• Privacy Policy

Research Method

Home » Significance of the Study – Examples and Writing Guide

Significance of the Study – Examples and Writing Guide

Table of Contents

Significance of the Study

Significance of the Study

Definition:

Significance of the study in research refers to the potential importance, relevance, or impact of the research findings. It outlines how the research contributes to the existing body of knowledge, what gaps it fills, or what new understanding it brings to a particular field of study.

In general, the significance of a study can be assessed based on several factors, including:

  • Originality : The extent to which the study advances existing knowledge or introduces new ideas and perspectives.
  • Practical relevance: The potential implications of the study for real-world situations, such as improving policy or practice.
  • Theoretical contribution: The extent to which the study provides new insights or perspectives on theoretical concepts or frameworks.
  • Methodological rigor : The extent to which the study employs appropriate and robust methods and techniques to generate reliable and valid data.
  • Social or cultural impact : The potential impact of the study on society, culture, or public perception of a particular issue.

Types of Significance of the Study

The significance of the Study can be divided into the following types:

Theoretical Significance

Theoretical significance refers to the contribution that a study makes to the existing body of theories in a specific field. This could be by confirming, refuting, or adding nuance to a currently accepted theory, or by proposing an entirely new theory.

Practical Significance

Practical significance refers to the direct applicability and usefulness of the research findings in real-world contexts. Studies with practical significance often address real-life problems and offer potential solutions or strategies. For example, a study in the field of public health might identify a new intervention that significantly reduces the spread of a certain disease.

Significance for Future Research

This pertains to the potential of a study to inspire further research. A study might open up new areas of investigation, provide new research methodologies, or propose new hypotheses that need to be tested.

How to Write Significance of the Study

Here’s a guide to writing an effective “Significance of the Study” section in research paper, thesis, or dissertation:

  • Background : Begin by giving some context about your study. This could include a brief introduction to your subject area, the current state of research in the field, and the specific problem or question your study addresses.
  • Identify the Gap : Demonstrate that there’s a gap in the existing literature or knowledge that needs to be filled, which is where your study comes in. The gap could be a lack of research on a particular topic, differing results in existing studies, or a new problem that has arisen and hasn’t yet been studied.
  • State the Purpose of Your Study : Clearly state the main objective of your research. You may want to state the purpose as a solution to the problem or gap you’ve previously identified.
  • Contributes to the existing body of knowledge.
  • Addresses a significant research gap.
  • Offers a new or better solution to a problem.
  • Impacts policy or practice.
  • Leads to improvements in a particular field or sector.
  • Identify Beneficiaries : Identify who will benefit from your study. This could include other researchers, practitioners in your field, policy-makers, communities, businesses, or others. Explain how your findings could be used and by whom.
  • Future Implications : Discuss the implications of your study for future research. This could involve questions that are left open, new questions that have been raised, or potential future methodologies suggested by your study.

Significance of the Study in Research Paper

The Significance of the Study in a research paper refers to the importance or relevance of the research topic being investigated. It answers the question “Why is this research important?” and highlights the potential contributions and impacts of the study.

The significance of the study can be presented in the introduction or background section of a research paper. It typically includes the following components:

  • Importance of the research problem: This describes why the research problem is worth investigating and how it relates to existing knowledge and theories.
  • Potential benefits and implications: This explains the potential contributions and impacts of the research on theory, practice, policy, or society.
  • Originality and novelty: This highlights how the research adds new insights, approaches, or methods to the existing body of knowledge.
  • Scope and limitations: This outlines the boundaries and constraints of the research and clarifies what the study will and will not address.

Suppose a researcher is conducting a study on the “Effects of social media use on the mental health of adolescents”.

The significance of the study may be:

“The present study is significant because it addresses a pressing public health issue of the negative impact of social media use on adolescent mental health. Given the widespread use of social media among this age group, understanding the effects of social media on mental health is critical for developing effective prevention and intervention strategies. This study will contribute to the existing literature by examining the moderating factors that may affect the relationship between social media use and mental health outcomes. It will also shed light on the potential benefits and risks of social media use for adolescents and inform the development of evidence-based guidelines for promoting healthy social media use among this population. The limitations of this study include the use of self-reported measures and the cross-sectional design, which precludes causal inference.”

Significance of the Study In Thesis

The significance of the study in a thesis refers to the importance or relevance of the research topic and the potential impact of the study on the field of study or society as a whole. It explains why the research is worth doing and what contribution it will make to existing knowledge.

For example, the significance of a thesis on “Artificial Intelligence in Healthcare” could be:

  • With the increasing availability of healthcare data and the development of advanced machine learning algorithms, AI has the potential to revolutionize the healthcare industry by improving diagnosis, treatment, and patient outcomes. Therefore, this thesis can contribute to the understanding of how AI can be applied in healthcare and how it can benefit patients and healthcare providers.
  • AI in healthcare also raises ethical and social issues, such as privacy concerns, bias in algorithms, and the impact on healthcare jobs. By exploring these issues in the thesis, it can provide insights into the potential risks and benefits of AI in healthcare and inform policy decisions.
  • Finally, the thesis can also advance the field of computer science by developing new AI algorithms or techniques that can be applied to healthcare data, which can have broader applications in other industries or fields of research.

Significance of the Study in Research Proposal

The significance of a study in a research proposal refers to the importance or relevance of the research question, problem, or objective that the study aims to address. It explains why the research is valuable, relevant, and important to the academic or scientific community, policymakers, or society at large. A strong statement of significance can help to persuade the reviewers or funders of the research proposal that the study is worth funding and conducting.

Here is an example of a significance statement in a research proposal:

Title : The Effects of Gamification on Learning Programming: A Comparative Study

Significance Statement:

This proposed study aims to investigate the effects of gamification on learning programming. With the increasing demand for computer science professionals, programming has become a fundamental skill in the computer field. However, learning programming can be challenging, and students may struggle with motivation and engagement. Gamification has emerged as a promising approach to improve students’ engagement and motivation in learning, but its effects on programming education are not yet fully understood. This study is significant because it can provide valuable insights into the potential benefits of gamification in programming education and inform the development of effective teaching strategies to enhance students’ learning outcomes and interest in programming.

Examples of Significance of the Study

Here are some examples of the significance of a study that indicates how you can write this into your research paper according to your research topic:

Research on an Improved Water Filtration System : This study has the potential to impact millions of people living in water-scarce regions or those with limited access to clean water. A more efficient and affordable water filtration system can reduce water-borne diseases and improve the overall health of communities, enabling them to lead healthier, more productive lives.

Study on the Impact of Remote Work on Employee Productivity : Given the shift towards remote work due to recent events such as the COVID-19 pandemic, this study is of considerable significance. Findings could help organizations better structure their remote work policies and offer insights on how to maximize employee productivity, wellbeing, and job satisfaction.

Investigation into the Use of Solar Power in Developing Countries : With the world increasingly moving towards renewable energy, this study could provide important data on the feasibility and benefits of implementing solar power solutions in developing countries. This could potentially stimulate economic growth, reduce reliance on non-renewable resources, and contribute to global efforts to combat climate change.

Research on New Learning Strategies in Special Education : This study has the potential to greatly impact the field of special education. By understanding the effectiveness of new learning strategies, educators can improve their curriculum to provide better support for students with learning disabilities, fostering their academic growth and social development.

Examination of Mental Health Support in the Workplace : This study could highlight the impact of mental health initiatives on employee wellbeing and productivity. It could influence organizational policies across industries, promoting the implementation of mental health programs in the workplace, ultimately leading to healthier work environments.

Evaluation of a New Cancer Treatment Method : The significance of this study could be lifesaving. The research could lead to the development of more effective cancer treatments, increasing the survival rate and quality of life for patients worldwide.

When to Write Significance of the Study

The Significance of the Study section is an integral part of a research proposal or a thesis. This section is typically written after the introduction and the literature review. In the research process, the structure typically follows this order:

  • Title – The name of your research.
  • Abstract – A brief summary of the entire research.
  • Introduction – A presentation of the problem your research aims to solve.
  • Literature Review – A review of existing research on the topic to establish what is already known and where gaps exist.
  • Significance of the Study – An explanation of why the research matters and its potential impact.

In the Significance of the Study section, you will discuss why your study is important, who it benefits, and how it adds to existing knowledge or practice in your field. This section is your opportunity to convince readers, and potentially funders or supervisors, that your research is valuable and worth undertaking.

Advantages of Significance of the Study

The Significance of the Study section in a research paper has multiple advantages:

  • Establishes Relevance: This section helps to articulate the importance of your research to your field of study, as well as the wider society, by explicitly stating its relevance. This makes it easier for other researchers, funders, and policymakers to understand why your work is necessary and worth supporting.
  • Guides the Research: Writing the significance can help you refine your research questions and objectives. This happens as you critically think about why your research is important and how it contributes to your field.
  • Attracts Funding: If you are seeking funding or support for your research, having a well-written significance of the study section can be key. It helps to convince potential funders of the value of your work.
  • Opens up Further Research: By stating the significance of the study, you’re also indicating what further research could be carried out in the future, based on your work. This helps to pave the way for future studies and demonstrates that your research is a valuable addition to the field.
  • Provides Practical Applications: The significance of the study section often outlines how the research can be applied in real-world situations. This can be particularly important in applied sciences, where the practical implications of research are crucial.
  • Enhances Understanding: This section can help readers understand how your study fits into the broader context of your field, adding value to the existing literature and contributing new knowledge or insights.

Limitations of Significance of the Study

The Significance of the Study section plays an essential role in any research. However, it is not without potential limitations. Here are some that you should be aware of:

  • Subjectivity: The importance and implications of a study can be subjective and may vary from person to person. What one researcher considers significant might be seen as less critical by others. The assessment of significance often depends on personal judgement, biases, and perspectives.
  • Predictability of Impact: While you can outline the potential implications of your research in the Significance of the Study section, the actual impact can be unpredictable. Research doesn’t always yield the expected results or have the predicted impact on the field or society.
  • Difficulty in Measuring: The significance of a study is often qualitative and can be challenging to measure or quantify. You can explain how you think your research will contribute to your field or society, but measuring these outcomes can be complex.
  • Possibility of Overstatement: Researchers may feel pressured to amplify the potential significance of their study to attract funding or interest. This can lead to overstating the potential benefits or implications, which can harm the credibility of the study if these results are not achieved.
  • Overshadowing of Limitations: Sometimes, the significance of the study may overshadow the limitations of the research. It is important to balance the potential significance with a thorough discussion of the study’s limitations.
  • Dependence on Successful Implementation: The significance of the study relies on the successful implementation of the research. If the research process has flaws or unexpected issues arise, the anticipated significance might not be realized.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Conceptual Framework

Conceptual Framework – Types, Methodology and...

Context of the Study

Context of the Study – Writing Guide and Examples

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Problem statement

Problem Statement – Writing Guide, Examples and...

Research Paper Introduction

Research Paper Introduction – Writing Guide and...

Research Paper Outline

Research Paper Outline – Types, Example, Template

The Savvy Scientist

The Savvy Scientist

Experiences of a London PhD student and beyond

What is the Significance of a Study? Examples and Guide

Significance of a study graphic, showing a female scientist reading a book

If you’re reading this post you’re probably wondering: what is the significance of a study?

No matter where you’re at with a piece of research, it is a good idea to think about the potential significance of your work. And sometimes you’ll have to explicitly write a statement of significance in your papers, it addition to it forming part of your thesis.

In this post I’ll cover what the significance of a study is, how to measure it, how to describe it with examples and add in some of my own experiences having now worked in research for over nine years.

If you’re reading this because you’re writing up your first paper, welcome! You may also like my how-to guide for all aspects of writing your first research paper .

Looking for guidance on writing the statement of significance for a paper or thesis? Click here to skip straight to that section.

What is the Significance of a Study?

For research papers, theses or dissertations it’s common to explicitly write a section describing the significance of the study. We’ll come onto what to include in that section in just a moment.

However the significance of a study can actually refer to several different things.

Graphic showing the broadening significance of a study going from your study, the wider research field, business opportunities through to society as a whole.

Working our way from the most technical to the broadest, depending on the context, the significance of a study may refer to:

  • Within your study: Statistical significance. Can we trust the findings?
  • Wider research field: Research significance. How does your study progress the field?
  • Commercial / economic significance: Could there be business opportunities for your findings?
  • Societal significance: What impact could your study have on the wider society.
  • And probably other domain-specific significance!

We’ll shortly cover each of them in turn, including how they’re measured and some examples for each type of study significance.

But first, let’s touch on why you should consider the significance of your research at an early stage.

Why Care About the Significance of a Study?

No matter what is motivating you to carry out your research, it is sensible to think about the potential significance of your work. In the broadest sense this asks, how does the study contribute to the world?

After all, for many people research is only worth doing if it will result in some expected significance. For the vast majority of us our studies won’t be significant enough to reach the evening news, but most studies will help to enhance knowledge in a particular field and when research has at least some significance it makes for a far more fulfilling longterm pursuit.

Furthermore, a lot of us are carrying out research funded by the public. It therefore makes sense to keep an eye on what benefits the work could bring to the wider community.

Often in research you’ll come to a crossroads where you must decide which path of research to pursue. Thinking about the potential benefits of a strand of research can be useful for deciding how to spend your time, money and resources.

It’s worth noting though, that not all research activities have to work towards obvious significance. This is especially true while you’re a PhD student, where you’re figuring out what you enjoy and may simply be looking for an opportunity to learn a new skill.

However, if you’re trying to decide between two potential projects, it can be useful to weigh up the potential significance of each.

Let’s now dive into the different types of significance, starting with research significance.

Research Significance

What is the research significance of a study.

Unless someone specifies which type of significance they’re referring to, it is fair to assume that they want to know about the research significance of your study.

Research significance describes how your work has contributed to the field, how it could inform future studies and progress research.

Where should I write about my study’s significance in my thesis?

Typically you should write about your study’s significance in the Introduction and Conclusions sections of your thesis.

It’s important to mention it in the Introduction so that the relevance of your work and the potential impact and benefits it could have on the field are immediately apparent. Explaining why your work matters will help to engage readers (and examiners!) early on.

It’s also a good idea to detail the study’s significance in your Conclusions section. This adds weight to your findings and helps explain what your study contributes to the field.

On occasion you may also choose to include a brief description in your Abstract.

What is expected when submitting an article to a journal

It is common for journals to request a statement of significance, although this can sometimes be called other things such as:

  • Impact statement
  • Significance statement
  • Advances in knowledge section

Here is one such example of what is expected:

Impact Statement:  An Impact Statement is required for all submissions.  Your impact statement will be evaluated by the Editor-in-Chief, Global Editors, and appropriate Associate Editor. For your manuscript to receive full review, the editors must be convinced that it is an important advance in for the field. The Impact Statement is not a restating of the abstract. It should address the following: Why is the work submitted important to the field? How does the work submitted advance the field? What new information does this work impart to the field? How does this new information impact the field? Experimental Biology and Medicine journal, author guidelines

Typically the impact statement will be shorter than the Abstract, around 150 words.

Defining the study’s significance is helpful not just for the impact statement (if the journal asks for one) but also for building a more compelling argument throughout your submission. For instance, usually you’ll start the Discussion section of a paper by highlighting the research significance of your work. You’ll also include a short description in your Abstract too.

How to describe the research significance of a study, with examples

Whether you’re writing a thesis or a journal article, the approach to writing about the significance of a study are broadly the same.

I’d therefore suggest using the questions above as a starting point to base your statements on.

  • Why is the work submitted important to the field?
  • How does the work submitted advance the field?
  • What new information does this work impart to the field?
  • How does this new information impact the field?

Answer those questions and you’ll have a much clearer idea of the research significance of your work.

When describing it, try to clearly state what is novel about your study’s contribution to the literature. Then go on to discuss what impact it could have on progressing the field along with recommendations for future work.

Potential sentence starters

If you’re not sure where to start, why not set a 10 minute timer and have a go at trying to finish a few of the following sentences. Not sure on what to put? Have a chat to your supervisor or lab mates and they may be able to suggest some ideas.

  • This study is important to the field because…
  • These findings advance the field by…
  • Our results highlight the importance of…
  • Our discoveries impact the field by…

Now you’ve had a go let’s have a look at some real life examples.

Statement of significance examples

A statement of significance / impact:

Impact Statement This review highlights the historical development of the concept of “ideal protein” that began in the 1950s and 1980s for poultry and swine diets, respectively, and the major conceptual deficiencies of the long-standing concept of “ideal protein” in animal nutrition based on recent advances in amino acid (AA) metabolism and functions. Nutritionists should move beyond the “ideal protein” concept to consider optimum ratios and amounts of all proteinogenic AAs in animal foods and, in the case of carnivores, also taurine. This will help formulate effective low-protein diets for livestock, poultry, and fish, while sustaining global animal production. Because they are not only species of agricultural importance, but also useful models to study the biology and diseases of humans as well as companion (e.g. dogs and cats), zoo, and extinct animals in the world, our work applies to a more general readership than the nutritionists and producers of farm animals. Wu G, Li P. The “ideal protein” concept is not ideal in animal nutrition.  Experimental Biology and Medicine . 2022;247(13):1191-1201. doi: 10.1177/15353702221082658

And the same type of section but this time called “Advances in knowledge”:

Advances in knowledge: According to the MY-RADs criteria, size measurements of focal lesions in MRI are now of relevance for response assessment in patients with monoclonal plasma cell disorders. Size changes of 1 or 2 mm are frequently observed due to uncertainty of the measurement only, while the actual focal lesion has not undergone any biological change. Size changes of at least 6 mm or more in  T 1  weighted or  T 2  weighted short tau inversion recovery sequences occur in only 5% or less of cases when the focal lesion has not undergone any biological change. Wennmann M, Grözinger M, Weru V, et al. Test-retest, inter- and intra-rater reproducibility of size measurements of focal bone marrow lesions in MRI in patients with multiple myeloma [published online ahead of print, 2023 Apr 12].  Br J Radiol . 2023;20220745. doi: 10.1259/bjr.20220745

Other examples of research significance

Moving beyond the formal statement of significance, here is how you can describe research significance more broadly within your paper.

Describing research impact in an Abstract of a paper:

Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration. Conclusions section of the abstract in my first paper .

In the Discussion section of a paper:

We report for the utility of a standard laboratory micro-CT scanner to visualise and quantify features of the chondrocyte population within intact articular cartilage in 3D. This study represents a complimentary addition to the growing body of evidence supporting the non-destructive imaging of the constituents of articular cartilage. This offers researchers the opportunity to image chondrocyte distributions in 3D without specialised synchrotron equipment, enabling investigations such as chondrocyte morphology across grades of cartilage damage, 3D strain mapping techniques such as digital volume correlation to evaluate mechanical properties  in situ , and models for 3D finite element analysis  in silico  simulations. This enables an objective quantification of chondrocyte distribution and morphology in three dimensions allowing greater insight for investigations into studies of cartilage development, degeneration and repair. One such application of our method, is as a means to provide a 3D pattern in the cartilage which, when combined with digital volume correlation, could determine 3D strain gradient measurements enabling potential treatment and repair of cartilage degeneration. Moreover, the method proposed here will allow evaluation of cartilage implanted with tissue engineered scaffolds designed to promote chondral repair, providing valuable insight into the induced regenerative process. The Discussion section of the paper is laced with references to research significance.

How is longer term research significance measured?

Looking beyond writing impact statements within papers, sometimes you’ll want to quantify the long term research significance of your work. For instance when applying for jobs.

The most obvious measure of a study’s long term research significance is the number of citations it receives from future publications. The thinking is that a study which receives more citations will have had more research impact, and therefore significance , than a study which received less citations. Citations can give a broad indication of how useful the work is to other researchers but citations aren’t really a good measure of significance.

Bear in mind that us researchers can be lazy folks and sometimes are simply looking to cite the first paper which backs up one of our claims. You can find studies which receive a lot of citations simply for packaging up the obvious in a form which can be easily found and referenced, for instance by having a catchy or optimised title.

Likewise, research activity varies wildly between fields. Therefore a certain study may have had a big impact on a particular field but receive a modest number of citations, simply because not many other researchers are working in the field.

Nevertheless, citations are a standard measure of significance and for better or worse it remains impressive for someone to be the first author of a publication receiving lots of citations.

Other measures for the research significance of a study include:

  • Accolades: best paper awards at conferences, thesis awards, “most downloaded” titles for articles, press coverage.
  • How much follow-on research the study creates. For instance, part of my PhD involved a novel material initially developed by another PhD student in the lab. That PhD student’s research had unlocked lots of potential new studies and now lots of people in the group were using the same material and developing it for different applications. The initial study may not receive a high number of citations yet long term it generated a lot of research activity.

That covers research significance, but you’ll often want to consider other types of significance for your study and we’ll cover those next.

Statistical Significance

What is the statistical significance of a study.

Often as part of a study you’ll carry out statistical tests and then state the statistical significance of your findings: think p-values eg <0.05. It is useful to describe the outcome of these tests within your report or paper, to give a measure of statistical significance.

Effectively you are trying to show whether the performance of your innovation is actually better than a control or baseline and not just chance. Statistical significance deserves a whole other post so I won’t go into a huge amount of depth here.

Things that make publication in  The BMJ  impossible or unlikely Internal validity/robustness of the study • It had insufficient statistical power, making interpretation difficult; • Lack of statistical power; The British Medical Journal’s guide for authors

Calculating statistical significance isn’t always necessary (or valid) for a study, such as if you have a very small number of samples, but it is a very common requirement for scientific articles.

Writing a journal article? Check the journal’s guide for authors to see what they expect. Generally if you have approximately five or more samples or replicates it makes sense to start thinking about statistical tests. Speak to your supervisor and lab mates for advice, and look at other published articles in your field.

How is statistical significance measured?

Statistical significance is quantified using p-values . Depending on your study design you’ll choose different statistical tests to compute the p-value.

A p-value of 0.05 is a common threshold value. The 0.05 means that there is a 1/20 chance that the difference in performance you’re reporting is just down to random chance.

  • p-values above 0.05 mean that the result isn’t statistically significant enough to be trusted: it is too likely that the effect you’re showing is just luck.
  • p-values less than or equal to 0.05 mean that the result is statistically significant. In other words: unlikely to just be chance, which is usually considered a good outcome.

Low p-values (eg p = 0.001) mean that it is highly unlikely to be random chance (1/1000 in the case of p = 0.001), therefore more statistically significant.

It is important to clarify that, although low p-values mean that your findings are statistically significant, it doesn’t automatically mean that the result is scientifically important. More on that in the next section on research significance.

How to describe the statistical significance of your study, with examples

In the first paper from my PhD I ran some statistical tests to see if different staining techniques (basically dyes) increased how well you could see cells in cow tissue using micro-CT scanning (a 3D imaging technique).

In your methods section you should mention the statistical tests you conducted and then in the results you will have statements such as:

Between mediums for the two scan protocols C/N [contrast to noise ratio] was greater for EtOH than the PBS in both scanning methods (both  p  < 0.0001) with mean differences of 1.243 (95% CI [confidence interval] 0.709 to 1.778) for absorption contrast and 6.231 (95% CI 5.772 to 6.690) for propagation contrast. … Two repeat propagation scans were taken of samples from the PTA-stained groups. No difference in mean C/N was found with either medium: PBS had a mean difference of 0.058 ( p  = 0.852, 95% CI -0.560 to 0.676), EtOH had a mean difference of 1.183 ( p  = 0.112, 95% CI 0.281 to 2.648). From the Results section of my first paper, available here . Square brackets added for this post to aid clarity.

From this text the reader can infer from the first paragraph that there was a statistically significant difference in using EtOH compared to PBS (really small p-value of <0.0001). However, from the second paragraph, the difference between two repeat scans was statistically insignificant for both PBS (p = 0.852) and EtOH (p = 0.112).

By conducting these statistical tests you have then earned your right to make bold statements, such as these from the discussion section:

Propagation phase-contrast increases the contrast of individual chondrocytes [cartilage cells] compared to using absorption contrast. From the Discussion section from the same paper.

Without statistical tests you have no evidence that your results are not just down to random chance.

Beyond describing the statistical significance of a study in the main body text of your work, you can also show it in your figures.

In figures such as bar charts you’ll often see asterisks to represent statistical significance, and “n.s.” to show differences between groups which are not statistically significant. Here is one such figure, with some subplots, from the same paper:

Figure from a paper showing the statistical significance of a study using asterisks

In this example an asterisk (*) between two bars represents p < 0.05. Two asterisks (**) represents p < 0.001 and three asterisks (***) represents p < 0.0001. This should always be stated in the caption of your figure since the values that each asterisk refers to can vary.

Now that we know if a study is showing statistically and research significance, let’s zoom out a little and consider the potential for commercial significance.

Commercial and Industrial Significance

What are commercial and industrial significance.

Moving beyond significance in relation to academia, your research may also have commercial or economic significance.

Simply put:

  • Commercial significance: could the research be commercialised as a product or service? Perhaps the underlying technology described in your study could be licensed to a company or you could even start your own business using it.
  • Industrial significance: more widely than just providing a product which could be sold, does your research provide insights which may affect a whole industry? Such as: revealing insights or issues with current practices, performance gains you don’t want to commercialise (e.g. solar power efficiency), providing suggested frameworks or improvements which could be employed industry-wide.

I’ve grouped these two together because there can certainly be overlap. For instance, perhaps your new technology could be commercialised whilst providing wider improvements for the whole industry.

Commercial and industrial significance are not relevant to most studies, so only write about it if you and your supervisor can think of reasonable routes to your work having an impact in these ways.

How are commercial and industrial significance measured?

Unlike statistical and research significances, the measures of commercial and industrial significance can be much more broad.

Here are some potential measures of significance:

Commercial significance:

  • How much value does your technology bring to potential customers or users?
  • How big is the potential market and how much revenue could the product potentially generate?
  • Is the intellectual property protectable? i.e. patentable, or if not could the novelty be protected with trade secrets: if so publish your method with caution!
  • If commercialised, could the product bring employment to a geographical area?

Industrial significance:

What impact could it have on the industry? For instance if you’re revealing an issue with something, such as unintended negative consequences of a drug , what does that mean for the industry and the public? This could be:

  • Reduced overhead costs
  • Better safety
  • Faster production methods
  • Improved scaleability

How to describe the commercial and industrial significance of a study, with examples

Commercial significance.

If your technology could be commercially viable, and you’ve got an interest in commercialising it yourself, it is likely that you and your university may not want to immediately publish the study in a journal.

You’ll probably want to consider routes to exploiting the technology and your university may have a “technology transfer” team to help researchers navigate the various options.

However, if instead of publishing a paper you’re submitting a thesis or dissertation then it can be useful to highlight the commercial significance of your work. In this instance you could include statements of commercial significance such as:

The measurement technology described in this study provides state of the art performance and could enable the development of low cost devices for aerospace applications. An example of commercial significance I invented for this post

Industrial significance

First, think about the industrial sectors who could benefit from the developments described in your study.

For example if you’re working to improve battery efficiency it is easy to think of how it could lead to performance gains for certain industries, like personal electronics or electric vehicles. In these instances you can describe the industrial significance relatively easily, based off your findings.

For example:

By utilising abundant materials in the described battery fabrication process we provide a framework for battery manufacturers to reduce dependence on rare earth components. Again, an invented example

For other technologies there may well be industrial applications but they are less immediately obvious and applicable. In these scenarios the best you can do is to simply reframe your research significance statement in terms of potential commercial applications in a broad way.

As a reminder: not all studies should address industrial significance, so don’t try to invent applications just for the sake of it!

Societal Significance

What is the societal significance of a study.

The most broad category of significance is the societal impact which could stem from it.

If you’re working in an applied field it may be quite easy to see a route for your research to impact society. For others, the route to societal significance may be less immediate or clear.

Studies can help with big issues facing society such as:

  • Medical applications : vaccines, surgical implants, drugs, improving patient safety. For instance this medical device and drug combination I worked on which has a very direct route to societal significance.
  • Political significance : Your research may provide insights which could contribute towards potential changes in policy or better understanding of issues facing society.
  • Public health : for instance COVID-19 transmission and related decisions.
  • Climate change : mitigation such as more efficient solar panels and lower cost battery solutions, and studying required adaptation efforts and technologies. Also, better understanding around related societal issues, for instance this study on the effects of temperature on hate speech.

How is societal significance measured?

Societal significance at a high level can be quantified by the size of its potential societal effect. Just like a lab risk assessment, you can think of it in terms of probability (or how many people it could help) and impact magnitude.

Societal impact = How many people it could help x the magnitude of the impact

Think about how widely applicable the findings are: for instance does it affect only certain people? Then think about the potential size of the impact: what kind of difference could it make to those people?

Between these two metrics you can get a pretty good overview of the potential societal significance of your research study.

How to describe the societal significance of a study, with examples

Quite often the broad societal significance of your study is what you’re setting the scene for in your Introduction. In addition to describing the existing literature, it is common to for the study’s motivation to touch on its wider impact for society.

For those of us working in healthcare research it is usually pretty easy to see a path towards societal significance.

Our CLOUT model has state-of-the-art performance in mortality prediction, surpassing other competitive NN models and a logistic regression model … Our results show that the risk factors identified by the CLOUT model agree with physicians’ assessment, suggesting that CLOUT could be used in real-world clinicalsettings. Our results strongly support that CLOUT may be a useful tool to generate clinical prediction models, especially among hospitalized and critically ill patient populations. Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation

In other domains the societal significance may either take longer or be more indirect, meaning that it can be more difficult to describe the societal impact.

Even so, here are some examples I’ve found from studies in non-healthcare domains:

We examined food waste as an initial investigation and test of this methodology, and there is clear potential for the examination of not only other policy texts related to food waste (e.g., liability protection, tax incentives, etc.; Broad Leib et al., 2020) but related to sustainable fishing (Worm et al., 2006) and energy use (Hawken, 2017). These other areas are of obvious relevance to climate change… AI-Based Text Analysis for Evaluating Food Waste Policies
The continued development of state-of-the art NLP tools tailored to climate policy will allow climate researchers and policy makers to extract meaningful information from this growing body of text, to monitor trends over time and administrative units, and to identify potential policy improvements. BERT Classification of Paris Agreement Climate Action Plans

Top Tips For Identifying & Writing About the Significance of Your Study

  • Writing a thesis? Describe the significance of your study in the Introduction and the Conclusion .
  • Submitting a paper? Read the journal’s guidelines. If you’re writing a statement of significance for a journal, make sure you read any guidance they give for what they’re expecting.
  • Take a step back from your research and consider your study’s main contributions.
  • Read previously published studies in your field . Use this for inspiration and ideas on how to describe the significance of your own study
  • Discuss the study with your supervisor and potential co-authors or collaborators and brainstorm potential types of significance for it.

Now you’ve finished reading up on the significance of a study you may also like my how-to guide for all aspects of writing your first research paper .

Writing an academic journal paper

I hope that you’ve learned something useful from this article about the significance of a study. If you have any more research-related questions let me know, I’m here to help.

To gain access to my content library you can subscribe below for free:

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)

Related Posts

Image with a title showing 'How to make PhD thesis corrections' with a cartoon image of a man writing on a piece of paper, while holding a test tube, with a stack of books on the desk beside him

Minor Corrections: How To Make Them and Succeed With Your PhD Thesis

2nd June 2024 2nd June 2024

Graphic of data from experiments written on a notepad with the title "How to manage data"

How to Master Data Management in Research

25th April 2024 27th April 2024

Graphic of a researcher writing, perhaps a thesis title

Thesis Title: Examples and Suggestions from a PhD Grad

23rd February 2024 23rd February 2024

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Privacy Overview

How To Write Significance of the Study (With Examples) 

How To Write Significance of the Study (With Examples) 

Whether you’re writing a research paper or thesis, a portion called Significance of the Study ensures your readers understand the impact of your work. Learn how to effectively write this vital part of your research paper or thesis through our detailed steps, guidelines, and examples.

