Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science ⋅
  • Biology ⋅
  • Cell (Biology): An Overview of Prokaryotic & Eukaryotic Cells

What Is the End Product of Photosynthesis?

What Is the End Product of Photosynthesis

Describe What a Photosystem Does for Photosynthesis

Humans and most other animals need certain things to survive. Oxygen is one of them, and the carbohydrate glucose is another. Fortunately for them, plants (and certain bacteria and algae) produce both of these as the result of a complex process known as photosynthesis.

The Formula

The formula associated with the process of photosynthesis is

6H 2 O + 6CO 2 = C 6 H 12 O 6 + 6O 2 .

This formula tells you is that six molecules of water plus six molecules of carbon dioxide will produce one molecule of glucose plus six molecules of oxygen. This entire process goes through two distinct stages before it is completed. The first stage is a light-dependent process and the second stage is a light-independent process.

Light Dependent

In the light-dependent process, the electrons of the chloroplasts (special organelles used to carry out photosynthesis) are excited into a higher energy state when they are bombarded with light. These excited electrons cause a series of reactions that produce adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). ATP and NADPH are then used to make carbon bonds in the light-independent process. Water molecules present in the light-dependent process are split. Their oxygen molecules are released into the atmosphere.

Light Independent

Recall the splitting of the water molecules in the light-dependent process that released oxygen molecules into the atmosphere. Since water is H 2 0, there is still a hydrogen atom remaining. This hydrogen atom is used in the light-independent process when plants take carbon dioxide from the atmosphere. The carbon dioxide and hydrogen become bound together through a process called carbon fixation, which forms a non-specific carbohydrate.

Photophosphorylation

Photophosphorylation is the process by which light energy produces NADPH. Special pigments found in the plant’s cells known as chlorophyll make this process possible. The two main types of chlorophyll are chlorophyll A and chlorophyll B. In simple terms, the electrons of water molecules present in chlorophyll B become excited by the presence of light. Chlorophyll B takes one of these excited electrons splitting the H 2 O molecule into H + and O -2 . O -2 is converted into O 2 and released into the atmosphere. The excited electron is attached to a primary electron receptor, and through a series of complex reactions forms NADPH. NADPH is the energy carrier used in carbon fixation.

The Calvin Cycle

Plants produce glucose in a process known as the Calvin cycle. The carbon dioxide captured in the light-independent process is processed in this cycle. For every six molecules of carbon dioxide captured and put into the cycle, one molecule of glucose is produced. The chemical that captures the carbon dioxide for use in the Calvin cycle is ribulose biphosphate.

Related Articles

Phases of photosynthesis & its location, what happens in the light reaction of photosynthesis, organelles involved in photosynthesis, what are the reactants & products in the equation..., how do plant cells obtain energy, how oxygen gas is produced during photosynthesis, how do plants use water in photosynthesis, what is the waste product of photosynthesis, what is reduced & oxidized in photosynthesis, what is the sun's role in photosynthesis, what provides electrons for the light reactions, materials needed for photosynthesis, what is the photosynthesis equation, what are light independent reactions, what are light dependent reactions, how do plants store energy during photosynthesis, chemical ingredients of photosynthesis, difference between aerobic & anaerobic cellular respiration....

  • Royal Society of Chemistry: Photosynthesis
  • YouTube: Khan Academy - Photosynthesis Calvin Cycle
  • YouTube; Khan Academy - 16:58 C-4 Photosynthesis Khan Academy 336K views 21:14 Photosynthesis (updated honors biology) Beverly Biology 53K views 14:37 Photosynthesis: Fun in the Sun ThePenguinProf 115K views 4:54 Science - Amazing Process Of Photosynthesis Designmate Pvt. Ltd. - Official 130K views 15:38 Photosynthesis and Respiration Bozeman Science 711K views 3:09 Learn about photosynthesis learning junction 117K views How to Wake up at 4:30 AM and be Excited - 4 Simple Steps to Wake up Early Primed 4M views Photosynthesis & Respiration pvsciteach 347K views How C3, C4 and CAM Plants Do Photosynthesis BOGObiology 100K views Photosynthesis and the Teeny Tiny Pigment Pancakes Amoeba Sisters 668K views Photosynthesis: Light Reactions and the Calvin Cycle Professor Dave Explains 29K views Introduction to cellular respiration | Cellular respiration | Biology | Khan Academy Khan Academy 2.2M views DNA replication and RNA transcription and translation | Khan Academy Khan Academy 1.3M views Photosynthesis: Comparing C3, C4 and CAM RicochetScience 15K views Overview of glycolysis | Cellular respiration | Biology | Khan Academy Khan Academy 1.8M views Photosynthesis

