispositions in technology

    Critical thinking is the use of those cognitive skills or strategies that increase the probability of a desirable outcome. It is used to describe thinking that is purposeful, reasoned, and goal directed—the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions, when the thinker is using skills that are thoughtful and effective ...

  18. Critical Thinking and Problem Solving with Technology

    Brief Summary: Critical thinking and problem solving is a crucial skill in a technical world that can immediately be applied to academics and careers.A highly skilled individual in this competency can choose the appropriate tool to accomplish a task, easily switch between tools, has a basic understanding of different file types, and can troubleshoot technology when it's not working properly.

  19. Thinking with Technology

    By the end of this section, you will be able to: Identify technology tools that enhance student learning. Explain how technology skills relate to critical/creative thinking skills. Examine online learning in the context of organizing, communicating, reading, and researching online. Assess student readiness to use technology.

  20. The Importance Of Critical Thinking, and how to improve it

    Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life. 4. Form Well-Informed Opinions.

  21. How Technology Bolsters Critical Thinking in Students

    Reflection is a key component of critical thinking, and technology offers various tools that facilitate this process. Digital portfolios, blogs, and journals allow students to track their learning ...

  22. Critical Thinking & Why It's So Important

    Critical thinking is a fundamental skill that allows individuals to analyze, evaluate, and interpret information objectively and rationally. It goes beyond merely accepting information at face value; instead, critical thinkers are equipped to delve deeper, question assumptions, and explore various perspectives before arriving at well-informed ...

  23. Adopting Critical Thinking in Information Technology

    Critical Thinking forces us to know what a problem (or opportunity) is, know and apply the differences between inductive and deductive reasoning, identify premises and conclusions, good and bad ...

  24. What is Critical Thinking?

    Critical thinking is a cognitive process that involves analyzing, evaluating, and synthesizing information to form reasoned judgments or decisions. It goes beyond simply accepting information at face value and instead requires individuals to actively engage with and question the content, considering its reliability, relevance, and implications.

  25. Oxford University Press

    Oxford University Press - homepage

  26. What is thought and how does thinking manifest in the brain?

    First, let's consider content. Thinking isn't the same as perceiving or sensing: all involve holding something before one's mind, so to speak, but thoughts are distinct in that they are ...

  27. AI Is Leading to the 'Revenge of the Liberal Arts,' Says Goldman Exec

    Goldman's George Lee said AI will empower non-technical workers, including those in risk management. The history major turned tech banker said AI enhances skills like critical thinking, creativity ...

  28. Reports of the Death of Dental Cavities Are Greatly Exaggerated

    If I asked you to name the most common chronic disease in children, what would you say? Asthma comes top of mind, but there is something five times more common in kids: cavities. We don't typically think of dental cavities as a chronic disease—in part because of the separation between medicine and dentistry—but it is. And it doesn't just affect children: most adults in industrialized ...

  29. USA Today Crossword May 19 2024 Answers (5/19/24)

    The clues can range from easy to challenging and the player must use their critical thinking abilities to solve the puzzle. It is a great way to pass the time and challenge oneself.