Related: How to Write a Concept Paper for Academic Research

Table of Contents

What is the significance of the study.

The Significance of the Study presents the importance of your research. It allows you to prove the study’s impact on your field of research, the new knowledge it contributes, and the people who will benefit from it.

Related: How To Write Scope and Delimitation of a Research Paper (With Examples)

Where Should I Put the Significance of the Study?

The Significance of the Study is part of the first chapter or the Introduction. It comes after the research’s rationale, problem statement, and hypothesis.

Related: How to Make Conceptual Framework (with Examples and Templates)

Why Should I Include the Significance of the Study?

The purpose of the Significance of the Study is to give you space to explain to your readers how exactly your research will be contributing to the literature of the field you are studying 1 . It’s where you explain why your research is worth conducting and its significance to the community, the people, and various institutions.

How To Write Significance of the Study: 5 Steps

Below are the steps and guidelines for writing your research’s Significance of the Study.

1. Use Your Research Problem as a Starting Point

Your problem statement can provide clues to your research study’s outcome and who will benefit from it 2 .

Ask yourself, “How will the answers to my research problem be beneficial?”. In this manner, you will know how valuable it is to conduct your study. 

Let’s say your research problem is “What is the level of effectiveness of the lemongrass (Cymbopogon citratus) in lowering the blood glucose level of Swiss mice (Mus musculus)?”

Discovering a positive correlation between the use of lemongrass and lower blood glucose level may lead to the following results:

  • Increased public understanding of the plant’s medical properties;
  • Higher appreciation of the importance of lemongrass  by the community;
  • Adoption of lemongrass tea as a cheap, readily available, and natural remedy to lower their blood glucose level.

Once you’ve zeroed in on the general benefits of your study, it’s time to break it down into specific beneficiaries.

2. State How Your Research Will Contribute to the Existing Literature in the Field

Think of the things that were not explored by previous studies. Then, write how your research tackles those unexplored areas. Through this, you can convince your readers that you are studying something new and adding value to the field.

3. Explain How Your Research Will Benefit Society

In this part, tell how your research will impact society. Think of how the results of your study will change something in your community. 

For example, in the study about using lemongrass tea to lower blood glucose levels, you may indicate that through your research, the community will realize the significance of lemongrass and other herbal plants. As a result, the community will be encouraged to promote the cultivation and use of medicinal plants.

4. Mention the Specific Persons or Institutions Who Will Benefit From Your Study

Using the same example above, you may indicate that this research’s results will benefit those seeking an alternative supplement to prevent high blood glucose levels.

5. Indicate How Your Study May Help Future Studies in the Field

You must also specifically indicate how your research will be part of the literature of your field and how it will benefit future researchers. In our example above, you may indicate that through the data and analysis your research will provide, future researchers may explore other capabilities of herbal plants in preventing different diseases.

Tips and Warnings

  • Think ahead . By visualizing your study in its complete form, it will be easier for you to connect the dots and identify the beneficiaries of your research.
  • Write concisely. Make it straightforward, clear, and easy to understand so that the readers will appreciate the benefits of your research. Avoid making it too long and wordy.
  • Go from general to specific . Like an inverted pyramid, you start from above by discussing the general contribution of your study and become more specific as you go along. For instance, if your research is about the effect of remote learning setup on the mental health of college students of a specific university , you may start by discussing the benefits of the research to society, to the educational institution, to the learning facilitators, and finally, to the students.
  • Seek help . For example, you may ask your research adviser for insights on how your research may contribute to the existing literature. If you ask the right questions, your research adviser can point you in the right direction.
  • Revise, revise, revise. Be ready to apply necessary changes to your research on the fly. Unexpected things require adaptability, whether it’s the respondents or variables involved in your study. There’s always room for improvement, so never assume your work is done until you have reached the finish line.

Significance of the Study Examples

This section presents examples of the Significance of the Study using the steps and guidelines presented above.

Example 1: STEM-Related Research

Research Topic: Level of Effectiveness of the Lemongrass ( Cymbopogon citratus ) Tea in Lowering the Blood Glucose Level of Swiss Mice ( Mus musculus ).

Significance of the Study .

This research will provide new insights into the medicinal benefit of lemongrass ( Cymbopogon citratus ), specifically on its hypoglycemic ability.

Through this research, the community will further realize promoting medicinal plants, especially lemongrass, as a preventive measure against various diseases. People and medical institutions may also consider lemongrass tea as an alternative supplement against hyperglycemia. 

Moreover, the analysis presented in this study will convey valuable information for future research exploring the medicinal benefits of lemongrass and other medicinal plants.  

Example 2: Business and Management-Related Research

Research Topic: A Comparative Analysis of Traditional and Social Media Marketing of Small Clothing Enterprises.

Significance of the Study:

By comparing the two marketing strategies presented by this research, there will be an expansion on the current understanding of the firms on these marketing strategies in terms of cost, acceptability, and sustainability. This study presents these marketing strategies for small clothing enterprises, giving them insights into which method is more appropriate and valuable for them. 

Specifically, this research will benefit start-up clothing enterprises in deciding which marketing strategy they should employ. Long-time clothing enterprises may also consider the result of this research to review their current marketing strategy.

Furthermore, a detailed presentation on the comparison of the marketing strategies involved in this research may serve as a tool for further studies to innovate the current method employed in the clothing Industry.

Example 3: Social Science -Related Research.

Research Topic:  Divide Et Impera : An Overview of How the Divide-and-Conquer Strategy Prevailed on Philippine Political History.

Significance of the Study :

Through the comprehensive exploration of this study on Philippine political history, the influence of the Divide et Impera, or political decentralization, on the political discernment across the history of the Philippines will be unraveled, emphasized, and scrutinized. Moreover, this research will elucidate how this principle prevailed until the current political theatre of the Philippines.

In this regard, this study will give awareness to society on how this principle might affect the current political context. Moreover, through the analysis made by this study, political entities and institutions will have a new approach to how to deal with this principle by learning about its influence in the past.

In addition, the overview presented in this research will push for new paradigms, which will be helpful for future discussion of the Divide et Impera principle and may lead to a more in-depth analysis.

Example 4: Humanities-Related Research

Research Topic: Effectiveness of Meditation on Reducing the Anxiety Levels of College Students.

Significance of the Study: 

This research will provide new perspectives in approaching anxiety issues of college students through meditation. 

Specifically, this research will benefit the following:

 Community – this study spreads awareness on recognizing anxiety as a mental health concern and how meditation can be a valuable approach to alleviating it.

Academic Institutions and Administrators – through this research, educational institutions and administrators may promote programs and advocacies regarding meditation to help students deal with their anxiety issues.

Mental health advocates – the result of this research will provide valuable information for the advocates to further their campaign on spreading awareness on dealing with various mental health issues, including anxiety, and how to stop stigmatizing those with mental health disorders.

Parents – this research may convince parents to consider programs involving meditation that may help the students deal with their anxiety issues.

Students will benefit directly from this research as its findings may encourage them to consider meditation to lower anxiety levels.

Future researchers – this study covers information involving meditation as an approach to reducing anxiety levels. Thus, the result of this study can be used for future discussions on the capabilities of meditation in alleviating other mental health concerns.

Frequently Asked Questions

1. what is the difference between the significance of the study and the rationale of the study.

Both aim to justify the conduct of the research. However, the Significance of the Study focuses on the specific benefits of your research in the field, society, and various people and institutions. On the other hand, the Rationale of the Study gives context on why the researcher initiated the conduct of the study.

Let’s take the research about the Effectiveness of Meditation in Reducing Anxiety Levels of College Students as an example. Suppose you are writing about the Significance of the Study. In that case, you must explain how your research will help society, the academic institution, and students deal with anxiety issues through meditation. Meanwhile, for the Rationale of the Study, you may state that due to the prevalence of anxiety attacks among college students, you’ve decided to make it the focal point of your research work.

2. What is the difference between Justification and the Significance of the Study?

In Justification, you express the logical reasoning behind the conduct of the study. On the other hand, the Significance of the Study aims to present to your readers the specific benefits your research will contribute to the field you are studying, community, people, and institutions.

Suppose again that your research is about the Effectiveness of Meditation in Reducing the Anxiety Levels of College Students. Suppose you are writing the Significance of the Study. In that case, you may state that your research will provide new insights and evidence regarding meditation’s ability to reduce college students’ anxiety levels. Meanwhile, you may note in the Justification that studies are saying how people used meditation in dealing with their mental health concerns. You may also indicate how meditation is a feasible approach to managing anxiety using the analysis presented by previous literature.

3. How should I start my research’s Significance of the Study section?

– This research will contribute… – The findings of this research… – This study aims to… – This study will provide… – Through the analysis presented in this study… – This study will benefit…

Moreover, you may start the Significance of the Study by elaborating on the contribution of your research in the field you are studying.

4. What is the difference between the Purpose of the Study and the Significance of the Study?

The Purpose of the Study focuses on why your research was conducted, while the Significance of the Study tells how the results of your research will benefit anyone.

Suppose your research is about the Effectiveness of Lemongrass Tea in Lowering the Blood Glucose Level of Swiss Mice . You may include in your Significance of the Study that the research results will provide new information and analysis on the medical ability of lemongrass to solve hyperglycemia. Meanwhile, you may include in your Purpose of the Study that your research wants to provide a cheaper and natural way to lower blood glucose levels since commercial supplements are expensive.

5. What is the Significance of the Study in Tagalog?

In Filipino research, the Significance of the Study is referred to as Kahalagahan ng Pag-aaral.

  • Draft your Significance of the Study. Retrieved 18 April 2021, from http://dissertationedd.usc.edu/draft-your-significance-of-the-study.html
  • Regoniel, P. (2015). Two Tips on How to Write the Significance of the Study. Retrieved 18 April 2021, from https://simplyeducate.me/2015/02/09/significance-of-the-study/

Written by Jewel Kyle Fabula

in Career and Education , Juander How

what is the significance of conducting research study

Jewel Kyle Fabula

Jewel Kyle Fabula is a Bachelor of Science in Economics student at the University of the Philippines Diliman. His passion for learning mathematics developed as he competed in some mathematics competitions during his Junior High School years. He loves cats, playing video games, and listening to music.

Browse all articles written by Jewel Kyle Fabula

Copyright Notice

All materials contained on this site are protected by the Republic of the Philippines copyright law and may not be reproduced, distributed, transmitted, displayed, published, or broadcast without the prior written permission of filipiknow.net or in the case of third party materials, the owner of that content. You may not alter or remove any trademark, copyright, or other notice from copies of the content. Be warned that we have already reported and helped terminate several websites and YouTube channels for blatantly stealing our content. If you wish to use filipiknow.net content for commercial purposes, such as for content syndication, etc., please contact us at legal(at)filipiknow(dot)net

what is the significance of conducting research study

what is the significance of conducting research study

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is the Significance of the Study?

DiscoverPhDs

  • By DiscoverPhDs
  • August 25, 2020

Significance of the Study

  • what the significance of the study means,
  • why it’s important to include in your research work,
  • where you would include it in your paper, thesis or dissertation,
  • how you write one
  • and finally an example of a well written section about the significance of the study.

What does Significance of the Study mean?

The significance of the study is a written statement that explains why your research was needed. It’s a justification of the importance of your work and impact it has on your research field, it’s contribution to new knowledge and how others will benefit from it.

Why is the Significance of the Study important?

The significance of the study, also known as the rationale of the study, is important to convey to the reader why the research work was important. This may be an academic reviewer assessing your manuscript under peer-review, an examiner reading your PhD thesis, a funder reading your grant application or another research group reading your published journal paper. Your academic writing should make clear to the reader what the significance of the research that you performed was, the contribution you made and the benefits of it.

How do you write the Significance of the Study?

When writing this section, first think about where the gaps in knowledge are in your research field. What are the areas that are poorly understood with little or no previously published literature? Or what topics have others previously published on that still require further work. This is often referred to as the problem statement.

The introduction section within the significance of the study should include you writing the problem statement and explaining to the reader where the gap in literature is.

Then think about the significance of your research and thesis study from two perspectives: (1) what is the general contribution of your research on your field and (2) what specific contribution have you made to the knowledge and who does this benefit the most.

For example, the gap in knowledge may be that the benefits of dumbbell exercises for patients recovering from a broken arm are not fully understood. You may have performed a study investigating the impact of dumbbell training in patients with fractures versus those that did not perform dumbbell exercises and shown there to be a benefit in their use. The broad significance of the study would be the improvement in the understanding of effective physiotherapy methods. Your specific contribution has been to show a significant improvement in the rate of recovery in patients with broken arms when performing certain dumbbell exercise routines.

This statement should be no more than 500 words in length when written for a thesis. Within a research paper, the statement should be shorter and around 200 words at most.

Significance of the Study: An example

Building on the above hypothetical academic study, the following is an example of a full statement of the significance of the study for you to consider when writing your own. Keep in mind though that there’s no single way of writing the perfect significance statement and it may well depend on the subject area and the study content.

Here’s another example to help demonstrate how a significance of the study can also be applied to non-technical fields:

The significance of this research lies in its potential to inform clinical practices and patient counseling. By understanding the psychological outcomes associated with non-surgical facial aesthetics, practitioners can better guide their patients in making informed decisions about their treatment plans. Additionally, this study contributes to the body of academic knowledge by providing empirical evidence on the effects of these cosmetic procedures, which have been largely anecdotal up to this point.

The statement of the significance of the study is used by students and researchers in academic writing to convey the importance of the research performed; this section is written at the end of the introduction and should describe the specific contribution made and who it benefits.

Write an effective figure legend

A well written figure legend will explain exactly what a figure means without having to refer to the main text. Our guide explains how to write one.

What is a Research Instrument?

The term research instrument refers to any tool that you may use to collect, measure and analyse research data.

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through developing scientific theories, concepts and ideas – find out more on what this involves.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what is the significance of conducting research study

Browse PhDs Now

what is the significance of conducting research study

The title page of your dissertation or thesis conveys all the essential details about your project. This guide helps you format it in the correct way.

DiscoverPhDs_Annotated_Bibliography_Literature_Review

Find out the differences between a Literature Review and an Annotated Bibliography, whey they should be used and how to write them.

Akshay Deoras

Akshay is in the final year of his PhD researching how well models can predict Indian monsoon low-pressure systems. The results of his research will help improve disaster preparedness and long-term planning.

what is the significance of conducting research study

Dr Jadavji completed her PhD in Medical Genetics & Neuroscience from McGill University, Montreal, Canada in 2012. She is now an assistant professor involved in a mix of research, teaching and service projects.

Join Thousands of Students

Instantly enhance your writing in real-time while you type. With LanguageTool

Get started for free

How to Properly and Effectively Conduct Research in Five Steps

Researching is a valuable skill that can help you in school, work, and beyond. This blog post breaks down the research process into five easy-to-follow steps to teach you how to conduct research properly and effectively.

White text over yellow background reads "How To Conduct Research."

Conducting Research: Table of Contents

What is Research?

Steps to Conducting Research

In an age where misinformation is rampant, knowing how to correctly conduct research is a skill that will set you apart from others. This blog post goes over what research is and breaks down the process into five straightforward steps.

What Is Research?

The word research is derived from the Middle French word “recerche,” which means “to seek.” That term came from the Old French word “recerchier,” meaning “search.” But what exactly is being sought during research? Knowledge and information.

Research is the methodical process of collecting and analyzing data to expand your knowledge, so you can have enough information to answer a question or describe, explain, or predict an issue or observation.

Research is important because it helps you see the world as it really is (facts) and not as you or others think it is (opinions).

The meaning of research may sound quite heavy and significant, but that’s because it is. Proper research guides you to weed out wrong information. Today, having that skill is vital. Below, we’ll teach you how to do research in five easy-to-follow steps.

Research is formalized curiosity. It is poking and prying with a purpose. - Zora Neale Hurston

It’s essential to note that there are different types of research:

  • Exploratory research identifies a problem or question.
  • Constructive research examines hypotheses and offers solutions.
  • Empirical research tests the feasibility of a solution using data.

That being said, the research process may differ based on the purpose of the project. Take the measures below as a general guideline, and be prepared to make changes or take additional steps.

Also, keep in mind that conducting proper research is not easy. You should start with a mindset of being ready to use a lot of time and effort to obtain the information you need.

1. Prepare for Research

Preparing for research is an extensive step in itself. You must:

  • Choose a topic or carefully analyze the assignment given to you.
  • Craft a research question and hypothesis.
  • Plan out your research.
  • Create a research log.
  • Transform your hypothesis into a working thesis.

2. Understand and Evaluate Sources

Once you have meticulously prepared for research, you should have a thorough understanding of the different types of sources. Doing this helps you learn which types would best fit your research project.

  • Primary sources provide direct knowledge and evidence based on your research question.
  • Secondary sources provide descriptions or interpretations of primary sources.
  • Tertiary sources provide summaries of the primary or secondary sources without providing additional insights.

The data and information you’re seeking can be found in various mediums. The following list shows the types most commonly used in academic research and writing:

  • Academic journals
  • Books and textbooks
  • Government and legal documents

The information you need doesn’t always have to come in the form of printed materials. It can also be found in:

  • Multimedia (like radio and television podcasts, or recorded public meetings)
  • Social media

Evaluate Your Sources

You must evaluate your sources to ensure that they are credible and authoritative. The information you find on websites, blogs, and social media is not as reliable as that found in academic journals, for example. Always verify the information you find, and then verify again!

To evaluate sources, you should:

  • Find out as much as you can about the source
  • Determine the intended audience
  • Ask yourself if it is fact, opinion, or propaganda
  • Analyze the evidence used
  • Check how timely the source is
  • Cross-check the information

3. Use the Library, Internet, and Conduct Field Research

So, where can you find all these sources? The library is a good place to start because the library staff may be able to guide you in the right direction as to where you should begin your research. If you’re a student, your school library can provide access to:

  • Reference works
  • Encyclopedias
  • Almanacs and atlases
  • Catalogs and databases
  • And countless books

The internet does provide easy and fast access to all sorts of data, including incorrect information. That’s why it’s important to verify everything you find there. However, the internet is also home to reliable and credible information.

You can find trustworthy sources online, including scholarly works on Google Scholar , for example. Government sites, like the Library of Congress, provide online collections of articles. There are also many websites for reputable publications, such as the New York Times . Make sure to include the latest information on the specific topic.

Lastly, you can also conduct research by collecting data yourself. You can do this in the form of interviews, observations, opinion surveys, and more.

Don’t Forget

Update your working bibliography as you conduct your research, and keep track of everything in your research log!

4. Think Critically and Takes Notes

When you’re researching, it’s important to read everything through a critical lens—don’t just accept what you see at face value. Always ask yourself questions like:

What’s the main idea?
What are the supporting ideas?
Who is the intended audience?
What’s the purpose?
Is there anything else I need to know that was left out?

Take as many notes as you can and look up anything confusing or unclear.

5. Decide on How To Integrate Sources Into Your Research Paper

Now that you have all the information you need, it’s time to figure out how you are going to integrate sources into your research paper.

Are you going to quote your sources directly? Doing so can help you establish credibility, but be sure to limit this, as your research paper should be mainly your ideas and findings (based on theoretical framework). You can also paraphrase or summarize your sources, but make sure to precede them with the author of the source.

If you’re using visuals in your research project, make sure to include them seamlessly. Ensure that there’s a purpose for the visual content (it can demonstrate something better than words alone can). Add the visual immediately after an explanation of it, and take some time to clarify why it’s relevant to the research project.

The most important part of this step is that you do not plagiarize! Always cite your sources. The only information that need not be cited is:

  • Common knowledge
  • Your findings from field research

How to Properly Conduct Research: 1) Prepare for Research 2) Understand and evaluate sources 3) Use the library, internet, and conduct field research 4) Think critically and take notes 5) Decide on how to use sources in your research paper

Research Takes Time

The truth is that if you want to conduct proper research, you must be willing to dedicate a significant amount of time to it. And properly conducted research is essential to a well-written and credible research paper.

In other words, there are no cutting corners when it comes to research. However, as an advanced, multilingual writing assistant, LanguageTool can take care of the grammar, spelling, and punctuation aspects of your research project. It can help you in paraphrasing sentences to align with the formality required for an academic paper while also ensuring simplicity, conciseness, and fluency when necessary.

LanguageTool lets you focus on the most important aspects of writing a research paper—research and writing—while it focuses on correcting all types of errors. Its advanced technology can also help you avoid plagiarism through paraphrasing. In this case, it’s imperative that if you use this feature, you still include the source in the references or works cited page.

LanguageTool is free to use! Give it a try.

Lunsford, Andrea A. The Everyday Writer with Exercises , 2010.

Types of Sources - Purdue OWL® - Purdue University. “Types of Sources - Purdue OWL® - Purdue University,” n.d. https://owl.purdue.edu/owl/research_and_citation/conducting_research/research_overview/sources.html.

General Guidelines - Purdue OWL® - Purdue University. “General Guidelines - Purdue OWL® - Purdue University,” n.d. https://owl.purdue.edu/owl/research_and_citation/conducting_research/evaluating_sources_of_information/general_guidelines.html.

Ryan, Eoghan. “Types of Sources Explained | Examples & Tips.” Scribbr, May 19, 2022. https://www.scribbr.com/working-with-sources/types-of-sources/.

Gina

Unleash the Professional Writer in You With LanguageTool

Go well beyond grammar and spell checking. Impress with clear, precise, and stylistically flawless writing instead.

Works on All Your Favorite Services

  • Thunderbird
  • Google Docs
  • Microsoft Word
  • Open Office
  • Libre Office

We Value Your Feedback

We’ve made a mistake, forgotten about an important detail, or haven’t managed to get the point across? Let’s help each other to perfect our writing.

  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

How to Discuss the Significance of Your Research

How to Discuss the Significance of Your Research

  • 6-minute read
  • 10th April 2023

Introduction

Research papers can be a real headache for college students . As a student, your research needs to be credible enough to support your thesis statement. You must also ensure you’ve discussed the literature review, findings, and results.

However, it’s also important to discuss the significance of your research . Your potential audience will care deeply about this. It will also help you conduct your research. By knowing the impact of your research, you’ll understand what important questions to answer.

If you’d like to know more about the impact of your research, read on! We’ll talk about why it’s important and how to discuss it in your paper.

What Is the Significance of Research?

This is the potential impact of your research on the field of study. It includes contributions from new knowledge from the research and those who would benefit from it. You should present this before conducting research, so you need to be aware of current issues associated with the thesis before discussing the significance of the research.

Why Does the Significance of Research Matter?

Potential readers need to know why your research is worth pursuing. Discussing the significance of research answers the following questions:

●  Why should people read your research paper ?

●  How will your research contribute to the current knowledge related to your topic?

●  What potential impact will it have on the community and professionals in the field?

Not including the significance of research in your paper would be like a knight trying to fight a dragon without weapons.

Where Do I Discuss the Significance of Research in My Paper?

As previously mentioned, the significance of research comes before you conduct it. Therefore, you should discuss the significance of your research in the Introduction section. Your reader should know the problem statement and hypothesis beforehand.

Steps to Discussing the Significance of Your Research

Discussing the significance of research might seem like a loaded question, so we’ve outlined some steps to help you tackle it.

Step 1: The Research Problem

The problem statement can reveal clues about the outcome of your research. Your research should provide answers to the problem, which is beneficial to all those concerned. For example, imagine the problem statement is, “To what extent do elementary and high school teachers believe cyberbullying affects student performance?”

Learning teachers’ opinions on the effects of cyberbullying on student performance could result in the following:

●  Increased public awareness of cyberbullying in elementary and high schools

●  Teachers’ perceptions of cyberbullying negatively affecting student performance

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

●  Whether cyberbullying is more prevalent in elementary or high schools

The research problem will steer your research in the right direction, so it’s best to start with the problem statement.

Step 2: Existing Literature in the Field

Think about current information on your topic, and then find out what information is missing. Are there any areas that haven’t been explored? Your research should add new information to the literature, so be sure to state this in your discussion. You’ll need to know the current literature on your topic anyway, as this is part of your literature review section .

Step 3: Your Research’s Impact on Society

Inform your readers about the impact on society your research could have on it. For example, in the study about teachers’ opinions on cyberbullying, you could mention that your research will educate the community about teachers’ perceptions of cyberbullying as it affects student performance. As a result, the community will know how many teachers believe cyberbullying affects student performance.

You can also mention specific individuals and institutions that would benefit from your study. In the example of cyberbullying, you might indicate that school principals and superintendents would benefit from your research.

Step 4: Future Studies in the Field

Next, discuss how the significance of your research will benefit future studies, which is especially helpful for future researchers in your field. In the example of cyberbullying affecting student performance, your research could provide further opportunities to assess teacher perceptions of cyberbullying and its effects on students from larger populations. This prepares future researchers for data collection and analysis.

Discussing the significance of your research may sound daunting when you haven’t conducted it yet. However, an audience might not read your paper if they don’t know the significance of the research. By focusing on the problem statement and the research benefits to society and future studies, you can convince your audience of the value of your research.

Remember that everything you write doesn’t have to be set in stone. You can go back and tweak the significance of your research after conducting it. At first, you might only include general contributions of your study, but as you research, your contributions will become more specific.

You should have a solid understanding of your topic in general, its associated problems, and the literature review before tackling the significance of your research. However, you’re not trying to prove your thesis statement at this point. The significance of research just convinces the audience that your study is worth reading.

Finally, we always recommend seeking help from your research advisor whenever you’re struggling with ideas. For a more visual idea of how to discuss the significance of your research, we suggest checking out this video .

1. Do I need to do my research before discussing its significance?

No, you’re discussing the significance of your research before you conduct it. However, you should be knowledgeable about your topic and the related literature.

2. Is the significance of research the same as its implications?

No, the research implications are potential questions from your study that justify further exploration, which comes after conducting the research.

 3. Discussing the significance of research seems overwhelming. Where should I start?

We recommend the problem statement as a starting point, which reveals clues to the potential outcome of your research.

4. How can I get feedback on my discussion of the significance of my research?

Our proofreading experts can help. They’ll check your writing for grammar, punctuation errors, spelling, and concision. Submit a 500-word document for free today!

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

4-minute read

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

How to Ace Slack Messaging for Contractors and Freelancers

Effective professional communication is an important skill for contractors and freelancers navigating remote work environments....

3-minute read

How to Insert a Text Box in a Google Doc

Google Docs is a powerful collaborative tool, and mastering its features can significantly enhance your...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

what is the significance of conducting research study

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

18k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Social Sciences

7 Reasons Why Research Is Important

  • Author: Leann Zarah

Learning to conduct research is an integral part of learning about life. The importance of research cannot be overstated—this article shows you why.

Learning to conduct research is an integral part of learning about life. The importance of research cannot be overstated—this article shows you why.

wutzkoh via Canva`

Why Is Research Important?

The significance of research cannot be understated. It is integral to succeeding in school as well as in many professions, such as law, writing, and finance. The main purposes of research are to inform action, gather evidence for theories, and contribute to developing knowledge in a field of study. This article discusses the significance of research and the many reasons why research is important for everyone—not just students and scientists.

Understanding that research is important might seem like a no-brainer, but many people avoid it like the plague. Yet, for those who like to learn, whether they are members of a research institution or not, conducting research is not just important—it's imperative.

Why Research Is Necessary and Valuable in Our Daily Lives

  • It's a tool for building knowledge and facilitating learning.
  • It's a means to understand issues and increase public awareness.
  • It helps us succeed in business.
  • It allows us to disprove lies and support truths.
  • It is a means to find, gauge, and seize opportunities.
  • It promotes a love of and confidence in reading, writing, analyzing, and sharing valuable information.
  • It provides nourishment and exercise for the mind.

Conducting research doesn't just arm us with knowledge—it helps teach us how to think.

Conducting research doesn't just arm us with knowledge—it helps teach us how to think.

Maxim Ilyahov via Unsplash; Canva

A Tool for Building Knowledge and Facilitating Learning

The purpose of research is much greater than you might realize at first. Research is required not just for students and academics but for all professionals and nonprofessionals alike. It is also important for budding and veteran writers, both offline and online.

For nonprofessionals who value learning, doing research equips them with knowledge about the world and skills to help them survive and improve their lives. Among professionals and scribes, on the other hand, finding an interesting topic to discuss and/or to write about should go beyond personal experience. Determining what the general public may want to know or what researchers want others to realize or think about can serve as a reason to do research. Thus, research is an essential component in generating knowledge and vice-versa.

Knowledge is commonly described as a factual proposition in an individual's mind. It essentially refers to facts based on objective insights and/or study findings processed by the human brain. It can be acquired through various means, such as reading books and articles, listening to experts, watching documentaries or investigative shows, conducting scientific experiments, and interacting with other people. Facts collected during research can be checked against other sources to ensure truthfulness and accuracy.

Studies and Articles About the Importance of Research

In his article "Epistemology," Yale University's David Truncellito identifies three kinds of knowledge : procedural (competence or know-how), acquaintance (familiarity), and propositional (description of "a fact or a state of affairs").

Brain Research UK (formerly Brain Research Trust), a medical-research charity based in the United Kingdom, acknowledges the importance of research in building knowledge. It sees research as crucial to finding possible cures for diseases and ways to prevent them. Thus, research is necessary to ascertain whether previous studies support one's ideas or if these ideas still need further proof to be considered knowledge.

An example of one such endeavor is a 2016 study conducted by several psychologists to examine how sleep affects memory reactivation. In " Relearn Faster and Retain Longer: Along With Practice, Sleep Makes Perfect ," they discovered that "interleaving sleep between learning sessions not only reduced the amount of practice needed by half but also ensured much better long-term retention. Sleeping after learning is definitely a good strategy, but sleeping between two learning sessions is a better strategy." This study supports the fact that both repetition and sleep improve a person's long-term retention of information. Their findings also emphasize how highly important sleep is to healthy brain function.

A study by The World Bank in 2006 also underscored sleep as a key factor in efficient learning , which can be defined as the process of gaining optimal learning using few resources. The study reiterated the role of sleep in: (1) protecting and restoring memory, (2) advanced learning, and (3) enhancing mathematical ability and problem-solving. It further noted that "knowledge is better consolidated when people study at the time when they are supposed to be awake rather than, say, late-night sessions." It cited the need for research on "the memory capacity of the poor in low-income countries" to enable teachers to better help underprivileged students learn basic skills.

The effect of sleep on the human brain is just one of the countless topics that academics and specialists have examined in various universities and medical institutions. A myriad of newer and even more specific research ideas likewise await the attention of avid scholars and inquisitive writers. Indeed, research is instrumental in building and improving knowledge and supporting existing knowledge with verifiable facts to facilitate learning.

A Means to Understand Issues and Increase Public Awareness

Using research to understand current issues.

Television shows and movies—both fictional and nonfictional—ooze with research. For instance, Oprah Winfrey would not have achieved remarkable success as a news anchor and television show host had she eschewed doing her research about certain topics and public figures . According to entrepreneur and lifestyle coach Paul C. Brunson, in his interview with emotional intelligence expert and author Justin Bariso (2017):

"Oprah spends a disproportionate amount of her time gathering information from communities of people outside of her core (different age groups, social classes, ethnicities, education levels, careers, etc.) and then she shares that information within her community."

Recommended

wellington-house-britains-ww1-propaganda-bureau

Wellington House: Britain's WW1 Propaganda Bureau

This kind of effort shows the necessary role of research in helping others and raising social consciousness.

Using Research to Understand People

Many film and TV actors also take time to interview individuals to understand their roles better. Actors have worked with detectives, boxers, scientists, business owners, criminals, and teachers, among others, to gain an inside understanding of what it's like to have a certain identity. Others even go through immersion to begin to understand their characters' issues better. This might look like living in jail or a drug rehabilitation center for a while, gaining or losing a significant amount of weight, or learning to captain a sailboat. Many read literature, biographies, or journals to have a better view or context of the story they've been hired to tell.

In her 2017 article about Daniel Day-Lewis, Lynn Hirschberg described how the award-winning actor prepared for his role as dressmaker Reynolds Woodcock in Paul Thomas Anderson's film, Phantom Thread . She wrote:

"To become Woodcock, Day-Lewis, who is 60, watched archival footage of fashion shows from the 1940s and ’50s, studied the lives of designers, and most important, learned to sew. He consulted with Cassie Davies-Strodder, then curator of fashion and textiles at the Victoria and Albert Museum, in London. And for many months he apprenticed under Marc Happel, who is head of the costume department at the New York City Ballet, watching intently and then helping to reconstruct the famous Marc Chagall costumes for a production of Firebird . At the end of the ballet season, Day-Lewis decided he needed to build a couture piece from scratch."

People both within and outside of the entertainment industry have, on occasion, belittled what actors do or even the profession of acting itself. However, professional thespians like Daniel Day-Lewis exert great effort to make their characters believable. Their dedication to studying their roles involves a tremendous amount of research .

Using Research to Create Realistic Fiction and Stories

Many films, theater plays, broadcast dramas, and online videos present stories based on real-life events and problems. A serious writer or content producer sees how vital research is in substantiating the context of the stories they are telling to entertain and educate audiences through different media platforms.

As Terry Freedman opined in " The Importance of Research for ICT Teachers " (2011): "Research can shed light on issues we didn't even know existed, and can raise questions we hadn't realised even needed asking." Thus, almost all writers of both imaginary tales and non-fictive accounts do research, as doing so helps them create good stories and achieve credibility.

Good business is built on sound research.

Good business is built on sound research.

Dan Dimmock via Unsplash; Canva

Helping Us Succeed in Business

The importance of research and development (r&d).

Research benefits business. Many successful companies, such as those producing consumer goods or mass-market items, invest in research and development (R&D). Different industries that involve science and engineering processes (like agriculture, food and beverage, manufacturing, healthcare and pharmaceuticals, computer software, aerospace, aviation, and energy) have high R&D expenses because it is critical to the creation and improvement of their products and services.

The rise of artificial intelligence (AI) stems from substantial R&D. Based on Rockwell Anyoha's 2017 article, it may have sprung from the rich imagination of science fiction novelists L. Frank Baum ( The Wonderful Wizard of Oz in 1900) and Thea Gabriele von Harbou ( Metropolis in 1927) as well as polymath Alan Turing's Computing Machinery and Intelligence paper in 1950. On the other hand, the Association for the Advancement of Artificial Intelligence (AAAI) reckons that the human ideation of AI could be traced back to Greek mythology, while its rational roots could be linked to Aristotle's work on syllogistic logic in the 4th century BC.

The genesis of modern AI technology stems from the 1950s when the Research and Development (RAND) Corporation invested in the "Logic Theorist" program created by cognitive psychologist Allen Newell, systems programmer Cliff Shaw, and political scientist Herbert Simon (Anyoha, 2017). Part of this program's development is attributed to computer scientist and AI innovator Oliver Gordon Selfridge's work on pattern matching when he mentioned it to Newell while visiting RAND in 1954.

The evolution of AI from a mere fictive idea to a physical or mechanical humanoid form has resulted in boons for profit-minded organizations and looming banes for workers in various industries. Thus, gaining an advantage over competitors likewise entails R&D. Finding out how to make things happen more efficiently and differentiate a business's offerings from those of its competitors can raise a company's market value. Addressing work issues and other problems in relation to R&D-backed technologies like AI would require research as well.

In addition, a country's economy can benefit much from R&D, for it can support, boost, and sustain its progress. For instance, the United Kingdom's Department of Business Innovation and Skills, or BIS (now known as the Department for Business, Energy and Industrial Strategy), used to publish an annual R&D Scoreboard . The report served "...as a benchmarking tool for companies, investors and policymakers" for 20 years. However, due to the UK government's austerity measures, it has not been produced since 2010.

Market Research and Targeted Marketing

Research can also help a company maintain a positive commercial image, retain existing customers, and attract new customers through targeted marketing. Marketing is a type of communication, and for that communication to be effective, businesses need to understand their customers.

This usually happens through market research, which can involve examining psychological studies about consumption, hosting focus groups, beta testing products with a select group of customers, sending satisfaction surveys to existing customers, and researching the business's main competitors, among other strategies. The most successful businesses, large and small, base their product design, service offerings, and marketing communications on insights gleaned from thorough research processes.

Disprove Lies and Support Truths

Background research and private investigations.

Have you ever experienced the feeling that your partner is having an affair behind your back? Some people would overlook this and say that it's better not to know; others would take discreet action, hiring a private detective to find out for sure. What does research have to do with this situation? A lot. Doing research to reveal lies or truths involving personal affairs can contribute to either making a relationship work or breaking away from a dysfunctional one. For the monogamous lot, researching to disprove or prove infidelity is one way to find out the truth.

Field Testing and Peer Reviews

Scientists also deal with research to test the validity and reliability of their claims or those of other scientists. Their integrity and competence depend on the quality of their research.

Nevertheless, not everything scientists come up with gets accepted. Scientific work is typically peer-reviewed before being published. This means that when an individual publishes research, it is fact-checked and investigated for common biases, statistical errors, and methodological issues by others in the field before being shared with the scientific community at large. The case of Marc Trevor Tessier-Lavigne proves this matter. It shows how student-reporters at The Stanford Daily led by Theo Baker engaged in thorough research to find out if long-running rumors about the billionaire scientist's involvement in manipulated academic papers were true. As a result, Tessier-Lavigne resigned from his post as the 11th president of Stanford University.

Professional and credible journalists also undertake thorough research to establish the veracity of their stories. The 2003 movie Shattered Glass tells the rise-and-fall story of a real-life journalist who worked for The New Republic based in New York City. Suppose fellow journalists hadn't debunked his stories as fabricated. In that case, Stephen Glass could have written even more dubious pieces that would have been taken at face value by readers of the publication.

Fact-Checking to Discover Research Bias, Propaganda, and Fake News

With internet technology and social media, pseudo-journalism has become a social concern. Fake news took center stage during the 2016 presidential campaign period in the United States. For instance, Snopes.com, a rumor research site, debunked the following "news stories" posted online:

  • An FBI agent believed responsible for the latest email leaks "pertinent to the investigation" into Hillary Clinton's private email server while she was Secretary of State was found dead in an apparent murder-suicide. (Reported on November 5, 2016, by the Denver Guardian )
  • In a final speech to the synod, Pope Francis endorsed Senator Bernie Sanders for President of the United States. (Reported on October 26, 2015, by the National Report and USAToday.com.co)
  • Thousands of pre-marked ballots for Hillary Clinton and other Democratic candidates were found in a warehouse in Ohio. (Reported on September 30, 2016, by the Christian Times Newspaper )
  • Assange: Bernie Sanders was threatened and told to drop out of the presidential race. (Reported on August 29, 2016, by USA Supreme )
  • News outlets around the world are reporting on the news that Pope Francis has made the unprecedented decision to endorse US presidential candidate Donald Trump. (Reported in July 2016, by the WTOE 5 News )
  • After gay club massacre, Phoenix LGBT officially endorses Trump. (Reported on June 13, 2016, by the Gateway Pundit )
  • African-American supporter of Republican presidential candidate Donald Trump has died after allegedly sustaining gunshot wounds in the aftermath of Friday night's chaos in Chicago. (Reported on March 12, 2016, by the Christian Times Newspaper )

According to Pew Research, social media, especially Facebook, serves as a primary source of news for over 60 percent of adult Americans (Chang, Lefferman, Pedersen, and Martz, 2016). In addition to fueling social media company profits, fake news has become profitable for pseudo-journalists whose main goal is to attract reader clicks that lead to Google Adsense revenue.

Fact-checking to determine the truth is integral to the process of research. Murray, Social News, and UGC Hub (2016) suggest that before news readers share information on social media, they need to assess the integrity of the news source and check for similar news on legitimate media outlets.

Genuine journalists do not rely on imagination for their news reports or avoid doing research. They eschew propaganda and have no intention of misleading the public. They are messengers of useful information—not lies.

Opportunities for success come more easily when we're well informed.

Opportunities for success come more easily when we're well informed.

Kelly Sikkema via Unsplash; Canva

Find, Gauge, and Seize Opportunities

Research helps people nurture their potential and achieve goals by taking advantage of various opportunities. This can mean securing employment, being awarded scholarships or grants, securing project funding, initiating a business collaboration, finding budget travel opportunities, or securing other little wins.

Using Research to Maximize Job and Career Options

Research is necessary for those looking for a job or seeking greener pastures. With thorough research, individuals can increase their chances of finding employment by scouring job-posting sites and contacting employment agencies. Research can also help inform them if work opportunities are legitimate . Without research, the gullible-yet-hopeful jobseeker or traveling worker may fall prey to unscrupulous headhunters, bogus employment opportunities, or even full-on scams.

Sites like Glassdoor and organizations like the Better Business Bureau allow job candidates to find out what experiences others have had with an employer they are considering or a placement agency they are thinking of using. After finding a free or low-cost academic course or skills-development training, students and professionals can assess their eligibility for certain roles and find out about application requirements and deadlines by conducting additional research.

Using Research to Maximize Investment

Research also benefits civil society and its members. Securing funding for projects and research initiatives is a top concern for those who want to address social issues. However, not all funding organizations accept proposals year-round, nor are they all interested in solving the same social problems. Thus, it is necessary to conduct research to find agencies whose missions match the objectives of particular advocacy programs or social-change projects.

An aspiring business owner can likewise meet potential investors through research. They can examine investor profiles to find a good fit in terms of vision, mission, goals, work ethic, and available capital.

Some hobbies and interests are expensive to pursue. One of these is traveling. For budget-conscious tourists, searching for airfare and hotel promos, discount rides, and cheap markets is undoubtedly a must to maximize the value of their money.

Seizing opportunities can broaden one's social network, raise awareness, or secure the support one direly needs to start a project or a business. Indeed, research contributes to a person's ability to make life-changing decisions. It encourages self-growth, participation in worthwhile causes, and productive living.

Promotes a Love of Reading, Writing, Analyzing, and Sharing Valuable Information

Research for critical thinking.

Research entails both reading and writing. These two literacy functions help maintain critical thinking and comprehension. Without these skills, research is far more difficult. Reading opens the mind to a vast reservoir of knowledge while writing helps us express our perspectives and transform our thoughts into more concrete ideas that others can understand.

Apart from reading and writing, listening and speaking are integral to conducting research. Conducting interviews, attending knowledge-generating events, and participating in casual talks can help us gather information and formulate research topics. These things also facilitate our critical thinking process, much like reading and writing. Listening to experts discuss their work can help us analyze issues from new perspectives and add new techniques to our information-gathering arsenal.

Sharing Research for Wider Understanding

With the wide array of ideas floating around and the interconnectedness of people and places through the internet, scholars and non-scholars involved in research can share information with a larger audience. Some view this process as ego-boosting, while others see it as a means to stimulate interest and encourage further research into certain issues or situations.

Literacy is integral in improving a person's social and economic mobility and increasing awareness, and research hones these basic life skills and makes learning a lifelong endeavor.

Exercising your mind is just as important as exercising your body.

Exercising your mind is just as important as exercising your body.

Provides Nourishment and Exercise for the Mind

Critical thinking and mental health.

Curiosity may kill the cat, but it also fuels the mind to seek answers. An article by Todd Johnson for College Admission Partners (n.d.) notes how scientific research in particular "helps students develop critical reasoning skills...helpful for any field of higher education..." The acts of searching for information and thinking critically serve as food for the brain, allowing our inherent creativity and logic to remain active. Keeping the mind active may also help prevent certain mental illnesses like Alzheimer's.

Several studies have shown that mentally stimulating activities like doing research can contribute to brain health. In " Educating the Brain to Avoid Dementia: Can Mental Exercise Prevent Alzheimer Disease? " Margaret Gatz (2005) enumerated research findings that support such a position. However, she also noted that other factors might be involved in averting dementia and related issues. One of these is intelligence. A study involving 11-year-old pupils in Scotland in 2000, for instance, pointed to intelligence quotient (IQ) scores as "predictive of future dementia risk." Gatz opined that clinical trials are needed and that "conclusions must be based on large samples, followed over a long period of time." She further posited:

"...we have little evidence that mental practice will help prevent the development of dementia. We have better evidence that good brain health is multiply determined, that brain development early in life matters, and that genetic influences are of great importance in accounting for individual differences in cognitive reserve and in explaining who develops Alzheimer disease and who does not... For older adults, health practices that could influence the brain include sound nutrition, sufficient sleep, stress management, treatment of mood or anxiety disorders, good vascular health, physical exercise, and avoidance of head trauma. But there is no convincing evidence that memory practice and other cognitively stimulating activities are sufficient to prevent Alzheimer disease; it is not just a case of “use it or lose it."

Gatz would not have formed such a perspective if she had failed to conduct her research about the effects of mentally stimulating activities on the human brain. This demonstrates how research can be both an exciting and challenging cerebral endeavor. Various studies may or may not support each other based on gathered information and other evidence. Data collection and analysis are vital aspects of the research process. These are mental activities that both expend mental energy and nurture the brain.

Indeed, doing research encourages people to explore possibilities, understand existing issues, and disprove fabrications. Without research, our technological advancements and other developments would have remained fantasies. Reading, writing, observing, and analyzing facilitate an inquisitive mind's quest for knowledge, learning, and wisdom. Research is a bridge that we must cross to achieve all of our goals—both personal and societal.

How to Conduct Research for Beginners

Research is about contributing to a growing pool of knowledge and information. Although we are inherently curious as kids and young adults and often conduct informal research without even realizing it, there is a methodology for conducting formal, academic research. Use the following tips to get you started:

1. Organize and Prioritize Your Available Resources

It is important to set out a suitable timeframe for your project, assemble all the necessary literature, find sources of information, and establish a financial budget (if applicable).

2. Identify the Central Question That Will Be Explored in Your Paper

Generally, there is only one research question per project, so if your project prompts you to engage with several different questions, it could be good to break it up into several papers. For example, you may write a paper on both the impact and the validity of a written consent agreement form at a medical facility. Strong research questions are specific, original, and relevant to society and the scientific community.

3. Research Existing Literature Related to Your Topic on the Appropriate Database

Scientific journals are a good place to start. Identify the contribution that each study provides in the context of your research question. Examine relationships and methods of data interpretation with a critical mindset.

The Elements of a Research Paper

Research papers are far less daunting when you break them down into their individual components.

ElementPurpose

Summarize your purpose and design. Try to use fewer than 300 words.

State the problem and review the relevant literature.

Discuss your study design, including any instruments you will be using, and outline the strategy you will use to analyze the data.

Restate your research question and describe your findings.

Discuss your findings in the context of your overall question as well as previous literature and research. Make suggestions for future research projects on the subject.

Restate your thesis and summarize your main points.

Common Errors in the Research Proccess

Designing a research project and writing a paper is no simple feat. Participants should be ready to dedicate ample time to avoid burnout. Here are some common mistakes that are made in both the setup of the project and the research paper itself.

Population Mistakes

Population mistakes are as avoidable as they are common in research. It helps to define the characteristics of the group that you wish to sample from in your project so you can specify the population in question. For instance, if you ask a question about the attitudes of Michigan residents, it would be important to make sure the population you're sampling from includes all counties in Michigan so your data isn't skewed to favor people from a specific and relatively homogenous area.

Sampling Mistakes

Sampling mistakes are another common research issue. Be sure to broaden the sample if you feel it is too small to generalize. For example, if 10% of therapists at Happy Clinic are dependent on marijuana, this does not mean that 10% of therapists in the nation are as well.

Sample-Selection Process Errors

The sample-selection process is another potential research issue. If you were randomly choosing participants in person, let's say at the mall, you would not want to only seek receptive and agreeable participants. These are usually your friends and acquaintances whose characteristics are similar to yours. Replace your non-probability selection method with true random samples from a defined population. These are usually the most scientifically sound.

Common Problems With Research Papers

  • Research question or aim is vague or is not specific enough.
  • Structure of the paper is unorganized.
  • Introduction is an extensive list of previous findings and doesn't propose anything new.
  • Tables do not relate to the main question.
  • Method and results sections are not defined in detail.
  • Discussion does not answer the stated research question.

How to Improve Your Research Skills

Are you interested in further developing your ability to do research? The following suggestions can help you hone your craft as a researcher while learning new things.

  • Read books and articles about research . If you do not have a computer with an internet connection, you can go to the library or a nearby bookstore or ask a close friend or relative to lend you their smartphone or laptop so you can look for books or articles about research. If you have access to the internet, you can watch online tutorial videos on research.
  • Watch films and read different kinds of books, including fiction and nonfiction. These sources can ignite your curiosity and drive you to seek more information. You might want to jot down notes about the topics that were discussed and/or what you learned. You might wonder why this is part of the research process. Watching movies, reading books, and writing notes help hone your comprehension and ability to analyze . These can improve your vocabulary and help you find your voice as a researcher.
  • Attend training seminars, workshops, and conferences to deepen your knowledge and hone your critical-thinking skills. These events are conducted by various organizations, particularly universities and "think tank" agencies. Use search engines to look for these opportunities, as well as for scholarships that could help you finance your participation in these activities.
  • Search for reputable researchers in your field of interest, especially if you plan to pursue collegiate or postgraduate studies. You could email an academic, a scientist, or another professional to inquire about their opinion on your thesis or dissertation topic. Having a research mentor can help you gain a broader understanding of what research is all about. They can likewise enrich your experience and insights as a researcher.
  • Take JSTOR's free online research skills development course . Here you will learn how to manage information overload, verify online sources, and properly cite your sources, among other things.

Go Forth and Research!

The human quest to seek knowledge, satisfy one's sense of wonder, develop more abilities, connect with others, and understand society is integral to research. Perpetuating truths (and debunking lies and myths) requires inquisitive minds and priceless integrity. As the world evolves, doing research becomes more important and remains a skill with enduring rewards.

This content is accurate and true to the best of the author’s knowledge and is not meant to substitute for formal and individualized advice from a qualified professional.

Questions & Answers

Question: To invest in research is to invest in a better future. Does this statement sound true? If so, justify your answer.

Answer: It is true. If you have read my hub, you would be able to discern why. It is important that you think of the answer yourself, as it will help you improve your analytical skills.

Question: What are the purposes of research?

Answer: My hub somehow answers your question. The purpose also depends on your objectives or target goals for pursuing a certain research topic.

Question: How does research contribute to quality education?

Answer: My article is not about quality education, but it talks about the importance of research in general, including its role in generating knowledge and in facilitating effective learning. Please read my article, if you have time. Doing so might be able to help you gain some insights and think of the answer to your question. You might want to ponder on your definition of "quality education" and look for studies and other references discussing it.

Question: What is the role of research in society?

Answer: Research is critical to societal development. It generates knowledge, provides useful information, and helps decision-making, among others.

Question: What is the concept of research?

Answer: The concept of research depends on your objectives for doing it. Research is essentially an intellectual process that helps you examine a certain phenomenon or topic based on personal, academic, and/or corporate interests. There are different methodologies and tools for doing it. Please conduct further research to help you answer your question.

Question: What is the role of research in development?

Answer: Research is critical in various development endeavors. Economic development requires determining what factors affect market forces and business environment, including laws that may either block or boost investments. Organizational development likewise entails identifying what policies are either beneficial or detrimental to achieving institutional goals. Personal development also involves finding useful public and private resources that may help an individual improve his/her skills and knowledge. Attaining development is challenging, and doing research allows stakeholders to gain necessary information and insights as they pursue set targets.

Thanks for the question. If you need an answer with citation, I highly encourage you to do your own research and develop your skills and knowledge as a researcher.

Question: Can you give offer some examples that describe number six?

Answer: 6. A Seed to Love Reading, Writing, Analyzing, and Sharing Valuable Information

When your teacher asks you to research a topic that you want, think of topics that you find interesting. If you are into anime, for instance, take steps to know more about anime. Knowing about anime goes beyond merely watching it. If you read about anime, write about what you read, analyze the nature of anime, and then share your findings. That's only one order of actions taken by a researcher.

There are people who initially write what they know about a certain topic like space exploration, while others analyze a situation or an issue first before reading and writing about it. Some researchers use previous studies as a take-off point in doing further research about a topic, primarily to determine if their study or experiment will reach or replicate the same findings or conclusions.

I hope what I said has somehow answered your query. Otherwise, you might want to research further the connection between researching reading, writing, analyzing, and sharing one's knowledge with other people.

Question: What are the main objectives of doing research?

Answer: My hub provides several reasons as to why doing research is essential in general, including (1) to build knowledge and facilitate efficient learning, (2) to understand various issues, (3) to know the truth and prove lies, and (4) to seek opportunities, among others. It somehow answers your question. However, if you are referring to a certain topic, then it does not provide the primary objectives based on the topic of your research. In this case, the main objectives largely depend on the reasons why you would like to do that particular research.

Question: What is the importance of identifying a problem in doing research?

Answer: Some people do research out of curiosity, while others do it because it is part of their job. Identifying a problem provides a basis for doing research. It also helps in figuring out the objectives and limitations of the research. These are just what I can think of at the moment. If you want an answer with citation, I encourage you to do further research related to your question.

Question: What are the subheadings of a research report?

Answer: My hub is about why doing research is important. It is not about how to write a research report and its different parts. This could be a good topic for a future hub though, so thank you for asking.

Please consider looking for information related to research report writing that is posted on university-based websites. These are both useful and authoritative sources of such information. However, research report format, including main headings and subheadings, varies from one organization to another. You may choose which among the available options you would like to adopt in your research report.

Question: When should research be undertaken?

Answer: My article somehow answers your question. A person may undertake research when he or she is curious about or seeking the latest info about a certain topic, or has to submit a paper. It is also conducted when one's job requires it or to verify certain information. There are other moments when it is undertaken. I suggest that you do your own research about it.

Question: What are the characteristics of research?

Answer: A few characteristics of research would include (1) objectivity, (2) accuracy of information, (3) understandable discussion of related literature, collected data, and analysis of results, and (4) written by credible and ethical experts/authors, among others.

Question: Which is the best topic for research?

Answer: It really depends on your interests and if you are doing it as a student or as an independent researcher. Otherwise, you should talk to a teacher or superior to help you figure out what research topic you would like to explore.

Question: Why is it important to conduct historical research?

Answer: Historical research helps verify certain facts and information about a topic. There are others reasons why it is undertaken. I suggest that you use academic websites to help you answer your question.

Question: What are the objects that are important in research?

Answer: Some of the things that are important in doing research are writing materials (paper/notebook and pen), reading materials (books, articles, journals, etc.), and communication devices (mobile phone, landline phone). Having a laptop or desktop computer or a smartphone that has access to the Internet and printing machine can certainly help you:

(1) write research ideas and drafts,

(2) read online references related to your research topic,

(3) facilitate printing of your reading materials and research manuscripts, and

(4) communicate with your research respondents, interviewees, mentors, and other resource persons via email, chat, and/or video conference.

It is also helpful to have a school library card or resident identification card that you can use to access books and other materials in a nearby community library. If your research involves interviewing people, then a tape recorder or digital recorder would be useful.

I may have missed several other objects, so please do further research to help you answer your question.

Question: What should I do in order to write a good research proposal?

Answer: Though my hub does not talk about how to write a research proposal (and a good one at that), I suggest that you ask yourself what topics would you like to examine further. For instance, if the field is broad like health, then list down health-related topics that you find interesting. Choose 1-3 issues that you would like to explore. Why more than one? Just for contingency in case, the others seem harder to do, if not impossible. The format, criteria, and requirements will depend on your teacher, the funding agency, and your preferred academic program/department at your chosen college or university.

Based on experience, a research proposal is considered "good" if it offers clear purpose/objectives, methods, potential benefits to stakeholders, and budget (if applicable). Some organizations ask for monitoring, evaluation, and sustainability plans. There are also agencies and assessors who are meticulous when it comes to the use of the English language, particularly grammar and spelling. Thus, you might want to hire a professional editor and a proofreader to help you polish your research proposal. Otherwise, there are online materials that you can use to help you improve your English writing skills.

I hope you will find this response somehow useful. Otherwise, please conduct further research on what makes "a good research proposal."

Question: How can I do a splendid job on my quantitative research?

Answer: I suggest that you invest time and effort in learning about statistics and statistical analysis. Understanding statistics, as well as when, what, and how to apply certain statistical formulas/formulae in analyzing survey results will help you in conducting quantitative research. You may also look for experts, academics, or professionals who are adept at statistics and quantitative research. You may ask them if they are willing to mentor or guide you as you work on your study. There are also free online courses on statistics and quantitative research that you may use to help you complete your research.

If there is ample time (and also budget), please share your findings with your survey respondents prior to finalizing your study. It is part of research ethics to do this part because it aims to: (1) inform your respondents about the results of your study, (2) get their feedback, and (3) thank them for their participation and helping you finish your research.

Question: Who are the key figures in the study of research?

Answer: The key figures in doing research are the researcher, the study participants, and the funding agency, if applicable. The organization(s), community/communities, or country/countries where your participants reside or that serve as the subject(s) of your research are stakeholders of your chosen research as well.

Please conduct further research if you find my response inadequate, if not wrong.

Question: How do I conduct ‘micro’ research?

Answer: Please refer to Ian Glover's "Micro-research: An Approach to Teaching and Learning" published online in 2014.

© 2010 Leann Zarah

Atif Ashraf on September 01, 2020:

Jerome Charity on August 27, 2020:

nmborines on July 08, 2020:

Very relevant information and the best list of research importance that I've seen so far!

Fred on July 06, 2020:

This is wonderful. I have been enlightened

Xubi Valderrama on June 23, 2020:

I learned a lot from this. Thank you!

Ben Gonzales on June 21, 2020:

Ver relevant reference. The research environment is well-explained. I wanted to read more when I have time. Congratulation to the author(s)

esson on June 01, 2020:

very interesting.....I have gained alot

Leann Zarah (author) on April 26, 2020:

Thank you for appreciating my article, Awwal Shehu Mijinyawa and Godyson Dolfo.

You have my permission to cite it in your research manual, Godyson.

You're welcome, Awwal. Godspeed as well.

Godyson Dolfo on April 26, 2020:

I read your article and found it interesting and helpful. As a research coordinator, I am currently preparing a research manual for our students. May I ask permission to include or cite the 7 importance of the research you've mentioned in your article.

Awwal Shehu Mijinyawa on April 22, 2020:

I came across this article in search of difference between pure and social science researches. And I really found it very useful in such a way that it gives me different view of how fashion-out my own research on impact of wall gecko in some local government areas of my state. I really gained more insight on how mine should be designed base on the purpose and objectives.

Thank you so much for allowing all without restriction to benefit from the vast research understanding you acquire and shared free for all.

Thanks and God bless

Leann Zarah (author) on March 24, 2020:

Thank you for appreciating my article, jamal adams.

jamal adams on March 24, 2020:

nice piece.

will help me in my assignment

Leann Zarah (author) on February 27, 2020:

Thank you for reading my article, Akpan, Nomia, Ng'ida, and Nyika.

NYIKA SANGWENI on February 25, 2020:

good piece of information

Ng'ida Lemaron on February 25, 2020:

Very useful info thanks so much

Nomia Muranda on February 25, 2020:

Thank you so much this is good information

Akpan Victor on February 24, 2020:

Am great ful abaut this article remain blessed

Leann Zarah (author) on February 16, 2020:

Thank you for reading my article, K.ariyakeranage Chandi Perera.

K.ariyakeranage Chandi Perera on February 09, 2020:

That improve my interest on research.Thanks.

Leann Zarah (author) on January 16, 2020:

Thank you to sisay solomon, ayuen akau, and Kukil Rabha for reading my hub and for posting a comment.

sisay solomon on January 16, 2020:

wow it is amazing information for us more to be knowledgeable.......

ayuen akau on December 08, 2019:

thank you for sharing this info it really help

Kukil Rabha on November 29, 2019:

It's amazing sir, thanks for the hub. It helps me to better understand the need of research.

Leann Zarah (author) on September 29, 2019:

Thank you, Digitemie-Batubo Beleudaara. Likewise.

You have done great job here and it's very helpful to my current research. God bless you real good and give you more wisdom and grace. Thanks. Digitemie-Batubo Beleudaara on September 16, 2019:

I found this article very helpful. Thanks. God bless you real good and more grace

Leann Zarah (author) on May 24, 2019:

Thank you, Angel Malual and Winnie Malel, for reading and appreciating my hub.

Angel Malual on May 23, 2019:

Thank you very much for this piece of information about research, I was totally stuck not knowing what to do but this has helped me allot. we are still looking forward for more help.

Winnie Malel on May 13, 2019:

so encouraging and helpful. thanks for sharing

Leann Zarah (author) on April 17, 2019:

Thank you for reading and appreciating my hub, Jackson Muhingi, Atuhaire Macmillan, mossessjeremiah, Rehana, and Zubee.

JACKSON MUHINGI on April 16, 2019:

THANKS A LOT A GOOD JOB INDEED HELPFUL

mossesjeremiah on April 09, 2019:

thanks a lot its helpful

Rehana on March 31, 2019:

Amazing..it's helpful .

Zubee on March 30, 2019:

Leann Zarah (author) on March 17, 2019:

Thank you for reading my hub and for your kind words, Ezeagwasinwa chidi.

Ezeagwasinwa chidi on March 15, 2019:

this is a very useful article. keep it up!!

Leann Zarah (author) on March 14, 2019:

Thank you for reading my hub, Nyasha, samie tsvang, Gamuchirai Ziyavaya, and Michael Jairos.

Nyasha on March 10, 2019:

Thank you,,, this is really

samie tsvang on March 09, 2019:

Thank you for the add of knowledge

Gamuchirai Ziyavaya on March 08, 2019:

thanx for e hub

MICHAEL JAIROS on March 06, 2019:

thank you i found your hub really helpfull...

Leann Zarah (author) on February 02, 2019:

You're welcome, Eliazar and philippines. Thanks for reading my hub.

philippines on January 31, 2019:

super thanks!!!

Eliazar Ong'ara on January 25, 2019:

Many thanks Zarah for taking your time to respond to the multiple quiz shared, indeed they are very informative and a guide to a number of concerns regarding research. Really appreciate.

Leann Zarah (author) on December 08, 2018:

Thank you for appreciating my hub, sauda.

sauda on December 06, 2018:

thank you, its very impressive and helpful

Leann Zarah (author) on December 03, 2018:

Welcome, godwin.

godwin on December 03, 2018:

thanks much

Leann Zarah (author) on November 29, 2018:

Thank you for reading my hub, Crystalquintero. I appreciate your kind words. May your awareness and understanding of social issues continue to enrich your life and your relationship with other people.

Thank you Patricia A. Tusay and Chelsie Vizcarra for reading and appreciating my hub. May you succeed in your future research endeavors and in your journey as a hubber.

Crystalquintero on November 29, 2018:

it was really interesting learning about these 7 reasons why it's important to do research. The one that best resonated with me and my life the most was #2 as I have always found myself trying to look out for others before myself. I think it matched well with me because I tend to lean towards the morality aspect and how it affects others. I agree that reason #2, for the most part, does that.

Chelsie Vizcarra on November 29, 2018:

This hub is really helpful I took pleasure in taking the time to read it. The one I enjoyed the most was number 7 about nourishment and exercise for the mind. This one I felt most connected to because as a student I am still improving my research skills. I agree that curiosity is what fuels the mind to seek for answers. Especially nowadays when you can basically research about anything on the internet.

Patricia A Tusay on November 29, 2018:

I really enjoyed reading all the reasons for doing research. I especially liked number 4. This one was about learning the truth and facts. It is very important to know what all the facts are today since everyone is talking about fake everything.

Leann Zarah (author) on November 22, 2018:

You're welcome, Er.chandra. Thanks for reading my hub.

Er.chandra on November 17, 2018:

Thanks for explaining lots of knowledge about research.

Leann Zarah (author) on November 12, 2018:

Thank you for reading my hub, Ayuen Bol, martin mwansa., and Y-raaa Nicole.

Ayuen Bol on November 12, 2018:

The web or side is very helpful and educative to freelance Researchers.

thank those who make it operational.

martin mwansa. on November 09, 2018:

I really appreciate for your posts and today i have ideas on the importance of educational rasearch. God bless you all!

Y-raaa Nicole on November 06, 2018:

Thank you for sharing your knowledge to us author! Claps for you! This article really helps me! Continue writing! :)

Leann Zarah (author) on November 04, 2018:

Thank you for reading and appreciating my hub, Ananya.

Ananya on November 02, 2018:

Thank you.. Its a perfect clear cut answer.

Leann Zarah (author) on October 26, 2018:

Thanks for reading my hub, Aliyu.

Aliyu Jibrin Abdullahi on October 10, 2018:

Good pls continue help us

Leann Zarah (author) on October 06, 2018:

You are welcome, sevval. Thanks for reading my hub.

sevval on October 01, 2018:

Thank you so much for your article

Leann Zarah (author) on September 19, 2018:

Thanks for appreciating my hub, Alex, John, Nyamwiza, and Aquila.

Aquila Kanyemba on September 19, 2018:

thanks.. it's really helping in my research

Nyamwiza on September 14, 2018:

John sylivestor on September 06, 2018:

well precise and concise summary for adequate knowledge in research method

Alex ssendege on August 27, 2018:

Leann Zarah (author) on August 22, 2018:

Thank you, Rebecca Tukamushaba.

Rebecca Tukamushaba on August 22, 2018:

thanks for the information i have appreciated. well done.

Leann Zarah (author) on August 10, 2018:

Hi, nik ida.

Thank you for the kind words. Good luck to your future research endeavors.

nik ida on August 07, 2018:

very usefull for me as beginnerto do research. thanks.good job

Leann Zarah (author) on July 30, 2018:

Thank you for appreciating my hub, Alhaji.

Alhaji Usman Musa on July 29, 2018:

The importance of research you gave is fantastic.

Leann Zarah (author) on July 27, 2018:

Thanks for reading and appreciating my article, Isah, Emmaugoh, and Lazarus.

ISAH DINYA on July 24, 2018:

thank u, now I'm understanding it better

Emmaugoh on July 18, 2018:

lazarus julius on July 06, 2018:

very interesting. I real appreciate

Leann Zarah (author) on June 28, 2018:

Thank you for appreciating my hub, Micaela G7, Alida Rwanda, and Ibrahim Yisau.

Good luck to all of you.

Micaela G7 on June 26, 2018:

Alidah Rwanda on June 25, 2018:

thank you for the information provided above..

Ibrahim Yisau on June 19, 2018:

This is a great write up, thank you for sharing.

Leann Zarah (author) on June 17, 2018:

Thank you for reading my hub, Oscar peter. Glad to know you find it useful.

Good luck to you and your research endeavors.

Oscar peter on June 13, 2018:

Now I have understood what research is and it's main objectives, the reasons for carrying out research. I love it thanks

Leann Zarah (author) on May 04, 2018:

Thank you for reading and appreciating my hub, Festus Iranlade Adeyemi.

Festus Iranlade Adeyemi on May 04, 2018:

Useful write-up.

Leann Zarah (author) on April 15, 2018:

Thanks for reading my hub, Annacky A. Alweendo, Ntombi, and LexisNexis Educational Research Solutions.

LexisNexis Educational research Solutions on March 27, 2018:

Educational research is important in education because it is conducted in order to provide reliable information regarding educational issues and their solutions

Ntombi on March 24, 2018:

Annacky A. Alweendo on March 22, 2018:

very interesting. happy for reason number four.

Leann Zarah (author) on March 21, 2018:

Thank you for reading my hub and for your comments, MUHIRE Jean de Dieu, Kate Tr, and Kareul.

Yes, Kate Tr, you and your team may use reason #7. Good luck on your presentation and may you inspire your workshop participants to engage in research.

I appreciate your encouraging words, Kareul.

Thanks for sharing your insight, Muhire.

Kareul on March 12, 2018:

Thank you for this author. Please do continue and don't stop making such helpful hubs

Kate Tr on March 10, 2018:

Hello there,

I'm really impressed with the words that you has written. That is so clear and easy to understand.

My team from Vietnam is going to have a workshop about researching skill next month so i want to ask for your permission to use the point no.7 "Nourishment and Exercise for the Mind " in your article to prove our standpoint. We just want to take notes and a quote from it and give the link of the articles in the reference.

If you are happy for me to use it, please let me know.

Thank you so much and keep on your great job.

Best regards,

MUHIRE Jean de Dieu on March 06, 2018:

Research is very important because no research carried out society will remain where they were before to mean there is new discoveries and the problems in the society will not answered.

Leann Zarah (author) on February 19, 2018:

Thanks for reading my hub, Leigh1983 and Christyluv.

As for your comment, Christyluv, there are in-text citations in some parts of the article. The insights and tips given are based on my experience as a researcher. Thanks again.

Christyluv on February 14, 2018:

This is helpful. But no reference ma

Leigh1983 on February 14, 2018:

Hi Im leigh 34.. thanks for this.. it is so so useful on my research process... you can email me [email protected]

Leann Zarah (author) on February 13, 2018:

Thanks for reading my hub, Mushtaq Dogar.

I'm female, by the way.

Mushtaq Dogar on February 12, 2018:

thank you sir.it is very helpful for me

action-research-on-student-absenteeism

Action Research on Student and Pupil Absenteeism in School

100-science-topics-for-research-papers

100 Science Topics for Research Papers

how-to-write-a-survey-and-annotation-of-sources-for-research-essay-on-non-profit-organization

100 Technology Topics for Research Papers

importanceofenglishlanguages

6 Reasons Why Knowing English Is Important in Today's World

why-traditional-classroom-learning-is-better-than-online-courses

Why Traditional Classroom Learning Is Better Than Online Courses

100-easy-argumentative-essay-topic-ideas

100+ Easy Argumentative Essay Topic Ideas

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

National Institute of Environmental Health Sciences

Your environment. your health., what is ethics in research & why is it important, by david b. resnik, j.d., ph.d..

December 23, 2020

The ideas and opinions expressed in this essay are the author’s own and do not necessarily represent those of the NIH, NIEHS, or US government.

ethic image decorative header

When most people think of ethics (or morals), they think of rules for distinguishing between right and wrong, such as the Golden Rule ("Do unto others as you would have them do unto you"), a code of professional conduct like the Hippocratic Oath ("First of all, do no harm"), a religious creed like the Ten Commandments ("Thou Shalt not kill..."), or a wise aphorisms like the sayings of Confucius. This is the most common way of defining "ethics": norms for conduct that distinguish between acceptable and unacceptable behavior.

Most people learn ethical norms at home, at school, in church, or in other social settings. Although most people acquire their sense of right and wrong during childhood, moral development occurs throughout life and human beings pass through different stages of growth as they mature. Ethical norms are so ubiquitous that one might be tempted to regard them as simple commonsense. On the other hand, if morality were nothing more than commonsense, then why are there so many ethical disputes and issues in our society?

Alternatives to Animal Testing

test tubes on a tray decorrative image

Alternative test methods are methods that replace, reduce, or refine animal use in research and testing

Learn more about Environmental science Basics

One plausible explanation of these disagreements is that all people recognize some common ethical norms but interpret, apply, and balance them in different ways in light of their own values and life experiences. For example, two people could agree that murder is wrong but disagree about the morality of abortion because they have different understandings of what it means to be a human being.

Most societies also have legal rules that govern behavior, but ethical norms tend to be broader and more informal than laws. Although most societies use laws to enforce widely accepted moral standards and ethical and legal rules use similar concepts, ethics and law are not the same. An action may be legal but unethical or illegal but ethical. We can also use ethical concepts and principles to criticize, evaluate, propose, or interpret laws. Indeed, in the last century, many social reformers have urged citizens to disobey laws they regarded as immoral or unjust laws. Peaceful civil disobedience is an ethical way of protesting laws or expressing political viewpoints.

Another way of defining 'ethics' focuses on the disciplines that study standards of conduct, such as philosophy, theology, law, psychology, or sociology. For example, a "medical ethicist" is someone who studies ethical standards in medicine. One may also define ethics as a method, procedure, or perspective for deciding how to act and for analyzing complex problems and issues. For instance, in considering a complex issue like global warming , one may take an economic, ecological, political, or ethical perspective on the problem. While an economist might examine the cost and benefits of various policies related to global warming, an environmental ethicist could examine the ethical values and principles at stake.

See ethics in practice at NIEHS

Read latest updates in our monthly  Global Environmental Health Newsletter

global environmental health

Many different disciplines, institutions , and professions have standards for behavior that suit their particular aims and goals. These standards also help members of the discipline to coordinate their actions or activities and to establish the public's trust of the discipline. For instance, ethical standards govern conduct in medicine, law, engineering, and business. Ethical norms also serve the aims or goals of research and apply to people who conduct scientific research or other scholarly or creative activities. There is even a specialized discipline, research ethics, which studies these norms. See Glossary of Commonly Used Terms in Research Ethics and Research Ethics Timeline .

There are several reasons why it is important to adhere to ethical norms in research. First, norms promote the aims of research , such as knowledge, truth, and avoidance of error. For example, prohibitions against fabricating , falsifying, or misrepresenting research data promote the truth and minimize error.

Join an NIEHS Study

See how we put research Ethics to practice.

Visit Joinastudy.niehs.nih.gov to see the various studies NIEHS perform.

join a study decorative image

Second, since research often involves a great deal of cooperation and coordination among many different people in different disciplines and institutions, ethical standards promote the values that are essential to collaborative work , such as trust, accountability, mutual respect, and fairness. For example, many ethical norms in research, such as guidelines for authorship , copyright and patenting policies , data sharing policies, and confidentiality rules in peer review, are designed to protect intellectual property interests while encouraging collaboration. Most researchers want to receive credit for their contributions and do not want to have their ideas stolen or disclosed prematurely.

Third, many of the ethical norms help to ensure that researchers can be held accountable to the public . For instance, federal policies on research misconduct, conflicts of interest, the human subjects protections, and animal care and use are necessary in order to make sure that researchers who are funded by public money can be held accountable to the public.

Fourth, ethical norms in research also help to build public support for research. People are more likely to fund a research project if they can trust the quality and integrity of research.

Finally, many of the norms of research promote a variety of other important moral and social values , such as social responsibility, human rights, animal welfare, compliance with the law, and public health and safety. Ethical lapses in research can significantly harm human and animal subjects, students, and the public. For example, a researcher who fabricates data in a clinical trial may harm or even kill patients, and a researcher who fails to abide by regulations and guidelines relating to radiation or biological safety may jeopardize his health and safety or the health and safety of staff and students.

Codes and Policies for Research Ethics

Given the importance of ethics for the conduct of research, it should come as no surprise that many different professional associations, government agencies, and universities have adopted specific codes, rules, and policies relating to research ethics. Many government agencies have ethics rules for funded researchers.

  • National Institutes of Health (NIH)
  • National Science Foundation (NSF)
  • Food and Drug Administration (FDA)
  • Environmental Protection Agency (EPA)
  • US Department of Agriculture (USDA)
  • Singapore Statement on Research Integrity
  • American Chemical Society, The Chemist Professional’s Code of Conduct
  • Code of Ethics (American Society for Clinical Laboratory Science)
  • American Psychological Association, Ethical Principles of Psychologists and Code of Conduct
  • Statement on Professional Ethics (American Association of University Professors)
  • Nuremberg Code
  • World Medical Association's Declaration of Helsinki

Ethical Principles

The following is a rough and general summary of some ethical principles that various codes address*:

what is the significance of conducting research study

Strive for honesty in all scientific communications. Honestly report data, results, methods and procedures, and publication status. Do not fabricate, falsify, or misrepresent data. Do not deceive colleagues, research sponsors, or the public.

what is the significance of conducting research study

Objectivity

Strive to avoid bias in experimental design, data analysis, data interpretation, peer review, personnel decisions, grant writing, expert testimony, and other aspects of research where objectivity is expected or required. Avoid or minimize bias or self-deception. Disclose personal or financial interests that may affect research.

what is the significance of conducting research study

Keep your promises and agreements; act with sincerity; strive for consistency of thought and action.

what is the significance of conducting research study

Carefulness

Avoid careless errors and negligence; carefully and critically examine your own work and the work of your peers. Keep good records of research activities, such as data collection, research design, and correspondence with agencies or journals.

what is the significance of conducting research study

Share data, results, ideas, tools, resources. Be open to criticism and new ideas.

what is the significance of conducting research study

Transparency

Disclose methods, materials, assumptions, analyses, and other information needed to evaluate your research.

what is the significance of conducting research study

Accountability

Take responsibility for your part in research and be prepared to give an account (i.e. an explanation or justification) of what you did on a research project and why.

what is the significance of conducting research study

Intellectual Property

Honor patents, copyrights, and other forms of intellectual property. Do not use unpublished data, methods, or results without permission. Give proper acknowledgement or credit for all contributions to research. Never plagiarize.

what is the significance of conducting research study

Confidentiality

Protect confidential communications, such as papers or grants submitted for publication, personnel records, trade or military secrets, and patient records.

what is the significance of conducting research study

Responsible Publication

Publish in order to advance research and scholarship, not to advance just your own career. Avoid wasteful and duplicative publication.

what is the significance of conducting research study

Responsible Mentoring

Help to educate, mentor, and advise students. Promote their welfare and allow them to make their own decisions.

what is the significance of conducting research study

Respect for Colleagues

Respect your colleagues and treat them fairly.

what is the significance of conducting research study

Social Responsibility

Strive to promote social good and prevent or mitigate social harms through research, public education, and advocacy.

what is the significance of conducting research study

Non-Discrimination

Avoid discrimination against colleagues or students on the basis of sex, race, ethnicity, or other factors not related to scientific competence and integrity.

what is the significance of conducting research study

Maintain and improve your own professional competence and expertise through lifelong education and learning; take steps to promote competence in science as a whole.

what is the significance of conducting research study

Know and obey relevant laws and institutional and governmental policies.

what is the significance of conducting research study

Animal Care

Show proper respect and care for animals when using them in research. Do not conduct unnecessary or poorly designed animal experiments.

what is the significance of conducting research study

Human Subjects protection

When conducting research on human subjects, minimize harms and risks and maximize benefits; respect human dignity, privacy, and autonomy; take special precautions with vulnerable populations; and strive to distribute the benefits and burdens of research fairly.

* Adapted from Shamoo A and Resnik D. 2015. Responsible Conduct of Research, 3rd ed. (New York: Oxford University Press).

Ethical Decision Making in Research

Although codes, policies, and principles are very important and useful, like any set of rules, they do not cover every situation, they often conflict, and they require interpretation. It is therefore important for researchers to learn how to interpret, assess, and apply various research rules and how to make decisions and act ethically in various situations. The vast majority of decisions involve the straightforward application of ethical rules. For example, consider the following case:

The research protocol for a study of a drug on hypertension requires the administration of the drug at different doses to 50 laboratory mice, with chemical and behavioral tests to determine toxic effects. Tom has almost finished the experiment for Dr. Q. He has only 5 mice left to test. However, he really wants to finish his work in time to go to Florida on spring break with his friends, who are leaving tonight. He has injected the drug in all 50 mice but has not completed all of the tests. He therefore decides to extrapolate from the 45 completed results to produce the 5 additional results.

Many different research ethics policies would hold that Tom has acted unethically by fabricating data. If this study were sponsored by a federal agency, such as the NIH, his actions would constitute a form of research misconduct , which the government defines as "fabrication, falsification, or plagiarism" (or FFP). Actions that nearly all researchers classify as unethical are viewed as misconduct. It is important to remember, however, that misconduct occurs only when researchers intend to deceive : honest errors related to sloppiness, poor record keeping, miscalculations, bias, self-deception, and even negligence do not constitute misconduct. Also, reasonable disagreements about research methods, procedures, and interpretations do not constitute research misconduct. Consider the following case:

Dr. T has just discovered a mathematical error in his paper that has been accepted for publication in a journal. The error does not affect the overall results of his research, but it is potentially misleading. The journal has just gone to press, so it is too late to catch the error before it appears in print. In order to avoid embarrassment, Dr. T decides to ignore the error.

Dr. T's error is not misconduct nor is his decision to take no action to correct the error. Most researchers, as well as many different policies and codes would say that Dr. T should tell the journal (and any coauthors) about the error and consider publishing a correction or errata. Failing to publish a correction would be unethical because it would violate norms relating to honesty and objectivity in research.

There are many other activities that the government does not define as "misconduct" but which are still regarded by most researchers as unethical. These are sometimes referred to as " other deviations " from acceptable research practices and include:

  • Publishing the same paper in two different journals without telling the editors
  • Submitting the same paper to different journals without telling the editors
  • Not informing a collaborator of your intent to file a patent in order to make sure that you are the sole inventor
  • Including a colleague as an author on a paper in return for a favor even though the colleague did not make a serious contribution to the paper
  • Discussing with your colleagues confidential data from a paper that you are reviewing for a journal
  • Using data, ideas, or methods you learn about while reviewing a grant or a papers without permission
  • Trimming outliers from a data set without discussing your reasons in paper
  • Using an inappropriate statistical technique in order to enhance the significance of your research
  • Bypassing the peer review process and announcing your results through a press conference without giving peers adequate information to review your work
  • Conducting a review of the literature that fails to acknowledge the contributions of other people in the field or relevant prior work
  • Stretching the truth on a grant application in order to convince reviewers that your project will make a significant contribution to the field
  • Stretching the truth on a job application or curriculum vita
  • Giving the same research project to two graduate students in order to see who can do it the fastest
  • Overworking, neglecting, or exploiting graduate or post-doctoral students
  • Failing to keep good research records
  • Failing to maintain research data for a reasonable period of time
  • Making derogatory comments and personal attacks in your review of author's submission
  • Promising a student a better grade for sexual favors
  • Using a racist epithet in the laboratory
  • Making significant deviations from the research protocol approved by your institution's Animal Care and Use Committee or Institutional Review Board for Human Subjects Research without telling the committee or the board
  • Not reporting an adverse event in a human research experiment
  • Wasting animals in research
  • Exposing students and staff to biological risks in violation of your institution's biosafety rules
  • Sabotaging someone's work
  • Stealing supplies, books, or data
  • Rigging an experiment so you know how it will turn out
  • Making unauthorized copies of data, papers, or computer programs
  • Owning over $10,000 in stock in a company that sponsors your research and not disclosing this financial interest
  • Deliberately overestimating the clinical significance of a new drug in order to obtain economic benefits

These actions would be regarded as unethical by most scientists and some might even be illegal in some cases. Most of these would also violate different professional ethics codes or institutional policies. However, they do not fall into the narrow category of actions that the government classifies as research misconduct. Indeed, there has been considerable debate about the definition of "research misconduct" and many researchers and policy makers are not satisfied with the government's narrow definition that focuses on FFP. However, given the huge list of potential offenses that might fall into the category "other serious deviations," and the practical problems with defining and policing these other deviations, it is understandable why government officials have chosen to limit their focus.

Finally, situations frequently arise in research in which different people disagree about the proper course of action and there is no broad consensus about what should be done. In these situations, there may be good arguments on both sides of the issue and different ethical principles may conflict. These situations create difficult decisions for research known as ethical or moral dilemmas . Consider the following case:

Dr. Wexford is the principal investigator of a large, epidemiological study on the health of 10,000 agricultural workers. She has an impressive dataset that includes information on demographics, environmental exposures, diet, genetics, and various disease outcomes such as cancer, Parkinson’s disease (PD), and ALS. She has just published a paper on the relationship between pesticide exposure and PD in a prestigious journal. She is planning to publish many other papers from her dataset. She receives a request from another research team that wants access to her complete dataset. They are interested in examining the relationship between pesticide exposures and skin cancer. Dr. Wexford was planning to conduct a study on this topic.

Dr. Wexford faces a difficult choice. On the one hand, the ethical norm of openness obliges her to share data with the other research team. Her funding agency may also have rules that obligate her to share data. On the other hand, if she shares data with the other team, they may publish results that she was planning to publish, thus depriving her (and her team) of recognition and priority. It seems that there are good arguments on both sides of this issue and Dr. Wexford needs to take some time to think about what she should do. One possible option is to share data, provided that the investigators sign a data use agreement. The agreement could define allowable uses of the data, publication plans, authorship, etc. Another option would be to offer to collaborate with the researchers.

The following are some step that researchers, such as Dr. Wexford, can take to deal with ethical dilemmas in research:

What is the problem or issue?

It is always important to get a clear statement of the problem. In this case, the issue is whether to share information with the other research team.

What is the relevant information?

Many bad decisions are made as a result of poor information. To know what to do, Dr. Wexford needs to have more information concerning such matters as university or funding agency or journal policies that may apply to this situation, the team's intellectual property interests, the possibility of negotiating some kind of agreement with the other team, whether the other team also has some information it is willing to share, the impact of the potential publications, etc.

What are the different options?

People may fail to see different options due to a limited imagination, bias, ignorance, or fear. In this case, there may be other choices besides 'share' or 'don't share,' such as 'negotiate an agreement' or 'offer to collaborate with the researchers.'

How do ethical codes or policies as well as legal rules apply to these different options?

The university or funding agency may have policies on data management that apply to this case. Broader ethical rules, such as openness and respect for credit and intellectual property, may also apply to this case. Laws relating to intellectual property may be relevant.

Are there any people who can offer ethical advice?

It may be useful to seek advice from a colleague, a senior researcher, your department chair, an ethics or compliance officer, or anyone else you can trust. In the case, Dr. Wexford might want to talk to her supervisor and research team before making a decision.

After considering these questions, a person facing an ethical dilemma may decide to ask more questions, gather more information, explore different options, or consider other ethical rules. However, at some point he or she will have to make a decision and then take action. Ideally, a person who makes a decision in an ethical dilemma should be able to justify his or her decision to himself or herself, as well as colleagues, administrators, and other people who might be affected by the decision. He or she should be able to articulate reasons for his or her conduct and should consider the following questions in order to explain how he or she arrived at his or her decision:

  • Which choice will probably have the best overall consequences for science and society?
  • Which choice could stand up to further publicity and scrutiny?
  • Which choice could you not live with?
  • Think of the wisest person you know. What would he or she do in this situation?
  • Which choice would be the most just, fair, or responsible?

After considering all of these questions, one still might find it difficult to decide what to do. If this is the case, then it may be appropriate to consider others ways of making the decision, such as going with a gut feeling or intuition, seeking guidance through prayer or meditation, or even flipping a coin. Endorsing these methods in this context need not imply that ethical decisions are irrational, however. The main point is that human reasoning plays a pivotal role in ethical decision-making but there are limits to its ability to solve all ethical dilemmas in a finite amount of time.

Promoting Ethical Conduct in Science

globe decorative image

Do U.S. research institutions meet or exceed federal mandates for instruction in responsible conduct of research? A national survey

NCBI Pubmed

 Read about U.S. research instutuins follow federal manadates for ethics in research 

Learn more about NIEHS Research

Most academic institutions in the US require undergraduate, graduate, or postgraduate students to have some education in the responsible conduct of research (RCR) . The NIH and NSF have both mandated training in research ethics for students and trainees. Many academic institutions outside of the US have also developed educational curricula in research ethics

Those of you who are taking or have taken courses in research ethics may be wondering why you are required to have education in research ethics. You may believe that you are highly ethical and know the difference between right and wrong. You would never fabricate or falsify data or plagiarize. Indeed, you also may believe that most of your colleagues are highly ethical and that there is no ethics problem in research..

If you feel this way, relax. No one is accusing you of acting unethically. Indeed, the evidence produced so far shows that misconduct is a very rare occurrence in research, although there is considerable variation among various estimates. The rate of misconduct has been estimated to be as low as 0.01% of researchers per year (based on confirmed cases of misconduct in federally funded research) to as high as 1% of researchers per year (based on self-reports of misconduct on anonymous surveys). See Shamoo and Resnik (2015), cited above.

Clearly, it would be useful to have more data on this topic, but so far there is no evidence that science has become ethically corrupt, despite some highly publicized scandals. Even if misconduct is only a rare occurrence, it can still have a tremendous impact on science and society because it can compromise the integrity of research, erode the public’s trust in science, and waste time and resources. Will education in research ethics help reduce the rate of misconduct in science? It is too early to tell. The answer to this question depends, in part, on how one understands the causes of misconduct. There are two main theories about why researchers commit misconduct. According to the "bad apple" theory, most scientists are highly ethical. Only researchers who are morally corrupt, economically desperate, or psychologically disturbed commit misconduct. Moreover, only a fool would commit misconduct because science's peer review system and self-correcting mechanisms will eventually catch those who try to cheat the system. In any case, a course in research ethics will have little impact on "bad apples," one might argue.

According to the "stressful" or "imperfect" environment theory, misconduct occurs because various institutional pressures, incentives, and constraints encourage people to commit misconduct, such as pressures to publish or obtain grants or contracts, career ambitions, the pursuit of profit or fame, poor supervision of students and trainees, and poor oversight of researchers (see Shamoo and Resnik 2015). Moreover, defenders of the stressful environment theory point out that science's peer review system is far from perfect and that it is relatively easy to cheat the system. Erroneous or fraudulent research often enters the public record without being detected for years. Misconduct probably results from environmental and individual causes, i.e. when people who are morally weak, ignorant, or insensitive are placed in stressful or imperfect environments. In any case, a course in research ethics can be useful in helping to prevent deviations from norms even if it does not prevent misconduct. Education in research ethics is can help people get a better understanding of ethical standards, policies, and issues and improve ethical judgment and decision making. Many of the deviations that occur in research may occur because researchers simply do not know or have never thought seriously about some of the ethical norms of research. For example, some unethical authorship practices probably reflect traditions and practices that have not been questioned seriously until recently. If the director of a lab is named as an author on every paper that comes from his lab, even if he does not make a significant contribution, what could be wrong with that? That's just the way it's done, one might argue. Another example where there may be some ignorance or mistaken traditions is conflicts of interest in research. A researcher may think that a "normal" or "traditional" financial relationship, such as accepting stock or a consulting fee from a drug company that sponsors her research, raises no serious ethical issues. Or perhaps a university administrator sees no ethical problem in taking a large gift with strings attached from a pharmaceutical company. Maybe a physician thinks that it is perfectly appropriate to receive a $300 finder’s fee for referring patients into a clinical trial.

If "deviations" from ethical conduct occur in research as a result of ignorance or a failure to reflect critically on problematic traditions, then a course in research ethics may help reduce the rate of serious deviations by improving the researcher's understanding of ethics and by sensitizing him or her to the issues.

Finally, education in research ethics should be able to help researchers grapple with the ethical dilemmas they are likely to encounter by introducing them to important concepts, tools, principles, and methods that can be useful in resolving these dilemmas. Scientists must deal with a number of different controversial topics, such as human embryonic stem cell research, cloning, genetic engineering, and research involving animal or human subjects, which require ethical reflection and deliberation.

Logo for UNT Open Books

1 Chapter 1: The Importance of Research Methods and Becoming an Informed Consumer of Research

Case study : student apprehension regarding research methods.

Research Study

Understanding and Measuring Student Apprehension in Criminal Justice Research Methods Courses 1

Research Question

How do we measure disinterest, relevance argumentation, and math anxiety experienced by students enrolled in research methods courses?

Methodology

It is said that “misery loves company,” so you are not alone in your apprehension and anxiety regarding your research methods course. The problem of student apprehension and anxiety related to taking a research methods course is not new and has been studied for over 25 years. Previously, such apprehension and anxiety appeared to be caused by math anxiety, especially as it applies to statistics. The authors of this article believe that student apprehension goes beyond math anxiety; that math anxiety is too simplistic of an explanation of student fear of research methods courses. Besides math anxiety, the researchers think that apprehension is caused by student indifference to the subject matter and irrelevance of the course because it does not apply to the “real world.” They state that student apprehension in research methods and statistics courses is due to three main factors:

Disinterest (D.);

Relevance Argumentation (RA.), and;

Math Anxiety (MA.).

Taken together, the reconceptualization is known as D.RA.MA., and the combination of these three factors constitutes the D.RA.MA. scale for research methods and statistics courses.

The researchers developed the D.RA.MA. scale by constructing survey questions to measure each factor in the scale (i.e., disinterest, relevance argumentation, and math anxiety). After they developed the survey, they tested it by distributing the survey to three criminal justice classes, totaling 80 students, from a midsized regional comprehensive university in the southern region of the United States. Higher scale scores demonstrate more disinterest, more relevance argumentation, or more math anxiety.

The D.RA.MA. scale consists of 20 survey questions. Ten questions were borrowed from an existing Math Anxiety scale developed by Betz 2 . The researchers then created five items to assess Disinterest and five items intended to measure Relevance Argumentation. The items for the D.RA.MA. scale are illustrated below.

Math Anxiety 3

I usually have been at ease in math classes.

Math does not scare me at all.

I am no good at math.

I don’t think that I could do advanced math.

Generally, I have been secure about attempting math.

For some reason, even though I study, math seems unusually hard for me.

Math has been my worst subject.

My mind goes blank and I am unable to think clearly when working in mathematics.

I think I could handle more difficult math.

I am not the type to do well in mathematics.

Relevance Argumentation 4

I will need research methods for my future work.

I view research methods as a subject that I will rarely use.

Research methods is not really useful for students who intend to work in Criminal Justice.

Knowing research methods will help me earn a living.

Research methods does not reflect the “real world.”

Research Disinterest 5

I am excited about taking research methods.

It would not bother me at all to take more research methods courses.

I expect a research methods class to be boring.

I don’t expect to learn much in research methods.

I really don’t care if I learn anything in research methods, as long as I get the requirement completed.

The Math Anxiety Scale responses for the 80 students ranged from 0 to 30 with a mean of 14, demonstrating a moderate level of math anxiety among the study participants. The responses for Relevance Argumentation ranged from 0 to 12 with a mean of 5.4 while those for Disinterest ranged from 1 to 15 with a mean of 7.0, demonstrating a moderate level of disinterest and relevance argumentation among students regarding research methods. Based on these findings, the study demonstrated that student apprehension regarding research methods courses goes beyond math anxiety and includes two additional factors; disinterest in the subject matter and irrelevance of research methods to the “real world.”

Limitations with the Study Procedure

This research study was designed to develop a broader measure of student apprehension in criminal justice research methods courses. Moving beyond just math anxiety, the researchers accomplished their objective by developing the D.RA.MA. scale; adding disinterest and relevance argumentation to the understanding of student apprehension regarding research methods. As is true for all research, this study is not without limitations. The biggest limitation of this study is the limited sample size. Only 80 students completed the survey. Although this is certainly a good start, similar research (i.e., replication) needs to be completed with larger student samples in different locations throughout the country before the actual quality of the D.RA.MA. scale can be determined.

Impact on Criminal Justice

The D.RA.MA. scale developed in this study identifies disinterest and relevance argumentation, in addition to math anxiety, as part of student apprehension and resistance to research methods. A variety of instructional strategies can be inferred from the D.RA.MA. survey. However, it is important for professors to recognize that no single approach will reduce research methods resistance and apprehension for all students. For example, discussing research methods in a popular culture framework may resonate with students and lead to engaged students who are more interested in the subject matter and identify with the relevance of research methods to criminal justice in general and the future careers of students, in particular. This approach may provide an effective means for combating student disinterest and relevance argumentation in criminal justice research methods courses. At a minimum, it is critical for professors to explain the relevance of research methods to the policies and practices of police, courts, and corrections. Students need to realize that research methods are essential tools for assessing agency policies and practices. Professors will always have D.RA.MA.-plagued students, but recognizing the problem and then developing effective strategies to connect with these students is the challenge all professors face. Experimenting with a multitude of teaching strategies to alleviate the math anxiety, relevance argumentation, and disinterest of criminal justice research methods students will result in more effective teaching and learning.

In This Chapter You Will Learn

What research is and why it is important to be an informed consumer of research

The sources of knowledge development and problems with each

How research methods can dispel myths about crime and the criminal justice system

The steps in the research process

How research has impacted criminal justice operations

Introduction

As noted in the chapter opening case study, it is expected that you have some anxiety and apprehension about taking this criminal justice research methods course. But, you have taken a significant step toward success in this course by opening up your research methods book, so congratulations are in order. You might have opened this book for a number of reasons. Perhaps it is the first day of class and you are ready to get started on the course material. Perhaps you have a quiz or exam soon. Perhaps the book has been gathering dust on your shelf since the first day of class and you are not doing well in your research methods class and are looking for the book to help with course improvement. Perhaps you are taking a research methods class in the future and are seeing if all the chatter among students is true.

No matter how you got here, two things are probably true. First, you are taking this research methods course because it is a requirement for your major. The bottom line is that most of the students who read this text are required to take a research methods course. While you may think studying research methods is irrelevant to your career goals, unnecessary, overly academic, or perhaps even intimidating, you probably must finish this course in order to graduate. Second, you have heard negative comments about this course. The negative comments mention the difficulty of the course and the relevance of the course (e.g., “I am going to be a police officer, so why do I need to take a research methods course?”). If you are like most students we have experienced in our research methods courses in the past, you are not initially interested in this course and are concerned about whether you will do well in it.

If you are concerned about the course, realize that you are not alone because most students are anxious about taking a research methods course. Also realize that your professor is well aware of student anxiety and apprehension regarding research methods. So, relax and do not think about the entire course and the entire book. Take the course content one chapter, one week at a time. One of the advantages of taking a research methods course is that you learn about the process of research methods. Each chapter builds upon the previous chapters, illustrating and discussing more about the research process. This is certainly an advantage, but it is also critical that you understand the initial chapters in this book so you are not confused with the content discussed in later chapters. In addition to anxiety and apprehension over the course material, research methods can be boring if you only read and learn about it with no particular purpose in mind. Although examples are prevalent throughout the book, as you read this material, it is recommended that you think about the relevancy and application of the topics covered in this book to your specific criminal justice interests. As you continue to read the book, think about how you might use the information you are reading in your current position or your intended profession.

The goal of this research methods book is to develop you into an informed consumer of research. Most, if not all, of your fellow classmates will never conduct their own research studies. However, every one of you will be exposed to research findings in your professional and personal lives for the remainder of your lives. You are exposed to research findings in the media (e.g., television, newspapers, and online), in personal interaction with others (e.g., friends and family, doctors, and professors), as well as in class. You should challenge yourself for this semester to keep a journal and document exposure to research in your daily life outside of college whether through the nightly news, newspapers, magazine articles, Internet, personal conversations, or other means. At the end of the semester, you will be amazed at the amount of research you are exposed to in a short period of time. This book is focused on research exposure and assisting you to become an educated consumer of research by providing you the skills necessary to differentiate between good and not so good research. Why should you believe research findings if the study is faulty? Without being an educated consumer of research, you will not be able to differentiate between useful and not useful research. This book is designed to remedy this problem.

This book was written to make your first encounter with research methods relevant and successful while providing you the tools necessary to become an educated consumer of research. Therefore, this book is written with the assumption that students have not had a prior class on research methods. In addition, this book assumes that practical and evaluative knowledge of research methods is more useful than theoretical knowledge of the development of research methods and the relationship between theory and research. Since the focus of this book is on consumerism, not researcher training, practical and evaluative knowledge is more useful than theoretical knowledge.

It is also important to understand that the professors who design academic programs in criminal justice at the associate and bachelor level believe that an understanding of research methods is important for students. That is why, more than likely, this research methods course is a required course in your degree program. These professors understand that a solid understanding of research methods will enrich the qualifications of students for employment and performance in their criminal justice careers.

As previously stated, the basic goal of this book is to make students, as future and possibly even current practitioners in the criminal justice system, better informed and more capable consumers of the results of criminal justice research. This goal is based on the belief that an understanding of research methods allows criminal justice practitioners to be better able to make use of the results of research as it applies to their work-related duties. In fact, thousands of research questions are asked and answered each year in research involving criminal justice and criminological topics. In addition, thousands of articles are published, papers presented at conferences, and reports prepared that provide answers to these questions. The ability to understand research gives practitioners knowledge of the most current information in their respective fields and the ability to use this knowledge to improve the effectiveness of criminal justice agencies.

How Do We Know What We Know? Sources of Knowledge

The reality is the understanding of crime and criminal justice system operations by the public is frequently the product of misguided assumptions, distorted interpretations, outright myths, and hardened ideological positions. 6 This is a bold statement that basically contends that most people’s knowledge of crime and criminal justice is inaccurate. But, how do these inaccuracies occur? Most people have learned what they know about crime and criminal justice system operations through some other means besides scientific research results and findings. Some of that knowledge is based on personal experience and common sense. Much of it is based on the information and images supported by politicians, governmental agencies, and especially the media. This section will discuss the mechanisms used to understand crime and criminal justice operations by the public. It is important to note that although this section will focus on the failings of these knowledge sources, they each can be, and certainly are, accurate at times, and thus are valuable sources of knowledge.

Knowledge from Authority

We gain knowledge from parents, teachers, experts, and others who are in positions of authority in our lives. When we accept something as being correct and true just because someone in a position of authority says it is true, we are using what is referred to as authority knowledge as a means of knowing. Authorities often expend significant time and effort to learn something, and we can benefit from their experience and work.

However, relying on authority as a means of knowing has limitations. It is easy to overestimate the expertise of other people. A person’s expertise is typically limited to a few core areas of significant knowledge; a person is not an expert in all areas. More specifically, criminal justice professors are not experts on all topics related to criminal justice. One professor may be an expert on corrections but know little about policing. If this professor discusses topics in policing in which he is not an expert, we may still assume he is right when he may be wrong. Authority figures may speak on fields they know little about. They can be completely wrong but we may believe them because of their status as an expert. Furthermore, an expert in one area may try to use his authority in an unrelated area. Other times, we have no idea of how the experts arrived at their knowledge. We just know they are experts in the topic area.

As I am writing this, I recall an example of authority knowledge that was wrong during my police academy training in the late 1980s. My academy training was about four years after the U.S. Supreme Court decision in Tennessee v. Garner. 7 In this case, the Court limited the use of deadly force by police to defense of life situations and incidents where the suspect committed a violent offense. Prior to the decision, the police in several states could use deadly force on any fleeing suspect accused of a felony offense. One day, the academy class was practicing mock traffic stops. During one of my mock traffic stops, I received information that the vehicle I stopped was stolen. The driver and passenger exited the vehicle and fled on foot. I did not use deadly force (this was a training exercise so was not real) against the suspects and was chastised by my instructor who insisted that I should have shot the suspects as they were fleeing. Training instructors, just like professors, convey authority knowledge but, in this case, the instructor was wrong. I was not legally authorized to use deadly force in the traffic stop scenario despite the insistence of my instructor to the contrary.

Politicians are sometimes taken as a source of authority knowledge about the law, crime, and criminal justice issues. Since they enact laws that directly impact the operations of the criminal justice system, we may assume they are an authority on crime and criminal justice. More specifically, we may assume that politicians know best about how to reduce crime and increase the effectiveness of the criminal justice system. However, history is rife with laws that sounded good on paper but had no impact on crime. For example, there is little evidence that sex offender registration protects the public from sexual predators or acts as a deterrent to repeat sex offenders even though every state has a law requiring convicted sex offenders to register with local authorities. Perhaps politicians are not the criminal justice experts some perceive them to be.

History is also full of criminal justice authorities that we now see as being misinformed. For example, Cesare Lombroso is the father of the positivist school of criminology. He is most readily recognized for his idea that some individuals are born criminal. He stated that criminals have certain unique biological characteristics, including large protruding jaws, high foreheads, flattened noses, and asymmetrical faces, to name a few. 8 These characteristics were similar to those found in primitive humans. Therefore, Lombroso argued that some individuals were genetic “throwbacks” to a more primitive time and were less evolved than other people and thus, were more likely to be criminals. Lombroso’s research has been discredited because he failed to compare criminals with noncriminals. By studying only criminals, he found characteristics that were common to criminals. However, if Lombroso had studied a group of noncriminals, he would have discovered that these biological characteristics are just as prevalent among noncriminals. This example involves authority knowledge that is supported by research but the research methods used were flawed. The errors of Lombroso seem obvious now, but what do we know today through authority knowledge that is inaccurate or will be proven wrong in the future?

Knowledge from Tradition

In addition to authority knowledge, people often rely on tradition for knowledge. Tradition knowledge relies on the knowledge of the past. Individuals accept something as true because that is the way things have always been so it must be right. A good example of tradition knowledge is preventive/random patrol. Ever since vehicles were brought into the police patrol function, police administrators assumed that having patrol officers drive around randomly in the communities they serve, while they are not answering calls for service, would prevent crime. If you were a patrol officer in the early 1970s and asked your supervisor, “Why do I drive around randomly throughout my assigned area when I am not answering a call for service?” the answer would have been, “That is the way we have always done patrol and random patrol reduces crime through deterrence.” The Kansas City Preventive Patrol Experiment challenged the tradition knowledge that preventive/random patrol reduces crime. The results of the study made it clear that the traditional practice of preventive/random patrol had little to no impact on reducing crime. This allowed police departments to develop other patrol deployment strategies such as directed patrol and “hot spots” policing since preventive patrol was seen as ineffective. The development of effective patrol deployment strategies continues today.

Knowledge from Common Sense

We frequently rely on common sense knowledge for what we know about crime and the criminal justice system because it “just makes sense.” For example, it “just makes sense” that if we send juvenile delinquents on a field trip to prison where they will see first hand the prison environment as well as be yelled at by actual prisoners, they will refrain from future delinquency. That is exactly what the program Scared Straight, originally developed in the 1970s, is designed to do. Scared Straight programs are still in existence today and are even the premise for the television show Beyond Scared Straight on the A&E television network. As originally created, the program was designed to decrease juvenile delinquency by bringing at-risk and delinquent juveniles into prison where they would be “scared straight” by inmates serving life sentences. Participants in the program were talked to and yelled at by the inmates in an effort to scare them. It was believed that the fear felt by the participants would lead to a discontinuation of their delinquent behavior so that they would not end up in prison themselves. This sounds like a good idea. It makes sense, and the program was initially touted as a success due to anecdotal evidence based on a few delinquents who turned their lives around after participation in the program.

However, evaluations of the program and others like it showed that the program was in fact unsuccessful. In the initial evaluation of the Scared Straight program, Finckenauer used a classic experimental design (discussed in Chapter 5), to evaluate the original “Lifer’s Program” at Rahway State Prison in New Jersey where the program was initially developed. 13 Juveniles were randomly assigned to an experimental group that attended the Scared Straight program and a control group that did not participate in the program. Results of the evaluation were not positive. Post-test measures revealed that juveniles who were assigned to the experimental group and participated in the program were actually more seriously delinquent afterwards than those who did not participate in the program. Also using an experimental design with random assignment, Yarborough evaluated the “Juvenile Offenders Learn Truth” (JOLT) program at the State Prison of Southern Michigan at Jackson. 14 This program was similar to that of the “Lifer’s Program,” only with fewer obscenities used by inmates. Post-test measurements were taken at two intervals, three and six months after program completion. Again, results were not positive. Findings revealed no significant differences in delinquency between those juveniles who attended the program and those who did not. Other experiments conducted on Scared Straight- type programs further revealed their inability to deter juveniles from further delinquency. 15 Despite the common sense popularity of these programs, the evaluations showed that Scared Straight programs do not reduce delinquency and, in some instances, may actually increase delinquency. The programs may actually do more harm than good. I guess that begs the question, “Why do we still do these types of programs?”

Scared Straight programs and other widely held common sense beliefs about crime and the criminal justice system are questionable, based on the available research evidence. Common sense is important in our daily lives and is frequently correct, but, at times, it also contains inaccuracies, misinformation, and even prejudice.

CLASSICS IN CJ RESEARCH

Is It Safe to Put Felons on Probation?

Research Study 9

In the mid-1970s, the number of offenders on probation began to significantly increase. By the mid-1980s, probation was the most frequently used sentence in most states and its use was becoming more common for felons, whereas previously, probation was typically limited to misdemeanor crimes and offenses committed by juveniles. Increasing numbers of felony offenders were being placed on probation because judges had no other alternative forms of punishment. Prisons were already operating above capacity due to rising crime rates. Despite the increase in the use of probation in the 1980s, few empirical studies of probation (particularly its use with felony offenders) had been published. In the early 1980s, the Rand Corporation conducted an extensive study of probation to learn more about the offenders sentenced to probation and the effectiveness of probation as a criminal sanction. At the time the study began, over one-third of California’s probation population were convicted felons. 10 This was the first large-scale study of felony probation.

Is it safe to put felons on probation?

Data for the study were obtained from the California Board of Prison Terms (CBPT). The Board had been collecting comprehensive data on all offenders sentenced to prison since 1978 and on a sample of adult males from 17 counties who received probation. From these two data sources, researchers selected a sample of male offenders who had been convicted of the following crimes: robbery, assault, burglary, theft, forgery, and drug offenses. These crimes were selected because an offender could receive either prison or probation if convicted. Approximately 16,500 male felony offenders were included in the study. For each offender, researchers had access to their personal characteristics, information on their crimes, court proceedings, and disposition.

Two main research questions were answered in this study. First, what were the recidivism rates for felony offenders who received probation? When assessing recidivism rates, the study found that the majority of offenders sentenced to probation recidivated during the follow-up period, which averaged 31 months. Overall, 65% of the sample of probationers were re-arrested and 51 % were charged with and convicted of another offense. A total of 18% were convicted of a violent crime.

The second research question asked, what were the characteristics of the probationers who recidivated? Property offenders were more likely to recidivate compared to violent or drug offenders. Researchers also discovered that probationers tended to recidivate by committing the same crime that placed them on probation. Rand researchers included time to recidivism in their analysis and found that property and violent offenders recidivated sooner than drug offenders. The median time to the first filed charge was five months for property offenders and eight months for violent offenders.

The issue of whether or not the findings would generalize to other counties in California and to other states was raised. Data for the study came from probation and prison records from two counties in California. These two counties were not randomly selected, but were chosen because of their large probation populations and the willingness of departments to provide information. Further, the probation departments in these counties had experienced significant budget cuts. Supervision may have become compromised as a result and this could have explained why these counties had high rates of recidivism. Studies of probation recidivism in other states have found recidivism rates to be much lower, suggesting the Rand results may not have applied elsewhere. 11 Several studies examining the effectiveness of probation and the factors correlated with probation outcomes were published after 1985. Much of this research failed to produce results consistent with the Rand study.

The Rand study of felony probation received a considerable amount of attention within the field of corrections. According to one scholar, the study was acclaimed as “the most important criminological research to be reported since World War II.” 12 The National Institute of Justice disseminated the report to criminal justice agencies across the country and even highlighted the study in their monthly newsletter. Today, the study remains one of the most highly cited pieces of corrections research.

According to Rand researchers, these findings raised serious doubts about the effectiveness of probation for felony offenders. Most of the felons sentenced to probation recidivated and researchers were unable to develop an accurate prediction model to improve the courts’ decision-making. The continued use of probation as a sanction for felony offenders appeared to be putting the public at risk. However, without adequate prison space, the courts had no other alternatives besides probation when sentencing offenders.

The researchers made several recommendations to address the limitations of using probation for felony offenders. First, it was recommended that states formally acknowledge that the purpose of probation had changed. Probation was originally used as a means of furthering the goal of rehabilitation in the correctional system. As the United States moved away from that goal in the late 1960s, the expectations of probation changed. Probation was now used as a way to exercise “restrictive supervision” over more serious offenders. Second, probation departments needed to redefine the responsibilities of their probation officers. Probation officers were now expected to be surveillance officers instead of treatment personnel, which required specialized training. In addition, states needed to explore the possibility of broadening the legal authority of its probation officers by allowing them to act as law enforcement officers if necessary. Third, states were advised to adopt a formal client management system that included risk/need assessments of every client. Such a system would help establish uniform, consistent treatment of those on probation and would also help departments allocate their resources efficiently and effectively. Fourth, researchers encouraged states to develop alternative forms of community punishment that offered more public protection than regular probation, which led to the development and use of intensive supervision probation, house arrest, electronic monitoring, day reporting centers, and other intermediate punishments.

Knowledge from Personal Experience

If you personally see something or if it actually happens to you, then you are likely to accept it as true and gain knowledge from the experience. Gaining knowledge through actual experiences is known as personal experience knowledge, and it has a powerful and lasting impact on everyone. Personal experiences are essential building blocks of knowledge and of what we believe to be true. The problem with knowledge gained from personal experiences is that personal experiences can be unique and unreliable, which can distort reality and lead us to believe things that are actually false.

How can events that someone personally experienced be wrong? The events are not wrong. Instead, the knowledge gained from the experience is wrong. For example, the research consistently shows that a person’s demeanor significantly impacts the decision-making of police officers. During a traffic stop, if a person is rude, disrespectful, and uncooperative to the officer, then the driver is more likely to receive a traffic citation than a warning. That is what the research on police discretion shows. However, if a person was rude and uncooperative to a police officer during a traffic stop and was let go without a citation, the person will gain knowledge from this personal experience. The knowledge gained may include that being disrespectful during future traffic stops will get this person out of future tickets. Not likely. The event is not wrong. Instead, the knowledge gained from the experience is wrong because being disrespectful to the police usually leads to more enforcement action taken by the police, not less.

As a student in criminal justice, you have probably experienced something similar in interaction with friends, relatives, and neighbors. Your knowledge of criminal justice that you have developed in your criminal justice classes is trumped by one experience your friend, relative, or neighbor had with the criminal justice system. They believe they are right because they experienced it. However, there are four errors that occur in the knowledge gained from personal experiences: overgeneralization, selective observation, illogical reasoning, and resistance to change.

Overgeneralization happens when people conclude that what they have observed in one or a few cases is true for all cases. For example, you may see that a wealthy businesswomen in your community is acquitted of bribery and may conclude that “wealthy people, especially women, are never convicted in our criminal justice system,” which is an overgeneralization. It is common to draw conclusions about people and society from our personal interactions, but, in reality, our experiences are limited because we interact with just a small percentage of people in society.

The same is true for practitioners in the criminal justice system. Practitioners have a tendency to believe that because something was done a particular way in their agency, it is done that way in all agencies. That may not be true. Although there are certainly operational similarities across criminal justice agencies, there are also nuances that exist across the over 50,000 criminal justice agencies in the United States. Believing that just because it was that way in your agency, it must be that way in all agencies leads to overgeneralization.

Selective observation is choosing, either consciously or unconsciously, to pay attention to and remember events that support our personal preferences and beliefs. In fact, with selective observation, we will seek out evidence that confirms what we believe to be true and ignore the events that provide contradictory evidence. We are more likely to notice pieces of evidence that reinforce and support our ideology. As applied to the criminal justice system, when we are inclined to be critical of the criminal justice system, it is pretty easy to notice its every failing and ignore its successes. For example, if someone believes the police commonly use excessive force, the person is more likely to pay attention to and remember a police brutality allegation on the nightly news than a police pursuit that led to the apprehension of the suspect without incident on the same nightly news. As another example, if you believe treatment efforts on sex offenders are futile, you will pay attention to and remember each sex offender you hear about that recidivates but will pay little attention to any successes. It is easy to find instances that confirm our beliefs, but with selective observation, the complete picture is not being viewed. Therefore, if we only acknowledge the events that confirm our beliefs and ignore those that challenge them, we are falling victim to selective observation.

Besides selective observation, some of our observations may simply be wrong. Consider eyewitness identification. It is a common practice in the criminal justice system, but research has consistently demonstrated inaccuracies in eyewitness identification. The witness feels certain that the person viewed is the person who committed the offense, but sometimes the witness is wrong. Even when our senses of sight, hearing, taste, touch, and smell are fully operational, our minds have to interpret what we have sensed, which may lead to an inaccurate observation.

RESEARCH IN THE NEWS

When Your Criminal Past Isn’t Yours 16

The business of background checks on prospective employees is increasing significantly. According to the Society for Human Resource Management, since the events of September 11, 2001, the percentage of companies that conduct criminal history checks during the hiring process has risen past 90%. Employers spend at least $2 billion a year to look into the pasts of their prospective employees. Problems with the business of background checks were identified through research that included a review of thousands of pages of court filings and interviews with dozens of court officials, data providers, lawyers, victims, and regulators.

The business of background checks is a system weakened by the conversion to digital files and compromised by the significant number of private companies that profit by amassing public records and selling them to employers. The private companies create a system in which a computer program scrapes the public files of court systems around the country to retrieve personal data. Basically, these are automated data-mining programs. Today, half the courts in the United States put criminal records on their public websites. So, the data are there for the taking, but the records that are retrieved typically are not checked for errors—errors that would be obvious to human eyes.

The errors can start with a mistake entered into the logs of a law enforcement agency or a court file. The biggest culprits, though, are companies that compile databases using public information. In some instances, their automated formulas misinterpret the information provided them. Other times, records wind up assigned to the wrong people with a common name. Furthermore, when a government agency erases a criminal conviction after a designated period of good behavior, many of the commercial databases don’t perform the updates required to purge offenses that have been removed from public record. It is clear that these errors can have substantial ramifications, including damaged reputations and loss of job opportunities.

Illogical reasoning occurs when someone jumps to premature conclusions or presents an argument that is based on invalid assumptions. Premature conclusions occur when we feel we have the answer based on a few pieces of evidence and do not need to seek additional information that may invalidate our conclusion. Think of a detective who, after examining only a few pieces of evidence, quickly narrows in on a murder suspect. It is common for a detective to assess the initial evidence and make an initial determination of who committed the murder. However, it is hoped that the detective will continue to sort through all the evidence for confirmation or rejection of his original conclusion regarding the murder suspect. Illogical reasoning by jumping to premature conclusions is common in everyday life. We look for evidence to confirm or reject our beliefs and stop when a small amount of evidence is present; we jump to conclusions. If a person states, “I know four people who have dropped out of high school, and each one of them ended up addicted to drugs, so all dropouts abuse drugs,” the person is jumping to conclusions.

Illogical reasoning also occurs when an argument, based on invalid assumptions, is presented. Let’s revisit the Scared Straight example previously discussed. Program developers assumed that brief exposure to the harsh realities of prison would deter juveniles from future delinquency. The Scared Straight program is an example of illogical reasoning. Four hours of exposure to prison life is not going to counteract years of delinquency and turn a delinquent into a nondelinquent. The program is based on a false assumption and fails to recognize the substantial risk factors present in the lives of most delinquents that must be mediated before the juvenile can live a crime-free lifestyle. A fear of prison, developed through brief exposure, is not enough to counteract the risk factors present in the lives of most delinquents. Although the Scared Straight program sounds good, it is illogical to assume that a brief experience with prison life will have a stronger impact on the decisions made by delinquents than peer support for delinquency, drug abuse, lack of education, poor parental supervision, and other factors that influence delinquency.

Resistance to change is the reluctance to change our beliefs in light of new, accurate, and valid information to the contrary. Resistance to change is common and it occurs for several reasons. First, even though our personal experience may be counter to our belief system, it is hard to admit we were wrong after we have taken a position on an issue. Even when the research evidence shows otherwise, people who work within programs may still believe they are effective. As previously stated, even though the research evidence shows otherwise, Scared Straight programs still exist and there is even a television show devoted to the program. Second, too much devotion to tradition and the argument that this is the way it has always been done inhibits change and hinders our ability to accept new directions and develop new knowledge. Third, uncritical agreement with authority inhibits change. Although authority knowledge is certainly an important means of gaining knowledge, we must critically evaluate the ideas, beliefs, and statements of those in positions of authority and be willing to challenge those statements where necessary. However, people often accept the beliefs of those in positions of authority without question, which hinders change.

Knowledge from Media Portrayals

Television shows, movies, websites, newspapers, and magazine articles are important sources of information. This is especially true for information about crime and the criminal justice system since most people have not had much contact with criminals or the criminal justice system. Instead of gaining knowledge about the criminal justice system through personal experience, most people learn about crime and the operations of the criminal justice system through media outlets. Since the primary goal of many of these media outlets is to entertain, they may not accurately reflect the reality of crime and criminal justice. Despite their inaccuracies, the media has a substantial impact on what people know about crime and the criminal justice system. Most people know what they know about crime and criminal justice through the media, and this knowledge even has an impact on criminal justice system operations.

An example of the potential impact of the media on the actual operations of the criminal justice system involves the CSI: Crime Scene Investigation television shows. The shows have been criticized for their unrealistic portrayal of the role of forensic science in solving criminal cases. Critics claim that CSI viewers accept what they see on the show as an accurate representation of how forensic science works. When summoned for jury duty, they bring with them unrealistic expectations of the forensic evidence they will see in trial. When the expected sophisticated forensic evidence is not presented in the real trial, the juror is more likely to vote to acquit the defendant. This phenomenon is known as the CSI Effect. Has the research shown that the CSI Effect exists and is impacting the criminal justice system? Most of the research shows that the CSI Effect does not exist and thus does not impact juror decision-making, but other research has shown that viewers of CSI have higher expectations related to evidence presented at trial. 17

There are several instances in which media attention on a particular topic created the idea that a major problem existed when it did not. An example is Halloween sadism. Halloween sadism is the practice of giving contaminated treats to children during trick or treating. 18 In 1985, Joel Best wrote an article entitled, “The Myth of the Halloween Sadist.” 19 His article reviewed press coverage of Halloween sadism in the leading papers in the three largest metropolitan areas ( New York Times, Los Angeles Times, and Chicago Tribune ) from 1958–1984. Although the belief in Halloween sadism is widespread, Best found few reported incidents and few reports of children being injured by Halloween sadism. Follow-ups on these reported incidents led to the conclusion that most of these reports were hoaxes. Best concluded, “I have been unable to find a substantiated report of a child being killed or seriously injured by a contaminated treat picked up in the course of trick or treating.” 20 Since 1985, Best has kept his research up to date and has come to the same conclusion. Halloween sadism is an urban legend; it is a story that is told as true, even though there is little or no evidence that the events in the story ever occurred.

Dispelling Myths: The Power of Research Methods

In the prior section, sources of knowledge were discussed along with the limitations of each. A researcher (e.g., criminologist), ideally, takes no knowledge claim for granted, but instead relies on research methods to discover the truth. In the attempt to generate new knowledge, a researcher is skeptical of knowledge that is generated by the sources discussed in the prior section, and this skepticism leads to the questioning of conventional thinking. Through this process, existing knowledge claims are discredited, modified, or substantiated. Research methods provide the researcher with the tools necessary to test current knowledge and discover new knowledge.

Although knowledge developed through research methods is by no means perfect and infallible, it is definitely a more systematic, structured, precise, and evidence-based process than the knowledge sources previously discussed. However, researchers should not dismiss all knowledge from the prior sources discussed, because, as mentioned, these sources of knowledge are sometimes accurate and certainly have their place in the development of knowledge. Researchers should guard against an elitist mind-set in which all knowledge, unless it is research-based knowledge, is dismissed.

To further discuss the importance of research methods in the development of knowledge, this section will discuss myths about crime and criminal justice. Myths are beliefs that are based on emotion rather than rigorous analysis. Take the myth of the Halloween sadist previously discussed. Many believe that there are real examples of children being harmed by razor blades, poison, or other nefarious objects placed in Halloween candy. This belief has changed the practices of many parents on Halloween; not allowing their children to trick-or-treat in their neighborhood and forbidding them from going to the doors of strangers. After careful analysis by Best, there is not a single, known example of children being seriously injured or killed by contaminated candy given by strangers. The Halloween sadist is a myth but it is still perpetuated today, and as the definition states, it is a belief based upon emotion rather than rigorous analysis. People accept myths as accurate knowledge of reality when, in fact, the knowledge is false.

The power of research is the ability to dispel myths. If someone were to assess the research literature on a myth or do their own research, she would find that the knowledge based on the myth is wrong. Perceived reality is contradicted by the facts developed through research. But that does not mean that the myth still doesn’t exist. It is important to keep in mind that the perpetuation and acceptance of myths by the public, politicians, and criminal justice personnel has contributed to the failure of criminal justice practices and policies designed to reduce crime and improve the operations of the criminal justice system. In this section, a detailed example of a myth about crime, police, courts, and corrections will be presented to demonstrate how the myth has been dispelled through research. In addition, several additional myths about crime, police, courts, and corrections will be briefly presented.

The Health Benefits of Alcohol Consumption 21

The press release from Oregon State University is titled “Beer Compound Shows Potent Promise in Prostate Cancer Battle.” The press release leads to several newspaper articles throughout the country written on the preventative nature of drinking beer on prostate cancer development with titles such as “Beer Protects Your Prostate” and “Beer May Help Men Ward Off Prostate Cancer.” By the titles alone, this sounds great; one of the main ingredients in beer appears to thwart prostate cancer.

The study that generated these headlines was conducted by a group of researchers at Oregon State University using cultured cells with purified compounds in a laboratory setting. The research showed that xanthohumol, a compound found in hops, slowed the growth of prostate cancer cells and also the growth of cells that cause enlarged prostates. But you would have to drink more than 17 pints of beer to consume a medically effective dose of xanthohumol, which is almost a case of beer. In addition, although the research is promising, further study is necessary to determine xanthohumol’s true impact on prostate cancer.

These are the types of headlines that people pay attention to and want to believe as true, even if disproven by later research. People want to believe that there are health benefits to alcohol consumption. You have probably heard about the health benefits of drinking red wine, but here is something you should consider. Recently, the University of Connecticut released a statement describing an extensive research misconduct investigation involving a member of its faculty. The investigation was sparked by an anonymous allegation of research irregularities. The comprehensive report of the investigation, which totals approximately 60,000 pages, concludes that the professor is guilty of 145 counts of fabrication and falsification of data. The professor had gained international notoriety for his research into the beneficial properties of resveratrol, which is found in red wine, especially its impact on aging. Obviously, this throws his research conclusions, that red wine has a beneficial impact on the aging process, into question.

Myths about Crime—Drug Users Are Violent

The myth of drug users as violent offenders continues to be perpetuated by media accounts of violent drug users. The public sees drug users as violent offenders who commit violent crimes to get money for drugs or who commit violent crimes while under the intoxicating properties of drugs. The public also recognizes the violent nature of the drug business with gangs and cartels using violence to protect their turf. In May 2012, extensive media attention was given to the case of the Miami man who ate the face of a homeless man for an agonizing 18 minutes until police shot and killed the suspect. The police believed that the suspect was high on the street drug known as “bath salts.” This horrific case definitely leaves the image in the public’s mind about the relationship between violence and drug use.

In recent years, media reports have focused on the relationship between methamphetamine use and violence; before then it was crack cocaine use and violence. 32 However, media portrayals regarding the violent tendencies of drug users date back to the 1930s and the release of Reefer Madness. In 1985, Goldstein suggested that drugs and violence could be related in three different ways:

1. violence could be the direct result of drug ingestion;

2. violence could be a product of the instability of drug market activity; and

3. violence could be the consequence of people having a compulsive need for drugs or money for drugs. 33

So, what does the research show? Studies have found that homicides related to crack cocaine were usually the product of the instability of drug market activity (i.e., buying and selling drugs can be a violent activity) and rarely the result of drug ingestion. 34 After an extensive review of research studies on alcohol, drugs, and violence, Parker and Auerhahn concluded, “Despite a number of published statements to the contrary, we find no significant evidence suggesting that drug use is associated with violence. There is substantial evidence to suggest that alcohol use is significantly associated with violence of all kinds.” 35 The reality is not everyone who uses drugs becomes violent and users who do become violent do not do so every time they use drugs; therefore, the relationship between violence and drug use is a myth.

MYTHS ABOUT CRIME

Some additional myths about crime that research does not support include:

•Crime statistics accurately show what crimes are being committed and what crimes are most harmful. 22

•Most criminals—especially the dangerous ones—are mentally ill. 23

•White-collar crime is only about financial loss and does not hurt anyone. 24

•Serial murderers are middle-aged, white males. 25

•Criminals are significantly different from noncriminals. 26

•People are more likely to be a victim of violent crime committed by a stranger than by someone they know. 27

•Older adults are more likely to be victimized than people in any other age group. 28

•Sex offender registration protects the public from sexual predators. 29

•Juvenile crime rates are significantly increasing. 30

•Only the most violent juveniles are tried as adults. 31

Myths about Police—Female Police Officers Do Not Perform as Well as Males

Female police officers still face the myth that they cannot perform as well as male police officers. Throughout history, females have faced significant difficulties even becoming police officers. In the past, it was common for police agencies to require all police applicants to meet a minimum height requirement to be considered for employment. The minimum height requirement was 5′8″ for most agencies, which limited the ability of females to successfully meet the minimum standards to become a police officer. Even if women could meet the minimum height requirements, they were typically faced with a physical-abilities test that emphasized upper body strength (e.g., push-ups and bench presses). Women failed these tests more often than men, and thus were not eligible to be police officers. Minimum height requirements are no longer used in law enforcement, but the perception that female police officers are not as good as males still exists. Today, the myth that women cannot be effective police officers is based largely on the belief that the need to demonstrate superior physical strength is a daily, common occurrence in law enforcement along with the belief that police work is routinely dangerous, violent, and crime-related.

So, what does the research show? On occasion, it is useful for police officers to be able to overpower suspects by demonstrating superior physical strength, but those types of activities are rare in law enforcement. In addition, it is fairly rare for a police officer to have to deal with a dangerous and violent encounter or even an incident involving a crime. The Police Services Study conducted in the 1970s analyzed 26,418 calls for service in three metropolitan areas and found that only 19% of calls for service involve crime and only 2% of the total calls for service involve violent crime. 43 This research study was among the first to assess the types of calls for service received by police agencies.

Despite the belief that women do not make good police officers, consistent research findings show that women are extremely capable as police officers, and in some respects, outperform their male counterparts. 44 Research has demonstrated several advantages to the hiring, retention, and promotion of women in law enforcement. First, female officers are as competent as their male counterparts. Research does not show any consistent differences in how male and female patrol officers perform their duties. Second, female officers are less likely to use excessive force. Research has shown that female patrol officers are less likely to be involved in high-speed pursuits, incidents of deadly force, and the use of excessive force. Female officers are more capable at calming potentially violent situations through communication and also demonstrate heightened levels of caution. Third, female officers can help implement community-oriented policing. Studies have shown that female officers are more supportive of the community-policing philosophy than are their male counterparts. Fourth, female officers can improve law enforcement’s response to violence against women. Studies have shown that female officers are more patient and understanding in handling domestic violence calls, and female victims of domestic violence are more likely to provide positive evaluations of female officers than their male counterparts. 52

MYTHS ABOUT POLICE

Some additional myths about the police that research does not support include:

•Police target minorities for traffic stops and arrests. 36

•Most crimes are solved through forensic science. 37

•COMPSTAT reduces crime. 38

•Intensive law enforcement efforts at the street level will lead to the control of illicit drug use and abuse. 39

•Police work primarily entails responding to crimes in progress or crimes that have just occurred. 40

•Police presence reduces crime. 41

•Detectives are most responsible for solving crimes and arresting offenders. 42

Myths about Courts—The Death Penalty Is Administered Fairly

According to a recent Gallup poll, 52% of Americans say the death penalty is applied fairly in the United States, the lowest mark in almost 40 years. 53 The issue of fairness and the death penalty typically concerns whether the punishment is equally imposed on offenders who are equally deserving based on legal factors (i.e., similar offense, similar prior criminal history, similar aggravating circumstances, and similar mitigating circumstances). 54 Unfairness can be shown if similarly situated offenders are more or less likely to receive death sentences based on age, gender, and race.

So, what does the research show? First, has research shown that a defendant’s age influences his or her chances of being sentenced to death? A study of about 5,000 homicides, controlling for legally relevant variables, found that defendants over the age of 25 were more than twice as likely to receive the death penalty in comparison to those 25 years of age or younger. 55

Second, has research shown that a defendant’s gender influences his or her chance of being sentenced to death? Capital punishment is almost exclusively reserved for male defendants. On December 31, 2010, there were 3,158 prisoners under a sentence of death in the United States: 58 were women, or 1.8%. 56 However, women account for 10–12% of all murders in the United States. 57 One research study found that male defendants were 2.6 times more likely than females to receive a death sentence after controlling for legally relevant factors. 58

Third, has research shown that a defendant’s race influences his or her chance of being sentenced to death? Most of the research on the biased nature of the death penalty has focused on racial inequities in the sentence. Although some research has shown that a defendant’s race has an impact on the likelihood of receiving a death sentence, a significant amount of research has shown that the race of the victim has the most substantial impact on death sentences. The research evidence clearly shows that offenders who murder white victims are more likely to receive a death sentence than offenders who murder black victims. 59 When assessing the race of both the victim and offender, the composition most likely to receive the death penalty is when a black offender murders a white victim. 60

MYTHS ABOUT COURTS

Some additional myths about courts that research does not support include:

•Many criminals escape justice because of the exclusionary rule. 45

•Subjecting juvenile offenders to harsh punishments can reduce crime committed by juveniles. 46

•Public opinion is overwhelmingly in favor of imprisonment and harsh punishment for offenders. 47

•The death penalty brings closure and a sense of justice to the family and friends of murder victims. 48

•Insanity is a common verdict in criminal courts in the United States. 49

•Eyewitness identification is reliable evidence. 50

•Most people who commit crimes based on hatred, bias, or discrimination face hate crime charges and longer sentencing. 51

Myths about Corrections—Imprisonment Is the Most Severe Form of Punishment

It seems clear that besides the death penalty, the most severe punishment available in our criminal justice system is to lock up offenders in prison. On a continuum, it is perceived that sentence severity increases as one moves from fines, to probation, to intermediate sanctions such as boot camps, and finally, to incarceration in prison. The public and politicians support this perception as well.

So, what does the research show? What do criminals think is the most severe form of punishment? A growing body of research has assessed how convicted offenders perceive and experience the severity of sentences in our criminal justice system. 61 Research suggests that alternatives to incarceration in prison (i.e., probation and intermediate sanctions) are perceived by many offenders as more severe due to a greater risk of program failure (e.g., probation revocation). In comparison, serving prison time is easier. 62  

For example, one study found that about one-third of nonviolent offenders given the option of participating in an Intensive Supervision Probation (ISP) program, chose prison instead because the prospects of working every day and submitting to random drug tests was more punitive than serving time in prison. 73 Prisoners also stated that they would likely be caught violating probation conditions (i.e., high risk of program failure) and be sent to prison anyway. 74 In another research study involving survey responses from 415 inmates serving a brief prison sentence for a nonviolent crime, prison was considered the eighth most severe sanction, with only community service and probation seen as less punitive. Electronic monitoring (seventh), intensive supervision probation (sixth), halfway house (fifth), intermittent incarceration (fourth), day reporting (third), county jail (second), and boot camp (first) were all rated by inmates as more severe sanctions than prison. 75

MYTHS ABOUT CORRECTIONS

Some additional myths about corrections that research does not support include:

•Punishing criminals reduces crime. 63

•Prisons are too lenient in their day-to-day operations (prisons as country clubs). 64

•Prisons can be self-supporting if only prisoners were forced to work. 65

•Private prisons are more cost effective than state-run prisons. 66

•Focus of community corrections is rehabilitation rather than punishment. 67

•Correctional rehabilitation does not work. 68

•Drug offenders are treated leniently by the criminal justice system. 69

•Most death row inmates will be executed eventually. 70

•If correctional sanctions are severe enough, people will think twice about committing crimes. 71

•Sexual violence against and exploitation of inmates of the same gender are primarily the result of lack of heterosexual opportunities. 72

What is Research and Why is It Important to be an Informed Consumer of Research?

We probably should have started the chapter with the question “What is research?” but we wanted to initially lay a foundation for the question with a discussion of the problems with how knowledge is developed and the power of research in discovering the truth. Research methods are tools that allow criminology and criminal justice researchers to systematically study crime and the criminal justice system. The study of research methods is the study of the basic rules, appropriate techniques, and relevant procedures for conducting research. Research methods provide the tools necessary to approach issues in criminal justice from a rigorous standpoint and challenge opinions based solely on nonscientific observations and experiences. Similarly, research is the scientific investigation of an issue, problem, or subject utilizing research methods. Research is a means of knowledge development that is designed to assist in discovering answers to research questions and leads to the creation of new questions.

How Is Knowledge Development through Research Different?

Previously, sources of knowledge development were discussed, including authority, tradition, common sense, personal experience, and media portrayals. The problems generated by each knowledge source were also discussed. Research is another source of knowledge development, but it is different than those previously discussed in several ways. First, research relies on logical and systematic methods and observations to answer questions. Researchers use systematic, well-established research practices to seek answers to their questions. The methods and observations are completed in such a way that others can inspect and assess the methods and observations and offer feedback and criticism. Researchers develop, refine, and report their understanding of crime and the criminal justice system more systematically than the public does through casual observation. Those who conduct scientific research employ much more rigorous methods to gather the information/knowledge they are seeking.

Second, in order to prove that a research finding is correct, a researcher must be able to replicate the finding using the same methods. Only through replication can we have confidence in our original finding. For researchers, it may be important to replicate findings many times over so that we are assured our original finding was not a coincidence or chance occurrence. The Minneapolis Domestic Violence Experiment is an example of this and will be discussed in detail in Chapter 5. In the experiment, the researchers found that arrests for domestic violence lead to fewer repeat incidences in comparison to separation of the people involved and mediation. Five replication studies were conducted and none were able to replicate the findings in the Minneapolis study. In fact, three of the replications found that those arrested for domestic violence had higher levels of continued domestic violence, so arrest did not have the deterrent effect found in the Minneapolis study.

Third, research is objective. Objectivity indicates a neutral and nonbiased perspective when conducting research. Although there are examples to the contrary, the researcher should not have a vested interest in what findings are discovered from the research. The researcher is expected to remain objective and report the findings of the study regardless of whether the findings support their personal opinion or agenda. In addition, research ensures objectivity by allowing others to examine and be critical of the methodology, findings, and results of research studies.

It should be clear that using research methods to answer questions about crime and the criminal justice system will greatly reduce the errors in the development of knowledge previously discussed. For example, research methods reduces the likelihood of overgeneralization by using systematic procedures for selecting individuals or groups to study that are representative of the individuals or groups that we wish to generalize. This is the topic of Chapter 3, which covers sampling procedures. In addition, research methods reduces the risk of selective observation by requiring that we measure and observe our research subjects systematically.

Being an Informed Consumer of Research

Criminal justice and criminological research is important for several reasons. First, it can provide better and more objective information. Second, it can promote better decision-making. Today, more than ever, we live in a world driven by data and in which there is an increasing dependence on the assessment of data when making decisions. As well as possible, research ensures that our decisions are based on data and not on an arbitrary or personal basis. Third, it allows for the objective assessment of programs. Fourth, it has often been the source of innovation within criminal justice agencies. Fifth, it can be directly relevant to criminal justice practice and have a significant impact on criminal justice operations.

Before we apply research results to practices in the criminal justice system, and before we even accept those research results as reasonable, we need to be able to know whether or not they are worthwhile. In other words, should we believe the results of the study? Research has its own limitations, so we need to evaluate research results and the methods used to produce them, and we do so through critical evaluation. Critical evaluation involves identifying both positive and negative aspects of the research study—both the good and the bad. Critical evaluation involves comparing the methodology used in the research with the standards established in research methods.

Through critical evaluation, consumers of research break studies down into their essential elements. What are the research questions and hypotheses? What were the independent and dependent variables? What research design was used? Was probability sampling used? What data-gathering procedures were employed? What type of data analysis was conducted and what conclusions were made? These are some of the questions that are asked by informed consumers of research. The evaluation of research ranges from the manner in which one obtains an idea to the ways in which one writes about the research results, and understanding each step in the research process is useful in our attempts to consume research conducted by others. Located between these two activities are issues concerning ethics, sampling, research design, data analyses, and interpretations.

The research design and procedures are typically the most critically evaluated aspects of research and will likewise receive the greatest amount of attention in this text. Informed consumers of research don’t just take the results of a research study at face value because the study is in an academic journal or written by someone with a Ph.D. Instead, informed consumers critically evaluate research. Taking what is learned throughout this text, critical evaluation of research is covered in Chapter 8, and upon completing this text, it is hoped that you will be an informed consumer of research and will put your research knowledge to use throughout your career.

Although many students will never undertake their own research, all will be governed by policies based upon research and exposed to research findings in their chosen professional positions. Most government agencies, including the criminal justice system, as well as private industry, routinely rely on data analysis. Criminal justice students employed with these agencies will be challenged if not prepared for quantitative tasks. Unfortunately, it is not unusual to find students as well as professionals in criminal justice who are unable to fully understand research reports and journal articles in their own field.

Beyond our criminal justice careers, we are all exposed to and use research to help us understand issues and to make personal decisions. For example, we know that cigarette smoking causes lung cancer and has other significant health impacts, so we don’t smoke. Your doctor tells you that your cholesterol is too high and you need to limit your red meat intake because research shows that consumption of red meat raises cholesterol; so, you quit eating red meat. That is why not all the examples in this text are criminal justice research examples. Some come from the medical field while others come from psychology and other disciplines. This is to remind you that you are probably exposed to much more research than you thought on day one of this class.

Overall, knowledge of research methods will allow you to more appropriately consider and consume information that is important to your career in criminal justice. It will help you better understand the process of asking and answering a question systematically and be a better consumer of the kind of information that you really need to be the best criminal justice professional you can. Once familiar with research methods, your anxiety about reviewing technical reports and research findings can be minimized. As discussed in the next section, research methods involve a process and once you understand the process, you can apply your knowledge to any research study, even those in other disciplines.

The Research Process

One of the nice things about studying research methods is it is about learning a process. Research methods can be seen as a sequential process with the first step being followed by the second step, and so on. There are certainly times when the order of the steps may be modified, but researchers typically follow the same process for each research study they complete regardless of the research topic (as depicted in Figure 2.1 in Chapter 2). Very simply, a research problem or question is identified, and a methodology is selected, developed, and implemented to answer the research question. This sequential process is one of the advantages of understanding research methods, because once you understand the process, you can apply that process to any research question that interests you. In addition, research methods are the same across disciplines. So, sampling is the same in business as it is in health education and as it is in criminal justice. Certainly the use of a particular method will be more common in one discipline in comparison to another, but the protocol for implementing the method to complete the research study is the same. For example, field research (discussed in Chapter 6) is used much more frequently in anthropology than in criminal justice. However, the research protocol to implement field research is the same whether you are studying an indigenous Indian tribe in South America in anthropology or a group of heroin users in St. Louis in criminal justice.

Some authors have presented the research process as a wheel or circle, with no specific beginning or end. Typically, the research process begins with the selection of a research problem and the development of research questions or hypotheses (discussed further in Chapter 2). It is common for the results of previous research to generate new research questions and hypotheses for the researcher. This suggests that research is cyclical, a vibrant and continuous process. When a research study answers one question, the result is often the generation of additional questions, which plunges the researcher right back into the research process to complete additional research to answer these new questions.

In this section, a brief overview of the research process will be presented. The chapters that follow address various aspects of the research process, but it is critical that you keep in mind the overall research process as you read this book, which is why is it presented here. Although you will probably not be expected to conduct a research study on your own, it is important for an educated consumer of research to understand the steps in the research process. The steps are presented in chronological order and appear neatly ordered. In practice, the researcher can go back and forth between the steps in the research process.

Step 1: Select a Topic and Conduct a Literature Review

The first step in the research process is typically the identification of a problem or topic that the researcher is interested in studying. Research topics can arise from a wide variety of sources, including the findings of a current study, a question that a criminal justice agency needs to have answered, or the result of intellectual curiosity. Once the researcher has identified a particular problem or topic, the researcher assesses the current state of the literature related to the problem or topic. The researcher will often spend a considerable amount of time in determining what the existing literature has to say about the topic. Has the topic already been studied to the point that the questions in which the researcher is interested have been sufficiently answered? If so, can the researcher approach the subject from a previously unexamined perspective? Many times, research topics have been previously explored but not brought to completion. If this is the case, it is certainly reasonable to examine the topic again. It is even appropriate to replicate a previous study to determine whether the findings reported in the prior research continue to be true in different settings with different participants. This step in the research process is also discussed in Chapter 2.

Step 2: Develop a Research Question

After a topic has been identified and a comprehensive literature review has been completed on the topic, the next step is the development of a research question or questions. The research question marks the beginning of your research study and is critical to the remaining steps in the research process. The research question determines the research plan and methodology that will be employed in the study, the data that will be collected, and the data analysis that will be performed. Basically, the remaining steps in the process are completed in order to answer the research question or questions established in this step. The development of research questions is discussed in more detail in Chapter 2.

Step 3: Develop a Hypothesis

After the research questions have been established, the next step is the formulation of hypotheses, which are statements about the expected relationship between two variables. For example, a hypothesis may state that there is no relationship between heavy metal music preference and violent delinquency. The two variables stated in the hypothesis are music preference and violent delinquency. Hypothesis development is discussed in more detail in Chapter 2.

Step 4: Operationalize Concepts

Operationalization involves the process of giving the concepts in your study a working definition and determining how each concept in your study will be measured. For example, in Step 3, the variables were music preference and violent delinquency. The process of operationalization involves determining how music preference and violent delinquency will be measured. Operationalization is further discussed in Chapter 2.

Step 5: Develop the Research Plan and Methodology

The next step is to develop the methodology that will be employed to answer the research questions and test the hypotheses. The research methodology is the blueprint for the study, which outlines how the research is to be conducted. The research questions will determine the appropriate methodology for the study. The research design selected should be driven by the research questions asked. In other words, the research questions dictate the methods used to answer them. The methodology is basically a research plan on how the research questions will be answered and will detail:

1. What group, subjects, or population will be studied and selected? Sampling will be discussed in Chapter 3.

2 . What research design will be used to collect data to answer the research questions? Various research designs will be covered in Chapters 4–7.

You need to have familiarity with all research designs so that you can become an educated consumer of research. A survey cannot answer all research questions, so knowing a lot about surveys but not other research designs will not serve you well as you assess research studies. There are several common designs used in criminal justice and criminology research. Brief descriptions of several common research designs are presented below, but each is discussed in detail in later chapters.

Survey research is one of the most common research designs employed in criminal justice research. It obtains data directly from research participants by asking them questions and is often conducted through self-administered questionnaires and personal interviews. For example, a professor might have her students complete a survey during class to understand the relationship between drug use and self-esteem. Survey research is discussed in Chapter 4.

Experimental designs are used when researchers are interested in determining whether a program, policy, practice, or intervention is effective. For example, a researcher may use an experimental design to determine if boot camps are effective at reducing juvenile delinquency. Experimental design is discussed in Chapter 5.

Field research involves researchers studying individuals or groups of individuals in their natural environment. The researcher is observing closely or acting as part of the group under study and is able to describe in depth not only the subject’s behaviors, but also consider the motivations that drive those behaviors. For example, if a researcher wanted to learn more about gangs and their activities, he may “hang out” with a gang in order to observe their behavior. Field research is discussed in Chapter 6.

A case study is an in-depth analysis of one or a few illustrative cases. This design allows the story behind an individual, a particular offender, to be told and then information from cases studies can be extrapolated to a larger group. Often these studies require the review and analysis of documents such as police reports and court records and interviews with the offender and others. For example, a researcher may explore the life history of a serial killer to try and understand why the offender killed. Case studies are discussed in Chapter 6.

Secondary data analysis occurs when researchers obtain and reanalyze data that was originally collected for a different purpose. This can include reanalyzing data collected from a prior research study, using criminal justice agency records to answer a research question, or historical research. For example, a researcher using secondary data analysis may analyze inmate files from a nearby prison to understand the relationship between custody level assignment and disciplinary violations inside prison. Secondary data analysis is discussed in Chapter 7.

Content analysis requires the assessment of content contained in mass communication outlets such as newspapers, television, magazines, and the like. In this research design, documents, publications, or presentations are reviewed and analyzed. For example, a researcher utilizing content analysis might review true crime books involving murder to see how the characteristics of the offender and victim in the true crime books match reality as depicted in the FBI’s Supplemental Homicide Reports. Content analysis is discussed in Chapter 7.

Despite the options these designs offer, other research designs are available and will be discussed later in the text. Ultimately, the design used will depend on the nature of the study and the research questions asked.

Step 6: Execute the Research Plan and Collect Data

The next step in the research process is the collection of the data based on the research design developed. For example, if a survey is developed to study the relationship between gang membership and violent delinquency, the distribution and collection of surveys from a group of high school students would occur in this step. Data collection is discussed in several chapters throughout this text.

Step 7: Analyze Data

After the data have been collected, the next phase in the research process involves analyzing the data through various and appropriate statistical techniques. The most common means for data analysis today is through the use of a computer and statistically oriented software. Data analysis and statistics are discussed in Chapter 9.

Step 8: Report Findings, Results, and Limitations

Reporting and interpreting the results of the study make up the final step in the research process. The findings and results of the study can be communicated through reports, journals, books, or computer presentations. At this step, the results are reported and the research questions are answered. In addition, an assessment is made regarding the support or lack of support for the hypotheses tested. It is also at this stage that the researcher can pose additional research questions that may now need to be answered as a result of the research study. In addition, the limitations of the study, as well as the impact those limitations may have on the results of the study, will be described by the researcher. All research has limitations, so it is incumbent on the researcher to identify those limitations for the reader. The process of assessing the quality of research will be discussed in Chapter 8.

Research in Action: Impacting Criminal Justice Operations

Research in the criminal justice system has had significant impacts on its operations. The following sections provide an example of research that has significantly impacted each of the three main components of the criminal justice system: police, courts, and corrections. The purpose of this section is to demonstrate that research has aided the positive development and progression of the criminal justice system.

Police Research Example 76

The efforts of criminal justice researchers in policing have been important and have created the initial and critical foundation necessary for the further development of effective and productive law enforcement. One seminal study asked: How important is it for the police to respond quickly when a citizen calls? The importance of rapid response was conveyed in a 1973 National Commission on Productivity Report despite the fact that there was very little empirical evidence upon which to base this assumption. In fact, the Commission stated “there is no definitive relationship between response time and deterrence, but professional judgment and logic do suggest that the two are related in a strong enough manner to make more rapid response important.” 77 Basically the Commission members were stating that we don’t have any research evidence that response times are important, but we “know” that they are. Police departments allocated substantial resources to the patrol function and deployed officers in an effort to improve response time through the use of the 9-1-1 telephone number, computer-assisted dispatch, and beat assignment systems. Officers were typically assigned to a patrol beat. When the officers were not answering calls for service, they remained in their assigned beats so they could immediately respond to an emergency.

The data for the project were collected as part of a larger experiment on preventive patrol carried out in Kansas City, Missouri, between October 1972 and September 1973. 78 To determine the impact of response time, researchers speculated that the following variables would be influenced by response time: 1) the outcome of the response, 2) citizen satisfaction with response time, and 3) citizen satisfaction with the responding officer. Several data sources were used in the study. First, surveys were completed after all citizen-initiated calls (excluding automobile accidents) that involved contact with a police officer. The survey instrument consisted of questions to assess the length of time to respond to a call and the outcome of the call (i.e., arrest). Over 1,100 surveys were completed. Second, a follow-up survey was mailed to citizens whom the police had contacted during their response. These surveys asked questions to assess citizen satisfaction with response time and outcome. Over 425 of these surveys were returned.

The data collected during the study showed that response time did not determine whether or not the police made an arrest or recovered stolen property. This was the most surprising finding from the study because it challenged one of the basic underlying principles of police patrol. Researchers attributed the lack of significance to the fact that most citizens waited before calling the police. Rapid response simply did not matter in situations where citizens delayed in reporting the crime.

Rapid response time was not only believed to be important in determining the outcome of a response (i.e., more likely to lead to an arrest), it was also considered an important predictor of citizen satisfaction. Data from the study showed that when the police arrived sooner than expected, citizens were more satisfied with response time. However, subsequent research has shown that citizens are also satisfied with a delayed response as long as the dispatcher sets a reasonable expectation for when the patrol officer will arrive. Response time was also the best predictor of how satisfied a citizen was with the responding officer. It was further revealed that citizens became dissatisfied with the police when they were not informed of the outcome (i.e., someone was arrested). Again, these findings indicate the need for dispatchers and patrol officers to communicate with complainants regarding when they should expect an officer to arrive and the outcome of the call.

Based on the results of the response time study, the researchers concluded that rapid response was not as important as police administrators had thought. Response time was not related to an officer’s ability to make an arrest or recover stolen property. Results from the response time study challenged traditional beliefs about the allocation of patrol in our communities. Based on tradition knowledge, as previously discussed, rapidly responding to calls for service is what the police had always done since they started using patrol vehicles. In addition, common sense, as previously discussed, played a role in the practice of rapid response to calls for service; it just made sense that if a patrol officer arrives sooner, she will be more likely to make an arrest.

Prior to the research, police departments operated under the assumption that rapid response was a crucial factor in the ability of an officer to solve a crime and an important predictor of citizen satisfaction. In response to the research on rapid response, many police departments changed the way they responded to calls for service. Many departments adopted a differential police response approach. Differential police response protocols allow police departments to prioritize calls and rapidly dispatch an officer only when an immediate response is needed (i.e., crimes in progress). For crimes in progress, rapid response is critical and may reduce the injuries sustained by the victim as well, but these emergency calls usually account for less than 2% of all 9-1-1 calls for police service. For nonemergency calls, an officer is either dispatched at a later time when the officer is available or a report is taken over the phone or through some other means. Differential police response has been shown to save departments money and give patrol officers more time to engage in community-oriented and proactive policing activities. The benefits for a department are not at the expense of the public. In fact, a study by Robert Worden found a high degree of citizen satisfaction with differential police response. 79

Courts Research Example 80

Research on the courts component of the criminal justice system, while far from complete, has produced direct effects on the operations of the criminal justice system. The study reviewed in this section asked the following research question: Are jurors able to understand different legal rules for establishing a defendant’s criminal responsibility? The study described below explored the issue of criminal responsibility as it applies to the insanity defense in the United States. For several years, the M ’ Naghten rule was the legal rule applied in all courts of the United States. Under M ’ Naghten, criminal responsibility was absent when the offender did not understand the nature of his actions due to failure to distinguish “right” from “wrong.” This is known as the “right/wrong test” for criminal responsibility. The case of Durham v. United States was heard in the U.S. Court of Appeals for the District of Columbia and offered an alternative test for criminal responsibility and insanity. The legal rule emerging from Durham was that criminal responsibility was absent if the offense was a product of mental disease or defect. This ruling provided psychiatrists with a more important role at trial because of the requirement that the behavior be linked to a mental disorder that only a psychiatrist could officially determine.

At the time of Simon’s 1967 study, most courts across the country still followed the M ’ Naghten rule. Questions arose, however, regarding whether juries differed in their understanding of M ’ Naghten versus Durham and, in turn, whether this resulted in differences in their ability to make informed decisions regarding criminal responsibility in cases involving the insanity defense. The study was designed to determine the effect of different legal rules on jurors’ decision-making in cases where the defense was insanity. There was a question of whether there was a difference between the rules to the extent that jurors understood each rule and could capably apply it.

Simon conducted an experimental study on jury deliberations in cases where the only defense was insanity. 81 Utilizing a mock jury approach, Simon took the transcripts of two actual trials with one reflecting the use of the M ’ Naghten rule and the other the Durham rule. Both cases were renamed and the transcripts were edited to constitute a trial of 60–90 minutes in length. These edited transcripts were then recorded, with University of Chicago Law School faculty as the attorneys, judges, and witnesses involved in each case. Groups of 12 jurors listened to each trial with instruction provided at the end regarding the particular rule of law ( M ’ Naghten or Durham) for determining criminal responsibility. Each juror submitted a written statement with his or her initial decision on the case before jury deliberations, and the juries’ final decisions after deliberation were also reported.

Simon found significant differences in the verdicts across the two groups ( M ’ Naghten rule applied and Durham rule applied) even when the case was the same. For the M ’ Naghten version of the case, the psychiatrists stated that the defendant was mentally ill yet knew right from wrong during the crime. These statements/instructions should have led to a guilty verdict on the part of the mock jury. As expected, the M ’ Naghten juries delivered guilty verdicts in 19 of the 20 trials, with one hung jury. For the Durham version of the case, the psychiatrists stated that the crime resulted from the defendant’s mental illness, which should have lead to acquittal. However, the defendant was acquitted in only five of the 26 Durham trials. Twenty-six groups of 12 jurors were exposed to the Durham version of the trial and the case was the same each time. Simon interpreted these results as suggesting that jurors were unambiguous in their interpretations and applications of M ’ Naghten (due to the consistency in guilty verdicts), but they were less clear on the elements of Durham and how to apply it (reflected by the mix of guilty, not guilty, and hung verdicts). 82

After Simon’s study, most states rejected the Durham test. Recall her finding that the Durham rule produced inconsistent verdicts. She interpreted this finding as Durham being no better than providing no guidance to jurors on how to decide the issue of insanity. The observation helped to fuel arguments against the use of Durham, which, in turn, contributed to its demise as a legal rule. Today, only New Hampshire uses a version of the Durham rule in insanity cases.

WHAT RESEARCH SHOWS: IMPACTING CRIMINAL JUSTICE OPERATIONS

The Punishment Cost of Being Young, Black, and Male

Steffensmeier, Ulmer, and Kramer 83 hypothesized that African Americans overall were not likely to be treated more harshly than white defendants by the courts because it was only particular subgroups of minority defendants that fit with court actors’ stereotypes of “more dangerous” offenders. In particular, they argued that younger African American males not only fulfilled this stereotype more than any other age, race, and gender combination, they were also more likely to be perceived by judges as being able to handle incarceration better than other subgroups.

In order to test their hypotheses, the researchers examined sentencing data from Pennsylvania spanning four years (1989–1992). Almost 139,000 cases were examined. The sentences they examined included whether a convicted defendant was incarcerated in prison or jail, and the length of incarceration in prison or jail. The researchers found that offense severity and prior record were the most important predictors of whether a convicted defendant was incarcerated and the length of incarceration. The authors found that the highest likelihood of incarceration and the longest sentences for males were distributed to African Americans aged 18–29 years. Their analysis of females revealed that white females were much less likely than African American females to be incarcerated, regardless of the age group examined. Taken altogether, the analysis revealed that African American males aged 18–29 years maintained the highest odds of incarceration and the longest sentences relative to any other race, sex, and age group.

Overall, this research showed that judges focused primarily on legal factors (offense severity and prior record) when determining the sentences of convicted offenders. These are the factors we expect judges to consider when making sentencing decisions. However, the research also found that judges base their decisions in part on extralegal factors, particularly the interaction of a defendant’s age, race, and gender. This research expanded our knowledge beyond the impact of singular factors on sentencing to expose the interaction effects of several variables (race, gender, and age). Court personnel are aware of these interaction effects based on this study, and others that followed, as well as their personal experiences in the criminal justice system. Identification and recognition of inequities in our justice system (in this case that young, African American males are punished more severely in our justice system) is the first step in mitigating this inequity.

Corrections Research Example 84

Although the research in corrections is far from complete, it has contributed greatly to the development of innovative programs and the professional development of correctional personnel. The contributions of academic and policy-oriented research can be seen across the whole range of correctional functions from pretrial services through probation, institutional corrections, and parole.

Rehabilitation remained the goal of our correctional system until the early 1970s, when the efficacy of rehabilitation was questioned. Violent crime was on the rise, and many politicians placed the blame on the criminal justice system. Some believed the system was too lenient on offenders. Interest in researching the effectiveness of correctional treatment remained low until 1974 when an article written by Robert Martinson and published in Public Interest titled “What Works? Questions and Answers about Prison Reform” generated enormous political and public attention to the effectiveness of correctional treatment. 85

Over a six-month period, Martinson and his colleagues reviewed all of the existing literature on correctional treatment published in English from 1945 to 1967. Each of the articles was evaluated according to traditional standards of social science research. Only studies that utilized an experimental design, included a sufficient sample size, and could be replicated were selected for review. A total of 231 studies examining a variety of different types of treatment were chosen, including educational and vocational training, individual and group counseling, therapeutic milieus, medical treatment, differences in length and type of incarceration, and community corrections. All of the treatment studies included at least one measure of offender recidivism, such as whether or not offenders were rearrested or violated their parole. The recidivism measures were used to examine the success or failure of a program in terms of reducing crime.

After reviewing all 231 studies, Martinson reported that there was no consistent evidence that correctional treatment reduced recidivism. Specifically, he wrote, “with few and isolated exceptions, the rehabilitative efforts that have been reported so far have had no appreciable effect on recidivism.” 86 Martinson further indicated that the lack of empirical support for correctional treatment could be a consequence of poorly implemented programs. If the quality of the programs were improved, the results may have proved more favorable, but this conclusion was for the most part ignored by the media and policy-makers.

Martinson’s report became commonly referred to as “nothing works” and was subsequently used as the definitive study detailing the failures of rehabilitation. The article had implications beyond questioning whether or not specific types of correctional treatment reduced recidivism. The entire philosophy of rehabilitation was now in doubt because of Martinson’s conclusion that “our present strategies … cannot overcome, or even appreciably reduce, the powerful tendencies of offenders to continue in criminal behavior.” 87

Martinson’s article provided policy makers the evidence to justify spending cuts on rehabilitative programs. Furthermore, it allowed politicians to respond to growing concerns about crime with punitive, get-tough strategies. States began implementing strict mandatory sentences that resulted in more criminals being sent to prison and for longer periods of time. Over the next several years, Martinson’s article was used over and over to support abandoning efforts to treat offenders until rehabilitation became virtually nonexistent in our correctional system.

Chapter Summary

This chapter began with a discussion of sources of knowledge development and the problems with each. To depict the importance of research methods in knowledge development, myths about crime and the criminal justice system were reviewed along with research studies that have dispelled myths. As the introductory chapter in this text, this chapter also provided an overview of the steps in the research process from selecting a topic and conducting a literature review at the beginning of a research study to reporting findings, results, and limitations at the end of the study. Examples of actual research studies in the areas of police, courts, and corrections were also provided in this chapter to demonstrate the research process in action and to illustrate how research has significantly impacted practices within the criminal justice system. In addition, this chapter demonstrated the critical importance of becoming an informed consumer of research in both your personal and professional lives.

Critical Thinking Questions

1. What are the primary sources of knowledge development, and what are the problems with each?

2. How is knowledge developed through research methods different from other sources of knowledge?

3. What myths about crime and criminal justice have been dispelled through research? Give an example of a research study that dispelled a myth.

4. Why is it important to be an informed consumer of research?

5. What are the steps in the research process, and what activities occur at each step?

authority knowledge: Knowledge developed when we accept something as being correct and true just because someone in a position of authority says it is true

case study: An in-depth analysis of one or a few illustrative cases

common sense knowledge: Knowledge developed when the information “just makes sense”

content analysis: A method requiring the analyzing of content contained in mass communication outlets such as newspapers, television, magazines, and the like

CSI Effect: Due to the unrealistic portrayal of the role of forensic science in solving criminal cases in television shows, jurors are more likely to vote to acquit a defendant when the expected sophisticated forensic evidence is not presented

differential police response: Methods that allow police departments to prioritize calls and rapidly dispatch an officer only when an immediate response is needed (i.e., crimes in progress)

experimental designs: Used when researchers are interested in determining whether a program, policy, practice, or intervention is effective

field research: Research that involves researchers studying individuals or groups of individuals in their natural environment

Halloween sadism: The practice of giving contaminated treats to children during trick or treating

hypotheses: Statements about the expected relationship between two concepts

illogical reasoning: Occurs when someone jumps to premature conclusions or presents an argument that is based on invalid assumptions

myths: Beliefs that are based on emotion rather than rigorous analysis

operationalization: The process of giving a concept a working definition; determining how each concept in your study will be measured

overgeneralization: Occurs when people conclude that what they have observed in one or a few cases is true for all cases

personal experience knowledge: Knowledge developed through actual experiences

research: The scientific investigation of an issue, problem, or subject utilizing research methods

research methods: The tools that allow criminology and criminal justice researchers to systematically study crime and the criminal justice system and include the basic rules, appropriate techniques, and relevant procedures for conducting research

resistance to change: The reluctance to change our beliefs in light of new, accurate, and valid information to the contrary

secondary data analysis: Occurs when researchers obtain and reanalyze data that were originally collected for a different purpose

selective observation: Choosing, either consciously or unconsciously, to pay attention to and remember events that support our personal preferences and beliefs

survey research: Obtaining data directly from research participants by asking them questions, often conducted through self-administered questionnaires and personal interviews

tradition knowledge: Knowledge developed when we accept something as true because that is the way things have always been, so it must be right

variables: Concepts that have been given a working definition and can take on different values

1 Briggs, Lisa T., Stephen E. Brown, Robert B. Gardner, and Robert L. Davidson. (2009). “D.RA.MA: An extended conceptualization of student anxiety in criminal justice research methods courses.” Journal of Criminal Justice Education 20 (3), 217–226.

2 Betz, N. E. (1978). “Prevalence, distribution, and correlates of math anxiety in college students. Journal of Counseling Psychology 25 (5), 441–448.

3 Briggs, et al., 2009, p. 221.

4 Ibid, p. 221.

5 Ibid, p. 221.

6 Kappeler, Victor E., and Gary W. Potter. (2005). The mythology of crime and criminal justice. Prospect Heights, IL: Waveland.

7 Tennessee v. Gamer, 471 U.S. 1 (1985).

8 Lombroso-Ferrero, Gina. (1911). Criminal man, according to the classification of Cesare Lombroso. New York: Putnam.

9 This study was included in Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall.

10 Petersilia, J., S. Turner, J. Kahan, and J. Peterson. (1985). Granting felons probation: Public risks and alternatives. Santa Monica, CA: Rand.

11 Vito, G. (1986). “Felony probation and recidivism: Replication and response.” Federal Probation 50, 17–25.

12 Conrad, J. (1985). “Research and development in corrections.” Federal Probation 49, 69–71.

13 Finckenauer, James O. (1982). Scared straight! and the panacea phenomenon. Englewood Cliffs, NJ: Prentice Hall.

14 Yarborough, J.C. (1979). Evaluation of JOLT (Juvenile Offenders Learn Truth) as a deterrence program. Lansing, MI: Michigan Department of Corrections.

15 Petrosino, Anthony, Carolyn Turpin-Petrosino, and James O. Finckenauer. (2000). “Well-meaning programs can have harmful effects! Lessons from experiments of programs such as Scared Straight,” Crime & Delinquency 46, 354–379.

16 Robertson, Jordan. “I’m being punished for living right”: Background check system is haunted by errors. December 20, 2011. http://finance.yahoo.com/news /ap-impact-criminal-past-isnt-182335059.html. Retrieved on December 29, 2011.

17 Shelton, D. E. (2008). “The ‘CSI Effect’: Does it really exist?” NIJ Journal 259 [NCJ 221501].

18 Best, Joel. (2011). “Halloween sadism: The evidence.” http://dspace.udel.edu:8080/dspace/bitstream/handle/ 19716/726/Halloween%20sadism.revised%20thru%20201l.pdf?sequence=6. Retrieved on May 7, 2012.

19 Best, Joel. (1985, November). “The myth of the Halloween sadist. Psychology Today 19 (11), p. 14.

21 “Beer compound shows potent promise in prostate cancer battle.” Press release from Oregon State University May 30, 2006. http://oregonstate.edu/ua/ncs/archives/2006/ may/beer-compound-shows-potent-promise-prostate-cancer-battle. Retrieved on January 6, 2012; Colgate, Emily C., Cristobal L. Miranda, Jan F. Stevens, Tammy M. Bray, and Emily Ho. (2007). “Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells,” Cancer Letters 246, 201–209; “Health benefits of red wine exaggerated” http://health.yahoo.net/articles /nutrition/health-benefits-red-wine-exaggerated. Retrieved on January 14, 2012; “Scientific journals notified following research misconduct investigation.” January 11, 2012. http://today.uconn.edu/blog/2012/01/scientific-journals -notified-following-research-misconduct-investigation/. Retrieved on January 14, 2012.

22 Pepinsky, Hal. “The myth that crime and criminality can be measured.” 3–11 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

23 Bullock, Jennifer L., and Bruce A. Arrigo. “The myth that mental illness causes crime.” 12–19 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

24 Friedrichs, David O. “The myth that white-collar crime is only about financial loss.” 20–28 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

25 Kuhns III, Joseph B., and Charisse T. M. Coston. “The myth that serial murderers are disproportionately white males.” 37–44 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

26 Longmire, Dennis R., Jacqueline Buffington-Vollum, and Scott Vollum. “The myth of positive differentiation in the classification of dangerous offenders.” 123–131 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

27 Masters, Ruth E., Lori Beth Way, Phyllis B. Gerstenfeld, Bernadette T. Muscat, Michael Hooper, John P. J. Dussich, Lester Pincu, and Candice A. Skrapec. (2013). CJ realities and challenges, 2nd ed. New York: McGraw-Hill.

32 Brownstein, Henry H. “The myth of drug users as violent offenders.” 45–53 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

33 Goldstein, P. (1985). “The drugs/violence nexus: A tripartite conceptual framework.” Journal of Drug Issues 15, 493–506.

34 Goldstein, P, H. Brownstein, and P. Ryan. (1992). “Drug-related homicide in New York City: 1984 and 1988.” Crime & Delinquency 38, 459–476.

35 Parker, R., and K. Auerhahn. (1998). “Alcohol, drugs, and violence.” Annual Review of Sociology 24, 291–311, p. 291.

36 Buerger, Michael. “The myth of racial profiling.” 97–103 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

37 Cordner, Gary, and Kathryn E. Scarborough. “The myth that science solves crimes.” 104–110 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

38 Willis, James J., Stephen D. Mastrofski, and David Weisburd. “The myth that COMPSTAT reduces crime and transforms police organizations.” 111–119 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

39 Masters, et al., 2013.

43 Scott, Eric J. (1981). Calls for service: Citizen demand and initial police response. Washington, DC: Government Printing Office.

44 Lersch, Kim. “The myth of policewomen on patrol.” 89–96 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

45 Janikowski, Richard. “The myth that the exclusionary rule allows many criminals to escape justice.” 132–139 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

46 Bishop, Donna M. “The myth that harsh punishments reduce juvenile crime.” 140–148 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

47 Immarigeon, Russ. “The myth that public attitudes are punitive.” 149–157 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

48 Acker, James R. “The myth of closure and capital punishment.” 167–175 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

49 Masters, et al., 2013.

52 Lersch, 2006.

53 Newport, Frank. “In U.S., support for death penalty falls to 39-year low.” October 13, 2011. http://www.gallup .com/poll/150089/support-death-penalty-falls-year-low.aspx. Retrieved on April 16, 2012.

54 Applegate, Brandon. “The myth that the death penalty is administered fairly.” 158–166 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

55 Williams, M. R., and J. E. Holcomb. (2001). “Racial disparity and death sentences in Ohio.” Journal of Criminal Justice 29, 207–218.

56 Snell, Tracy L. (2011, December). Capital punishment, 2010—statistical tables. Washington, DC: Bureau of Justice Statistics.

57 Applegate, 2006.

58 Williams and Holcomb, 2001.

59 Applegate, 2006.

61 Wood, Peter B. “The myth that imprisonment is the most severe form of punishment.” 192–200 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

63 Michalowski, Raymond. “The myth that punishment reduces crime.” 179–191 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

64 McShane, Marilyn, Frank P. Williams III, and Beth Pelz. “The myth of prisons as country clubs.” 201–208 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

65 Parker, Mary. “The myth that prisons can be self-supporting.” 209–213 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

66 Blakely, Curtis, and John Ortiz Smykla. “Correctional privatization and the myth of inherent efficiency.” 214–220 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

67 Jones, G. Mark. “The myth that the focus of community corrections is rehabilitation.” 221–226 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

68 Cullen, Francis T., and Paula Smith. “The myth that correctional rehabilitation does not work.” 227–238 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

69 Masters, et al., 2013.

73 Petersilia, Joan. (1990). “When probation becomes more dreaded than prison. Federal Probation 54, 23–27.

75 Wood, P. B., and H. G. Grasmick. (1999). “Toward the development of punishment equivalencies: Male and female inmates rate the severity of alternative sanctions compared to prison.” Justice Quarterly 16, 19–50.

76 Example is excerpted from Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall. This is an excellent book that demonstrates the impact research has had on criminal justice operations.

77 National Commission on Productivity. (1973). Opportunities for improving productivity in police services. Washington, DC: United States Government Printing Office, p. 19.

78 Pate, T., A. Ferrara, R. Bowers, and J. Lorence. (1976). Police response time: Its determinants and effects. Washington, DC: Police Foundation.

79 Worden, R. (1993). “Toward equity and efficiency in law enforcement: Differential police response. American Journal of Police 12, 1–32.

80 Example is excerpted from Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall.

81 Simon, R. (1967). The jury and the defense of insanity. Boston: Little, Brown.

83 Steffensmeier, D., J. Ulmer, & J. Kramer. (1998). “The interaction of race, gender, and age in criminal sentencing: The punishment cost of being young, black, and male. Criminology 36, 763–797.

84 Example is excerpted from Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall.

85 Martinson, R. (1974). “What works? Questions and answers about prison reform.” The Public Interest 10, 22–54.

86 Ibid, p. 25.

87 Ibid, p. 49.

Applied Research Methods in Criminal Justice and Criminology by University of North Texas is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

"I thought AI Proofreading was useless but.."

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.11(2); 2019 Feb

Logo of cureus

Planning and Conducting Clinical Research: The Whole Process

Boon-how chew.

1 Family Medicine, Universiti Putra Malaysia, Serdang, MYS

The goal of this review was to present the essential steps in the entire process of clinical research. Research should begin with an educated idea arising from a clinical practice issue. A research topic rooted in a clinical problem provides the motivation for the completion of the research and relevancy for affecting medical practice changes and improvements. The research idea is further informed through a systematic literature review, clarified into a conceptual framework, and defined into an answerable research question. Engagement with clinical experts, experienced researchers, relevant stakeholders of the research topic, and even patients can enhance the research question’s relevance, feasibility, and efficiency. Clinical research can be completed in two major steps: study designing and study reporting. Three study designs should be planned in sequence and iterated until properly refined: theoretical design, data collection design, and statistical analysis design. The design of data collection could be further categorized into three facets: experimental or non-experimental, sampling or census, and time features of the variables to be studied. The ultimate aims of research reporting are to present findings succinctly and timely. Concise, explicit, and complete reporting are the guiding principles in clinical studies reporting.

Introduction and background

Medical and clinical research can be classified in many different ways. Probably, most people are familiar with basic (laboratory) research, clinical research, healthcare (services) research, health systems (policy) research, and educational research. Clinical research in this review refers to scientific research related to clinical practices. There are many ways a clinical research's findings can become invalid or less impactful including ignorance of previous similar studies, a paucity of similar studies, poor study design and implementation, low test agent efficacy, no predetermined statistical analysis, insufficient reporting, bias, and conflicts of interest [ 1 - 4 ]. Scientific, ethical, and moral decadence among researchers can be due to incognizant criteria in academic promotion and remuneration and too many forced studies by amateurs and students for the sake of research without adequate training or guidance [ 2 , 5 - 6 ]. This article will review the proper methods to conduct medical research from the planning stage to submission for publication (Table ​ (Table1 1 ).

a Feasibility and efficiency are considered during the refinement of the research question and adhered to during data collection.

ConceptResearch IdeaResearch QuestionAcquiring DataAnalysisPublicationPractice
ActionsRelevant clinical problem or issuePrimary or secondaryMeasuringPrespecifiedWriting skillsGuidelines
Literature reviewQuantitative or qualitativeMeasuring toolPredeterminedGuidelinesProtocol
Conceptual frameworkCausal or non-causalMeasurementExploratory allowedJournal selectionPolicy
Collaboration with expertsFeasibility Feasibility Strength and direction of the effect estimateResponse to reviewers’ commentsChange
Seek target population’s opinions on the research topicEfficiency Efficiency    
 Theoretical DesignData Collection DesignStatistical design  
 Domain (external validity)Experimental or non-experimentalData cleaning  
 Valid (confounding minimized)Sampling or censusOutlier  
 Precise (good sample size)Time featuresMissing data  
 Pilot study Descriptive  
   Inferential  
   Statistical assumptions  
   Collaboration with statistician  

Epidemiologic studies in clinical and medical fields focus on the effect of a determinant on an outcome [ 7 ]. Measurement errors that happen systematically give rise to biases leading to invalid study results, whereas random measurement errors will cause imprecise reporting of effects. Precision can usually be increased with an increased sample size provided biases are avoided or trivialized. Otherwise, the increased precision will aggravate the biases. Because epidemiologic, clinical research focuses on measurement, measurement errors are addressed throughout the research process. Obtaining the most accurate estimate of a treatment effect constitutes the whole business of epidemiologic research in clinical practice. This is greatly facilitated by clinical expertise and current scientific knowledge of the research topic. Current scientific knowledge is acquired through literature reviews or in collaboration with an expert clinician. Collaboration and consultation with an expert clinician should also include input from the target population to confirm the relevance of the research question. The novelty of a research topic is less important than the clinical applicability of the topic. Researchers need to acquire appropriate writing and reporting skills from the beginning of their careers, and these skills should improve with persistent use and regular reviewing of published journal articles. A published clinical research study stands on solid scientific ground to inform clinical practice given the article has passed through proper peer-reviews, revision, and content improvement.

Systematic literature reviews

Systematic literature reviews of published papers will inform authors of the existing clinical evidence on a research topic. This is an important step to reduce wasted efforts and evaluate the planned study [ 8 ]. Conducting a systematic literature review is a well-known important step before embarking on a new study [ 9 ]. A rigorously performed and cautiously interpreted systematic review that includes in-process trials can inform researchers of several factors [ 10 ]. Reviewing the literature will inform the choice of recruitment methods, outcome measures, questionnaires, intervention details, and statistical strategies – useful information to increase the study’s relevance, value, and power. A good review of previous studies will also provide evidence of the effects of an intervention that may or may not be worthwhile; this would suggest either no further studies are warranted or that further study of the intervention is needed. A review can also inform whether a larger and better study is preferable to an additional small study. Reviews of previously published work may yield few studies or low-quality evidence from small or poorly designed studies on certain intervention or observation; this may encourage or discourage further research or prompt consideration of a first clinical trial.

Conceptual framework

The result of a literature review should include identifying a working conceptual framework to clarify the nature of the research problem, questions, and designs, and even guide the latter discussion of the findings and development of possible solutions. Conceptual frameworks represent ways of thinking about a problem or how complex things work the way they do [ 11 ]. Different frameworks will emphasize different variables and outcomes, and their inter-relatedness. Each framework highlights or emphasizes different aspects of a problem or research question. Often, any single conceptual framework presents only a partial view of reality [ 11 ]. Furthermore, each framework magnifies certain elements of the problem. Therefore, a thorough literature search is warranted for authors to avoid repeating the same research endeavors or mistakes. It may also help them find relevant conceptual frameworks including those that are outside one’s specialty or system. 

Conceptual frameworks can come from theories with well-organized principles and propositions that have been confirmed by observations or experiments. Conceptual frameworks can also come from models derived from theories, observations or sets of concepts or even evidence-based best practices derived from past studies [ 11 ].

Researchers convey their assumptions of the associations of the variables explicitly in the conceptual framework to connect the research to the literature. After selecting a single conceptual framework or a combination of a few frameworks, a clinical study can be completed in two fundamental steps: study design and study report. Three study designs should be planned in sequence and iterated until satisfaction: the theoretical design, data collection design, and statistical analysis design [ 7 ]. 

Study designs

Theoretical Design

Theoretical design is the next important step in the research process after a literature review and conceptual framework identification. While the theoretical design is a crucial step in research planning, it is often dealt with lightly because of the more alluring second step (data collection design). In the theoretical design phase, a research question is designed to address a clinical problem, which involves an informed understanding based on the literature review and effective collaboration with the right experts and clinicians. A well-developed research question will have an initial hypothesis of the possible relationship between the explanatory variable/exposure and the outcome. This will inform the nature of the study design, be it qualitative or quantitative, primary or secondary, and non-causal or causal (Figure ​ (Figure1 1 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i01.jpg

A study is qualitative if the research question aims to explore, understand, describe, discover or generate reasons underlying certain phenomena. Qualitative studies usually focus on a process to determine how and why things happen [ 12 ]. Quantitative studies use deductive reasoning, and numerical statistical quantification of the association between groups on data often gathered during experiments [ 13 ]. A primary clinical study is an original study gathering a new set of patient-level data. Secondary research draws on the existing available data and pooling them into a larger database to generate a wider perspective or a more powerful conclusion. Non-causal or descriptive research aims to identify the determinants or associated factors for the outcome or health condition, without regard for causal relationships. Causal research is an exploration of the determinants of an outcome while mitigating confounding variables. Table ​ Table2 2 shows examples of non-causal (e.g., diagnostic and prognostic) and causal (e.g., intervention and etiologic) clinical studies. Concordance between the research question, its aim, and the choice of theoretical design will provide a strong foundation and the right direction for the research process and path. 

Research Category Study Title
Diagnostic Plasma Concentration of B-type Natriuretic Peptide (BNP) in the Diagnosis of Left Ventricular Dysfunction
The Centor and McIsaac Scores and the Group A Streptococcal Pharyngitis
Prognostic The Apgar Score and Infant Mortality
SCORE (Systematic COronary Risk Evaluation) for the Estimation of Ten-Year Risk of Fatal Cardiovascular Disease
Intervention Dexamethasone in Very Low Birth Weight Infants
Bariatric Surgery of Obesity in Type 2 Diabetes and Metabolic Syndrome
Etiologic Thalidomide and Reduction Deformities of the Limbs
Work Stress and Risk of Cardiovascular Mortality

A problem in clinical epidemiology is phrased in a mathematical relationship below, where the outcome is a function of the determinant (D) conditional on the extraneous determinants (ED) or more commonly known as the confounding factors [ 7 ]:

For non-causal research, Outcome = f (D1, D2…Dn) For causal research, Outcome = f (D | ED)

A fine research question is composed of at least three components: 1) an outcome or a health condition, 2) determinant/s or associated factors to the outcome, and 3) the domain. The outcome and the determinants have to be clearly conceptualized and operationalized as measurable variables (Table ​ (Table3; 3 ; PICOT [ 14 ] and FINER [ 15 ]). The study domain is the theoretical source population from which the study population will be sampled, similar to the wording on a drug package insert that reads, “use this medication (study results) in people with this disease” [ 7 ].

Acronym Explanation
P = Patient (or the domain)
I = Intervention or treatment (or the determinants in non-experimental)
C = Comparison (only in experimental)
O = Outcome
T = Time describes the duration of data collection
F = Feasible with the current and/or potential available resources
I = Important and interesting to current clinical practice and to you, respectively
N = Novel and adding to the existing corpus of scientific knowledge
E = Ethical research conducted without harm to participants and institutions
R = Relevant to as many parties as possible, not only to your own practice

The interpretation of study results as they apply to wider populations is known as generalization, and generalization can either be statistical or made using scientific inferences [ 16 ]. Generalization supported by statistical inferences is seen in studies on disease prevalence where the sample population is representative of the source population. By contrast, generalizations made using scientific inferences are not bound by the representativeness of the sample in the study; rather, the generalization should be plausible from the underlying scientific mechanisms as long as the study design is valid and nonbiased. Scientific inferences and generalizations are usually the aims of causal studies. 

Confounding: Confounding is a situation where true effects are obscured or confused [ 7 , 16 ]. Confounding variables or confounders affect the validity of a study’s outcomes and should be prevented or mitigated in the planning stages and further managed in the analytical stages. Confounders are also known as extraneous determinants in epidemiology due to their inherent and simultaneous relationships to both the determinant and outcome (Figure ​ (Figure2), 2 ), which are usually one-determinant-to-one outcome in causal clinical studies. The known confounders are also called observed confounders. These can be minimized using randomization, restriction, or a matching strategy. Residual confounding has occurred in a causal relationship when identified confounders were not measured accurately. Unobserved confounding occurs when the confounding effect is present as a variable or factor not observed or yet defined and, thus, not measured in the study. Age and gender are almost universal confounders followed by ethnicity and socio-economic status.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i02.jpg

Confounders have three main characteristics. They are a potential risk factor for the disease, associated with the determinant of interest, and should not be an intermediate variable between the determinant and the outcome or a precursor to the determinant. For example, a sedentary lifestyle is a cause for acute coronary syndrome (ACS), and smoking could be a confounder but not cardiorespiratory unfitness (which is an intermediate factor between a sedentary lifestyle and ACS). For patients with ACS, not having a pair of sports shoes is not a confounder – it is a correlate for the sedentary lifestyle. Similarly, depression would be a precursor, not a confounder.

Sample size consideration: Sample size calculation provides the required number of participants to be recruited in a new study to detect true differences in the target population if they exist. Sample size calculation is based on three facets: an estimated difference in group sizes, the probability of α (Type I) and β (Type II) errors chosen based on the nature of the treatment or intervention, and the estimated variability (interval data) or proportion of the outcome (nominal data) [ 17 - 18 ]. The clinically important effect sizes are determined based on expert consensus or patients’ perception of benefit. Value and economic consideration have increasingly been included in sample size estimations. Sample size and the degree to which the sample represents the target population affect the accuracy and generalization of a study’s reported effects. 

Pilot study: Pilot studies assess the feasibility of the proposed research procedures on small sample size. Pilot studies test the efficiency of participant recruitment with minimal practice or service interruptions. Pilot studies should not be conducted to obtain a projected effect size for a larger study population because, in a typical pilot study, the sample size is small, leading to a large standard error of that effect size. This leads to bias when projected for a large population. In the case of underestimation, this could lead to inappropriately terminating the full-scale study. As the small pilot study is equally prone to bias of overestimation of the effect size, this would lead to an underpowered study and a failed full-scale study [ 19 ]. 

The Design of Data Collection

The “perfect” study design in the theoretical phase now faces the practical and realistic challenges of feasibility. This is the step where different methods for data collection are considered, with one selected as the most appropriate based on the theoretical design along with feasibility and efficiency. The goal of this stage is to achieve the highest possible validity with the lowest risk of biases given available resources and existing constraints. 

In causal research, data on the outcome and determinants are collected with utmost accuracy via a strict protocol to maximize validity and precision. The validity of an instrument is defined as the degree of fidelity of the instrument, measuring what it is intended to measure, that is, the results of the measurement correlate with the true state of an occurrence. Another widely used word for validity is accuracy. Internal validity refers to the degree of accuracy of a study’s results to its own study sample. Internal validity is influenced by the study designs, whereas the external validity refers to the applicability of a study’s result in other populations. External validity is also known as generalizability and expresses the validity of assuming the similarity and comparability between the study population and the other populations. Reliability of an instrument denotes the extent of agreeableness of the results of repeated measurements of an occurrence by that instrument at a different time, by different investigators or in a different setting. Other terms that are used for reliability include reproducibility and precision. Preventing confounders by identifying and including them in data collection will allow statistical adjustment in the later analyses. In descriptive research, outcomes must be confirmed with a referent standard, and the determinants should be as valid as those found in real clinical practice.

Common designs for data collection include cross-sectional, case-control, cohort, and randomized controlled trials (RCTs). Many other modern epidemiology study designs are based on these classical study designs such as nested case-control, case-crossover, case-control without control, and stepwise wedge clustered RCTs. A cross-sectional study is typically a snapshot of the study population, and an RCT is almost always a prospective study. Case-control and cohort studies can be retrospective or prospective in data collection. The nested case-control design differs from the traditional case-control design in that it is “nested” in a well-defined cohort from which information on the cohorts can be obtained. This design also satisfies the assumption that cases and controls represent random samples of the same study base. Table ​ Table4 4 provides examples of these data collection designs.

Data Collection DesignsStudy Title
Cross-sectionalThe National Health and Morbidity Survey (NHMS)
The National Health and Nutrition Examination Survey (NHANES)
CohortFramingham Heart Study
The Malaysian Cohort (TMC) project
Case-controlA Case-Control Study of the Effectiveness of Bicycle Safety Helmets
Open-Angle Glaucoma and Ocular Hypertension: the Long Island Glaucoma Case-Control Study
Nested case-controlNurses' Health Study on Plasma Adipokines and Endometriosis Risk
Physicians' Health Study Plasma Homocysteine and Risk of Myocardial Infarction
Randomized controlled trialThe Women’s Health Initiative
U.K. Prospective Diabetes Study
Cross-overIntranasal-agonist in Allergic Rhinitis Published in the Allergy in 2000
Effect of Palm-based Tocotrienols and Tocopherol Mixture Supplementation on Platelet Aggregation in Subjects with Metabolic Syndrome

Additional aspects in data collection: No single design of data collection for any research question as stated in the theoretical design will be perfect in actual conduct. This is because of myriad issues facing the investigators such as the dynamic clinical practices, constraints of time and budget, the urgency for an answer to the research question, and the ethical integrity of the proposed experiment. Therefore, feasibility and efficiency without sacrificing validity and precision are important considerations in data collection design. Therefore, data collection design requires additional consideration in the following three aspects: experimental/non-experimental, sampling, and timing [ 7 ]:

Experimental or non-experimental: Non-experimental research (i.e., “observational”), in contrast to experimental, involves data collection of the study participants in their natural or real-world environments. Non-experimental researches are usually the diagnostic and prognostic studies with cross-sectional in data collection. The pinnacle of non-experimental research is the comparative effectiveness study, which is grouped with other non-experimental study designs such as cross-sectional, case-control, and cohort studies [ 20 ]. It is also known as the benchmarking-controlled trials because of the element of peer comparison (using comparable groups) in interpreting the outcome effects [ 20 ]. Experimental study designs are characterized by an intervention on a selected group of the study population in a controlled environment, and often in the presence of a similar group of the study population to act as a comparison group who receive no intervention (i.e., the control group). Thus, the widely known RCT is classified as an experimental design in data collection. An experimental study design without randomization is referred to as a quasi-experimental study. Experimental studies try to determine the efficacy of a new intervention on a specified population. Table ​ Table5 5 presents the advantages and disadvantages of experimental and non-experimental studies [ 21 ].

a May be an issue in cross-sectional studies that require a long recall to the past such as dietary patterns, antenatal events, and life experiences during childhood.

Non-experimentalExperimental
Advantages
Quick results are possibleComparable groups
Relatively less costlyHawthorne and placebo effects mitigated
No recall bias Straightforward, robust statistical analysis
No time effectsConvincing results as evidence
Real-life data 
Disadvantages
Observed, unobserved, and residual confoundingExpensive
 Time-consuming
 Overly controlled environment
 Loss to follow-up
 Random allocation of potentially harmful treatment may not be ethically permissible

Once an intervention yields a proven effect in an experimental study, non-experimental and quasi-experimental studies can be used to determine the intervention’s effect in a wider population and within real-world settings and clinical practices. Pragmatic or comparative effectiveness are the usual designs used for data collection in these situations [ 22 ].

Sampling/census: Census is a data collection on the whole source population (i.e., the study population is the source population). This is possible when the defined population is restricted to a given geographical area. A cohort study uses the census method in data collection. An ecologic study is a cohort study that collects summary measures of the study population instead of individual patient data. However, many studies sample from the source population and infer the results of the study to the source population for feasibility and efficiency because adequate sampling provides similar results to the census of the whole population. Important aspects of sampling in research planning are sample size and representation of the population. Sample size calculation accounts for the number of participants needed to be in the study to discover the actual association between the determinant and outcome. Sample size calculation relies on the primary objective or outcome of interest and is informed by the estimated possible differences or effect size from previous similar studies. Therefore, the sample size is a scientific estimation for the design of the planned study.

A sampling of participants or cases in a study can represent the study population and the larger population of patients in that disease space, but only in prevalence, diagnostic, and prognostic studies. Etiologic and interventional studies do not share this same level of representation. A cross-sectional study design is common for determining disease prevalence in the population. Cross-sectional studies can also determine the referent ranges of variables in the population and measure change over time (e.g., repeated cross-sectional studies). Besides being cost- and time-efficient, cross-sectional studies have no loss to follow-up; recall bias; learning effect on the participant; or variability over time in equipment, measurement, and technician. A cross-sectional design for an etiologic study is possible when the determinants do not change with time (e.g., gender, ethnicity, genetic traits, and blood groups). 

In etiologic research, comparability between the exposed and the non-exposed groups is more important than sample representation. Comparability between these two groups will provide an accurate estimate of the effect of the exposure (risk factor) on the outcome (disease) and enable valid inference of the causal relation to the domain (the theoretical population). In a case-control study, a sampling of the control group should be taken from the same study population (study base), have similar profiles to the cases (matching) but do not have the outcome seen in the cases. Matching important factors minimizes the confounding of the factors and increases statistical efficiency by ensuring similar numbers of cases and controls in confounders’ strata [ 23 - 24 ]. Nonetheless, perfect matching is neither necessary nor achievable in a case-control study because a partial match could achieve most of the benefits of the perfect match regarding a more precise estimate of odds ratio than statistical control of confounding in unmatched designs [ 25 - 26 ]. Moreover, perfect or full matching can lead to an underestimation of the point estimates [ 27 - 28 ].

Time feature: The timing of data collection for the determinant and outcome characterizes the types of studies. A cross-sectional study has the axis of time zero (T = 0) for both the determinant and the outcome, which separates it from all other types of research that have time for the outcome T > 0. Retrospective or prospective studies refer to the direction of data collection. In retrospective studies, information on the determinant and outcome have been collected or recorded before. In prospective studies, this information will be collected in the future. These terms should not be used to describe the relationship between the determinant and the outcome in etiologic studies. Time of exposure to the determinant, the time of induction, and the time at risk for the outcome are important aspects to understand. Time at risk is the period of time exposed to the determinant risk factors. Time of induction is the time from the sufficient exposure to the risk or causal factors to the occurrence of a disease. The latent period is when the occurrence of a disease without manifestation of the disease such as in “silence” diseases for example cancers, hypertension and type 2 diabetes mellitus which is detected from screening practices. Figure ​ Figure3 3 illustrates the time features of a variable. Variable timing is important for accurate data capture. 

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i03.jpg

The Design of Statistical Analysis

Statistical analysis of epidemiologic data provides the estimate of effects after correcting for biases (e.g., confounding factors) measures the variability in the data from random errors or chance [ 7 , 16 , 29 ]. An effect estimate gives the size of an association between the studied variables or the level of effectiveness of an intervention. This quantitative result allows for comparison and assessment of the usefulness and significance of the association or the intervention between studies. This significance must be interpreted with a statistical model and an appropriate study design. Random errors could arise in the study resulting from unexplained personal choices by the participants. Random error is, therefore, when values or units of measurement between variables change in non-concerted or non-directional manner. Conversely, when these values or units of measurement between variables change in a concerted or directional manner, we note a significant relationship as shown by statistical significance. 

Variability: Researchers almost always collect the needed data through a sampling of subjects/participants from a population instead of a census. The process of sampling or multiple sampling in different geographical regions or over different periods contributes to varied information due to the random inclusion of different participants and chance occurrence. This sampling variation becomes the focus of statistics when communicating the degree and intensity of variation in the sampled data and the level of inference in the population. Sampling variation can be influenced profoundly by the total number of participants and the width of differences of the measured variable (standard deviation). Hence, the characteristics of the participants, measurements and sample size are all important factors in planning a study.

Statistical strategy: Statistical strategy is usually determined based on the theoretical and data collection designs. Use of a prespecified statistical strategy (including the decision to dichotomize any continuous data at certain cut-points, sub-group analysis or sensitive analyses) is recommended in the study proposal (i.e., protocol) to prevent data dredging and data-driven reports that predispose to bias. The nature of the study hypothesis also dictates whether directional (one-tailed) or non-directional (two-tailed) significance tests are conducted. In most studies, two-sided tests are used except in specific instances when unidirectional hypotheses may be appropriate (e.g., in superiority or non-inferiority trials). While data exploration is discouraged, epidemiological research is, by nature of its objectives, statistical research. Hence, it is acceptable to report the presence of persistent associations between any variables with plausible underlying mechanisms during the exploration of the data. The statistical methods used to produce the results should be explicitly explained. Many different statistical tests are used to handle various kinds of data appropriately (e.g., interval vs discrete), and/or the various distribution of the data (e.g., normally distributed or skewed). For additional details on statistical explanations and underlying concepts of statistical tests, readers are recommended the references as cited in this sentence [ 30 - 31 ]. 

Steps in statistical analyses: Statistical analysis begins with checking for data entry errors. Duplicates are eliminated, and proper units should be confirmed. Extremely low, high or suspicious values are confirmed from the source data again. If this is not possible, this is better classified as a missing value. However, if the unverified suspicious data are not obviously wrong, they should be further examined as an outlier in the analysis. The data checking and cleaning enables the analyst to establish a connection with the raw data and to anticipate possible results from further analyses. This initial step involves descriptive statistics that analyze central tendency (i.e., mode, median, and mean) and dispersion (i.e., (minimum, maximum, range, quartiles, absolute deviation, variance, and standard deviation) of the data. Certain graphical plotting such as scatter plot, a box-whiskers plot, histogram or normal Q-Q plot are helpful at this stage to verify data normality in distribution. See Figure ​ Figure4 4 for the statistical tests available for analyses of different types of data.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i04.jpg

Once data characteristics are ascertained, further statistical tests are selected. The analytical strategy sometimes involves the transformation of the data distribution for the selected tests (e.g., log, natural log, exponential, quadratic) or for checking the robustness of the association between the determinants and their outcomes. This step is also referred to as inferential statistics whereby the results are about hypothesis testing and generalization to the wider population that the study’s sampled participants represent. The last statistical step is checking whether the statistical analyses fulfill the assumptions of that particular statistical test and model to avoid violation and misleading results. These assumptions include evaluating normality, variance homogeneity, and residuals included in the final statistical model. Other statistical values such as Akaike information criterion, variance inflation factor/tolerance, and R2 are also considered when choosing the best-fitted models. Transforming raw data could be done, or a higher level of statistical analyses can be used (e.g., generalized linear models and mixed-effect modeling). Successful statistical analysis allows conclusions of the study to fit the data. 

Bayesian and Frequentist statistical frameworks: Most of the current clinical research reporting is based on the frequentist approach and hypotheses testing p values and confidence intervals. The frequentist approach assumes the acquired data are random, attained by random sampling, through randomized experiments or influences, and with random errors. The distribution of the data (its point estimate and confident interval) infers a true parameter in the real population. The major conceptual difference between Bayesian statistics and frequentist statistics is that in Bayesian statistics, the parameter (i.e., the studied variable in the population) is random and the data acquired is real (true or fix). Therefore, the Bayesian approach provides a probability interval for the parameter. The studied parameter is random because it could vary and be affected by prior beliefs, experience or evidence of plausibility. In the Bayesian statistical approach, this prior belief or available knowledge is quantified into a probability distribution and incorporated into the acquired data to get the results (i.e., the posterior distribution). This uses mathematical theory of Bayes’ Theorem to “turn around” conditional probabilities.

The goal of research reporting is to present findings succinctly and timely via conference proceedings or journal publication. Concise and explicit language use, with all the necessary details to enable replication and judgment of the study applicability, are the guiding principles in clinical studies reporting.

Writing for Reporting

Medical writing is very much a technical chore that accommodates little artistic expression. Research reporting in medicine and health sciences emphasize clear and standardized reporting, eschewing adjectives and adverbs extensively used in popular literature. Regularly reviewing published journal articles can familiarize authors with proper reporting styles and help enhance writing skills. Authors should familiarize themselves with standard, concise, and appropriate rhetoric for the intended audience, which includes consideration for journal reviewers, editors, and referees. However, proper language can be somewhat subjective. While each publication may have varying requirements for submission, the technical requirements for formatting an article are usually available via author or submission guidelines provided by the target journal. 

Research reports for publication often contain a title, abstract, introduction, methods, results, discussion, and conclusions section, and authors may want to write each section in sequence. However, best practices indicate the abstract and title should be written last. Authors may find that when writing one section of the report, ideas come to mind that pertains to other sections, so careful note taking is encouraged. One effective approach is to organize and write the result section first, followed by the discussion and conclusions sections. Once these are drafted, write the introduction, abstract, and the title of the report. Regardless of the sequence of writing, the author should begin with a clear and relevant research question to guide the statistical analyses, result interpretation, and discussion. The study findings can be a motivator to propel the author through the writing process, and the conclusions can help the author draft a focused introduction.

Writing for Publication

Specific recommendations on effective medical writing and table generation are available [ 32 ]. One such resource is Effective Medical Writing: The Write Way to Get Published, which is an updated collection of medical writing articles previously published in the Singapore Medical Journal [ 33 ]. The British Medical Journal’s Statistics Notes series also elucidates common and important statistical concepts and usages in clinical studies. Writing guides are also available from individual professional societies, journals, or publishers such as Chest (American College of Physicians) medical writing tips, PLoS Reporting guidelines collection, Springer’s Journal Author Academy, and SAGE’s Research methods [ 34 - 37 ]. Standardized research reporting guidelines often come in the form of checklists and flow diagrams. Table ​ Table6 6 presents a list of reporting guidelines. A full compilation of these guidelines is available at the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network website [ 38 ] which aims to improve the reliability and value of medical literature by promoting transparent and accurate reporting of research studies. Publication of the trial protocol in a publicly available database is almost compulsory for publication of the full report in many potential journals.

No. Reporting Guidelines and Checklists
  CONSORT - CONsolidated Standards Of Reporting Trials
A 25-item checklist for reporting of randomized controlled trials. There are appropriate extensions to the CONSORT statement due to variations in the standard trial methodology such as different design aspects (e.g., cluster, pragmatic, non-inferiority and equivalence trials), interventions (e.g., herbals) and data (e.g., harms, including the extension for writing abstracts)
SPIRIT - Standard Protocol Items: Recommendations for Interventional Trials
A 33-item checklist for reporting protocols for randomized controlled trials
  COREQ - COnsolidated criteria for REporting Qualitative research
A 32-item checklist for reporting qualitative research of interviews and focus groups
  STARD - STAndards for the Reporting of Diagnostic accuracy studies
A 25-item checklist for reporting of diagnostic accuracy studies
  PRISMA - Preferred Reporting Items for Systematic reviews and Meta-Analyses
A 27-item checklist for reporting of systematic reviews
PRISMA-P - Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocols
A 17-item checklist for reporting of systematic review and meta-analysis protocols
MOOSE - Meta-analysis Of Observational Studies in Epidemiology
A 35-item checklist for reporting of meta-analyses of observational studies
  STROBE - STrengthening the Reporting of OBservational studies in Epidemiology
For reporting of observational studies in epidemiology
  Checklist for cohort, case-control and cross-sectional studies (combined)
  Checklist for cohort studies
  Checklist for case-control studies
  Checklist for cross-sectional studies
Extensions of the STROBE statement
STROME-ID - STrengthening the Reporting Of Molecular Epidemiology for Infectious Diseases
A 42-item checklist
STREGA - STrengthening the REporting of Genetic Associations
A 22-item checklist for reporting of gene-disease association studies
  CHEERS - Consolidated Health Economic Evaluation Reporting Standards
A 24-item checklist for reporting of health economic evaluations

Graphics and Tables

Graphics and tables should emphasize salient features of the underlying data and should coherently summarize large quantities of information. Although graphics provide a break from dense prose, authors must not forget that these illustrations should be scientifically informative, not decorative. The titles for graphics and tables should be clear, informative, provide the sample size, and use minimal font weight and formatting only to distinguish headings, data entry or to highlight certain results. Provide a consistent number of decimal points for the numerical results, and with no more than four for the P value. Most journals prefer cell-delineated tables created using the table function in word processing or spreadsheet programs. Some journals require specific table formatting such as the absence or presence of intermediate horizontal lines between cells.

Decisions of authorship are both sensitive and important and should be made at an early stage by the study’s stakeholders. Guidelines and journals’ instructions to authors abound with authorship qualifications. The guideline on authorship by the International Committee of Medical Journal Editors is widely known and provides a standard used by many medical and clinical journals [ 39 ]. Generally, authors are those who have made major contributions to the design, conduct, and analysis of the study, and who provided critical readings of the manuscript (if not involved directly in manuscript writing). 

Picking a target journal for submission

Once a report has been written and revised, the authors should select a relevant target journal for submission. Authors should avoid predatory journals—publications that do not aim to advance science and disseminate quality research. These journals focus on commercial gain in medical and clinical publishing. Two good resources for authors during journal selection are Think-Check-Submit and the defunct Beall's List of Predatory Publishers and Journals (now archived and maintained by an anonymous third-party) [ 40 , 41 ]. Alternatively, reputable journal indexes such as Thomson Reuters Journal Citation Reports, SCOPUS, MedLine, PubMed, EMBASE, EBSCO Publishing's Electronic Databases are available areas to start the search for an appropriate target journal. Authors should review the journals’ names, aims/scope, and recently published articles to determine the kind of research each journal accepts for publication. Open-access journals almost always charge article publication fees, while subscription-based journals tend to publish without author fees and instead rely on subscription or access fees for the full text of published articles.

Conclusions

Conducting a valid clinical research requires consideration of theoretical study design, data collection design, and statistical analysis design. Proper study design implementation and quality control during data collection ensures high-quality data analysis and can mitigate bias and confounders during statistical analysis and data interpretation. Clear, effective study reporting facilitates dissemination, appreciation, and adoption, and allows the researchers to affect real-world change in clinical practices and care models. Neutral or absence of findings in a clinical study are as important as positive or negative findings. Valid studies, even when they report an absence of expected results, still inform scientific communities of the nature of a certain treatment or intervention, and this contributes to future research, systematic reviews, and meta-analyses. Reporting a study adequately and comprehensively is important for accuracy, transparency, and reproducibility of the scientific work as well as informing readers.

Acknowledgments

The author would like to thank Universiti Putra Malaysia and the Ministry of Higher Education, Malaysia for their support in sponsoring the Ph.D. study and living allowances for Boon-How Chew.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The materials presented in this paper is being organized by the author into a book.

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Learn / Guides / Usability testing guide

Back to guides

Usability testing: your 101 introduction

A multi-chapter look at website usability testing, its benefits and methods, and how to get started with it.

Last updated

Reading time, take your first usability testing step today.

Sign up for a free Hotjar account and make sure your site behaves as you intend it to.

Usability testing is all about getting real people to interact with a website, app, or other product you've built and observing their behavior and reactions to it. Whether you start small by watching session recordings or go all out and rent a lab with eye-tracking equipment, usability testing is a necessary step to make sure you build an effective, efficient, and enjoyable experience for your users.

We start this guide with an introduction to:

What is usability testing

Why usability testing matters

What are the benefits of usability testing

What is not usability testing

The following chapters cover different  testing methods , the  usability questions  they can help you answer, how to  run a usability testing session , how to  analyze and evaluate  your testing results. Finally, we wrap up with 12  checklists and templates  to help you run efficient usability sessions, and the best usability testing tools . 

What is usability testing?

Usability testing is a method of  testing the functionality of a website, app, or other digital product by observing real users as they attempt to complete tasks on it . The users are usually observed by researchers working for a business during either an in-person or, more commonly, a remote usability testing session.

The goal of usability testing is to reveal areas of confusion and uncover pain points in the customer journey to highlight opportunities to improve the overall user experience. Usability evaluation seeks to gauge the practical functionality of the product, specifically how efficiently a user completes a pre-defined goal.

(Note: if all testing activities take place on a website, the terms 'usability testing' and ' website usability testing' can be used interchangeably—which is what we're going to do throughout the rest of this page.)

💡Did you know there are different types of usability tests ?

Moderated usability testing : a facilitator introduces the test to participants, answers their queries, and asks follow-up questions

Unmoderated usability testing : the participants conduct the test without direct supervision, usually with a script

Remote usability testing : the test participants (and the researcher, in the case of moderated usability testing) conduct the test online or, more rarely, over the phone

In-person usability testing : the test participants and the researcher(s) are in the same location

Hotjar Engage lets you conduct remote, moderated usability testing with your own users or testers from our pool of 175,000+ participants.

what is the significance of conducting research study

What is the difference between usability testing and user testing?

While the terms are often used interchangeably, usability testing and user testing differ in scope. 

They are both, however, a part of UX testing—a more comprehensive approach aiming to analyze the user experience at every touchpoint, including users’ perception of a digital product or service’s performance, emotional response, perceived value, and satisfaction with UX design, as well as their overall impression of the company and brand.

what is the significance of conducting research study

User testing is a research method that uses real people to evaluate a product or service by observing their interactions and gathering feedback. 

By comparison with usability testing, user testing insights reveal:

What users think about when using your product or service

How they perceive your product or service

What are their user needs

Usability testing, on the other hand, has a more focused approached, by seeking to answer questions like:

Are there bugs or other errors impacting user flow?

Can users complete their task efficiently?

Do they understand how to navigate the site?

Why is usability testing important?

Usability testing is done by real-life users who are likely to reveal issues that people familiar with a website can no longer identify—very often, in-depth knowledge makes it easy for designers, marketers, and product owners to miss a website's usability issues.

Bringing in new users to test your site and/or observing how real people are already using it are effective ways to determine whether your visitors:

Understand how your site works and don't get 'lost' or confused

Can complete the main actions they need to

Don't encounter usability issues or bugs 

Have a functional and efficient experience

Notice any other usability problems

This type of user research is exceptionally important with new products or new design updates: without it, you may be stuck with a  UX design  process that your team members understand, but your target audience will not.

I employ usability testing when I’m looking to gut-check myself as a designer. Sometimes I run designs by my cross-functional squad or the design team and we all have conflicting feedback. The catch is, we’re not always our user so it’s hard to sift through and agree on the best way forward. 

Usability testing cuts through the noise and reveals if the usability of a proposed design meets basic expectations. It’s a great way to quickly de-risk engineering investment. 

I also like to iterate on designs as we receive more and more information, so usability testing is a great way to move fast and not break too many things in the process.

Top 8 benefits of website usability testing

Your website can benefit from usability testing no matter where it is in the development process, from prototyping all the way to the finished product. You can also continue to test the user experience as you iterate and improve your product over time.

Employing tests with real users helps you:

Validate your prototype . Bring in users in the early stages of the development process, and test whether they’re experiencing any issues before locking down a final product. Do they encounter any bugs ? Does your site or product behave as expected when users interact with it? Testing on a prototype first can validate your concept and help you make plans for future functionality before you spend a lot of money to build out a complete website.

Confirm your product meets expectations.  Once your product is completed, test usability again to make sure everything works the way it was intended. How's the ease of use? Is something still missing in the interface?

Identify issues with complex flows . If there are functions on your site that need users to follow multiple steps (for example an ecommerce checkout process ), run usability testing to make sure these processes are as straightforward and intuitive as possible.

Complement and illuminate other data points . Usability testing can often provide the why behind data points accumulated from other methods: your funnel analysis might show you that visitors drop off your site , and conducting usability testing can highlight underlying issues with pages with high churn rate.

Catch minor errors . In addition to large-scale usability issues, usability testing can help identify smaller errors. A new set of eyes is more likely to pick up on broken links, site errors, and grammatical issues that have been inadvertently glossed over. Usability testing can also validate fixes made after identifying those errors.

💡Pro tip: enable console tracking in Hotjar and filter session recordings by ‘Error’ to watch sessions of users who ran into a JavaScript error.

Open the console from the recording player to understand where the issue comes from, fix the issue, and run a usability test to validate the fix.

Develop empathy.  It's not unusual for the people working on a project to develop tunnel vision around their product and forget they have access to knowledge that their typical website visitor may not have. Usability testing is a good way to develop some empathy for the real people who are using and will be using your site, and look at things from their perspective.

Get buy-in for change.  It's one thing to know about a website issue; it's another to see users actually struggle with it. When it's evident that something is being misunderstood by users, it's natural to want to make it right. Watching short clips of key usability testing findings can be a very persuasive way to lobby for change within your organization.

Ultimately provide a better user experience.  Great customer experience  is essential for a successful product. Usability testing can help you identify issues that wouldn't be uncovered otherwise and create the most user-friendly product possible.

What usability testing is not

There are several UX tools and user testing tools that help improve the customer experience , but don't really qualify as 'usability testing tools' because they don't explicitly evaluate the functionality of a product: 

A/B testing : A/B testing is a way to experiment with multiple versions of a web page to see which is most effective. While it can be used to test changes based on user testing, it is not a usability testing tool.

Focus groups : focus groups are a type of user testing , for which researchers gather a group of people together to discuss a specific topic. Usually, the goal is to learn people's opinions about a product or service, not to test how they use it.

Surveys : use surveys to gauge user experience. Because they do not allow you to actually observe visitors on the site in action, surveys are not considered usability testing—though they may be used in conjunction with it via a website usability survey .

Heatmaps : heatmaps offer a visual representation of how users interact with the page by showing the hottest (most engaged with) and coolest (least engaged with) parts of it. The click , scroll , and move maps allow you to see how users in aggregate engage with a website, but they are still technically not usability testing.

User acceptance testing : this is often the last phase of the software-testing process, where testers go through a calibrated set of steps to ensure the software works correctly. This is a technical test of QA (quality assurance), not a way to evaluate if the product is user-friendly and efficient. 

In-house proper use testing : people in your company probably test software all the time, but this is not usability testing. Employees are inherently biased, making them unable to give the kind of honest results that real users can.

How to get started

Your website's user interface should be straightforward and easy to use, and usability testing is an essential step in getting there. But to get the most actionable results, testing must be done correctly—you will need to reproduce normal-use conditions exactly.

One of the easiest ways to get started with usability testing is through  session recordings . Observing how visitors navigate your website can help you create the best user experience possible. 

Frequently asked questions about usability testing

What is website usability testing.

Website usability testing is the practice of evaluating the functionality of your website by observing visitors’ actions and behavior as they complete specific tasks.  Website usability testing lets you experience your site from the visitors’ perspective so you can identify opportunities to improve the user experience.

What is the purpose of usability testing?

Your in-depth knowledge of, and familiarity with, your website might prevent you from seeing its design or usability issues. When you run a website usability test,  users can identify issues with your site that you may have otherwise missed.  For example  website bugs , missing or broken elements, or an ineffective  call to action (CTA) .

What are some types of website usability tests?

The type of website usability test you need will be based on your available resources, target audience, and goals. The main types of usability tests are:

Remote or in-person

Moderated or unmoderated

Scripted or unscripted

For more detailed information about the types of usability tests and to determine which one you should try on your site, visit the  usability testing methods  chapter of this guide.

How do you run a usability test on a website?

Your goals and objectives will determine both the steps you’ll need to take to run a test on your website and the  usability testing questions  you’ll ask.

Having a plan before you start will help you organize the data and results you collect in an understandable way so you can improve the user experience. These  12 usability testing checklists and templates  are a good place to start.

A 5-step process for moderated usability testing could be:

Plan the session : nature of the study and logistical details like number of participants and moderators, as well as recording setup

Recruit participants : from your user base or via a tester recruitment tool

Design the task

Run the session : don’t forget to record it and take notes

Analyze the insights

Tip: if you want to get started with website usability testing right now, with minimal set-up, we recommend giving Hotjar Engage a try:

Bring your own users into the platform or recruit from our pool of 175,000+ participants

Involve more stakeholders by adding up to 4 moderators and 10 spectators from your team during the session

Focus on gathering insights from user feedback while the platform automatically records and transcripts the session

IMAGES

  1. Research (Significance of the Study)

    what is the significance of conducting research study

  2. PPT

    what is the significance of conducting research study

  3. Significance Of The Study

    what is the significance of conducting research study

  4. Significance of the Study

    what is the significance of conducting research study

  5. What Is Significance Of Study In Research Proposal

    what is the significance of conducting research study

  6. Eight steps to conducting a research study

    what is the significance of conducting research study

VIDEO

  1. Research Profile 1: Why is it so important?

  2. How to become a Billionaire Tip 32: Market analysis. #Market #analysis #Gain #insight

  3. LECTURE 1. THE MEANING OF RESEARCH

  4. Importance of Research

  5. Evaluating Your Invention Idea #inventions #innovation #patent

  6. Significance of the Study

COMMENTS

  1. Significance of the Study

    Significance of the study in research refers to the potential importance, relevance, or impact of the research findings. It outlines how the research contributes to the existing body of knowledge, what gaps it fills, or what new understanding it brings to a particular field of study. ... Suppose a researcher is conducting a study on the ...

  2. What is the Significance of a Study? Examples and Guide

    The most obvious measure of a study's long term research significance is the number of citations it receives from future publications. The thinking is that a study which receives more citations will have had more research impact, and therefore significance, than a study which received less citations.

  3. How To Write Significance of the Study (With Examples)

    4. Mention the Specific Persons or Institutions Who Will Benefit From Your Study. 5. Indicate How Your Study May Help Future Studies in the Field. Tips and Warnings. Significance of the Study Examples. Example 1: STEM-Related Research. Example 2: Business and Management-Related Research.

  4. Significance of a Study: Revisiting the "So What" Question

    An important consequence of interpreting significance as a carefully developed argument for the importance of your research study within a larger domain is that it reveals the advantage of conducting a series of connected studies rather than single, disconnected studies. Building the significance of a research study requires time and effort.

  5. What is the significance of a study and how is it stated in a research

    Answer: In simple terms, the significance of the study is basically the importance of your research. The significance of a study must be stated in the Introduction section of your research paper. While stating the significance, you must highlight how your research will be beneficial to the development of science and the society in general.

  6. What is the Significance of the Study?

    The significance of the study is a section in the introduction of your thesis or paper. It's purpose is to make clear why your study was needed and the specific contribution your research made to furthering academic knowledge in your field. In this guide you'll learn: what the significance of the study means, why it's important to include ...

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  8. Conducting Research: A Step-by-Step Guide

    Steps to Conducting Research. It's essential to note that there are different types of research: Exploratory research identifies a problem or question.; Constructive research examines hypotheses and offers solutions.; Empirical research tests the feasibility of a solution using data.; That being said, the research process may differ based on the purpose of the project.

  9. How to Discuss the Significance of Your Research

    Step 1: The Research Problem. The problem statement can reveal clues about the outcome of your research. Your research should provide answers to the problem, which is beneficial to all those concerned. For example, imagine the problem statement is, "To what extent do elementary and high school teachers believe cyberbullying affects student ...

  10. PDF Why research is important

    6 Research is communicated to interested others; it takes place within a research community. No single research study has much meaning in isolation. Research studies provide the individual pieces that fit together to create the complex mosaic of the literature on a topic. Research can be viewed as a form of collective knowing that reflects

  11. What Is Research, and Why Do People Do It?

    You will also learn much more about the issue of research importance when you read Chap. 5. Exercise 1.7. ... Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in ...

  12. 7 Reasons Why Research Is Important

    Studies and Articles About the Importance of Research. In his article "Epistemology," Yale University's David Truncellito identifies three kinds of knowledge: procedural (competence or know-how), acquaintance (familiarity), and propositional (description of "a fact or a state of affairs").. Brain Research UK (formerly Brain Research Trust), a medical-research charity based in the United ...

  13. How to Conduct Responsible Research: A Guide for Graduate Students

    Abstract. Researchers must conduct research responsibly for it to have an impact and to safeguard trust in science. Essential responsibilities of researchers include using rigorous, reproducible research methods, reporting findings in a trustworthy manner, and giving the researchers who contributed appropriate authorship credit.

  14. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  15. The critical steps for successful research: The research proposal and

    INTRODUCTION. Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society.

  16. 2.1 Why Is Research Important?

    Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863-1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United ...

  17. What Is Ethics in Research and Why Is It Important?

    Another way of defining 'ethics' focuses on the disciplines that study standards of conduct, such as philosophy, theology, law, psychology, ... Codes and Policies for Research Ethics. Given the importance of ethics for the conduct of research, it should come as no surprise that many different professional associations, government agencies, and ...

  18. 1 Chapter 1: The Importance of Research Methods and Becoming an

    The study of research methods is the study of the basic rules, appropriate techniques, and relevant procedures for conducting research. Research methods provide the tools necessary to approach issues in criminal justice from a rigorous standpoint and challenge opinions based solely on nonscientific observations and experiences.

  19. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  20. Planning and Conducting Clinical Research: The Whole Process

    Abstract. The goal of this review was to present the essential steps in the entire process of clinical research. Research should begin with an educated idea arising from a clinical practice issue. A research topic rooted in a clinical problem provides the motivation for the completion of the research and relevancy for affecting medical practice ...

  21. Pilot Study in Research: Definition & Examples

    Advantages. Limitations. Examples. A pilot study, also known as a feasibility study, is a small-scale preliminary study conducted before the main research to check the feasibility or improve the research design. Pilot studies can be very important before conducting a full-scale research project, helping design the research methods and protocol.

  22. (PDF) Significance of Research Process in Research Work

    significance of research, increas ed amount of which makes the progress possible. The Research Process is a pro cess o f mul tiple scientific steps in conducting the research work. Each step is ...

  23. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  24. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  25. Usability Testing: What It Is, Benefits, and What It Isn't

    User testing is a research method that uses real people to evaluate a product or service by observing their interactions and gathering feedback. By comparison with usability testing, user testing insights reveal: What users think about when using your product or service. How they perceive your product or service.