About the Author

Kelley Boles obtained his B.A. in writing from the University of Central Arkansas in 2005. He has been a freelance writer within his community ever since. His most ambitious project today has been the writing of a comprehensive assembly manual for BBQ smokers manufactured by Royal Oak Enterprises LLC.

Photo Credits

Plant image by Hedgehog from Fotolia.com

Find Your Next Great Science Fair Project! GO

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

What Are the Products of Photosynthesis?

Products of Photosynthesis

Photosynthesis is a set of chemical reactions that plants and other organisms use to make chemical energy in the form of sugar. Like any chemical reaction, photosynthesis has reactants and products . Overall, the reactants of photosynthesis are carbon dioxide and water, while the products of photosynthesis are oxygen and glucose (a sugar).

Here’s a closer look at the products of photosynthesis and the balanced equation for the reaction.

The reactants for photosynthesis are carbon dioxide and water, while the products are the sugar glucose and oxygen.

Balanced Chemical Equation for Photosynthesis

Photosynthesis actually involves many chemical reactions, but the net balanced equation is that six moles of carbon dioxide react with six moles of water to produce one mole of glucose and six moles of oxygen. Light from the Sun provides the activation energy for the reaction. Sometimes light is listed in the balanced equation as a reactant, but it’s usually omitted.

6 CO 2  + 6 H 2 O → C 6 H 12 O 6  + 6 O 2

Carbon Dioxide + Water + Light → Glucose + Oxygen

Closer Look at the Products of Photosynthesis

Photosynthesis occurs in a series of steps that are classified as light-dependent reactions and light-independent reactions. Adding up the reactants and products of these reactions gives the overall equation for photosynthesis, but it’s good to know the inputs and outputs for each stage.

Light-Dependent Reactions

Photosynthesis Overview

The light-dependent reactions or light reactions absorb certain wavelengths of light to make adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The light reactions occur in the chloroplast thylakoid membrane. The overall balanced equation for the light-dependent reactions is:

2 H 2 O + 2 NADP +  + 3 ADP + 3 P i  + light → 2 NADPH + 2 H +  + 3 ATP + O 2

Light-Independent Reactions

While the light reactions use water, the light-independent reactions use carbon dioxide. The light-independent reactions are also called the dark reactions. These reactions do not require darkness, but they don’t depend on light to proceed. In plants, algae, and cyanobacteria, the dark reactions are called the Calvin cycle. Bacteria use different reactions, including the reverse Krebs cycle.

The overall balanced equation for the light-independent reactions (Calvin cycle) in plants is:

3 CO 2  + 9 ATP + 6 NADPH + 6 H +  → C 3 H 6 O 3 -phosphate + 9 ADP + 8 P i  + 6 NADP +  + 3 H 2 O

Finally, the three-carbon product from the Calvin cycle becomes glucose during the process of carbon fixation.

Other Products of Photosynthesis

Glucose is the direct product of photosynthesis, but plants turn most of the sugar into other compounds. These are indirect products. Linking glucose units forms starch and cellulose. Cellulose is a structural material. Plants store starch or link it to fructose (another sugar) to form sucrose (table sugar).

What Is Not a Product of Photosynthesis?

On an exam, you may need to identify which chemical is not a product of photosynthesis. For the overall process, choose any answer except “glucose” or “oxygen.” It’s good to know the overall reactants and products of the light reactions and dark reactions, in case you’re asked about them. The products of the light reactions are ATP , NADPH, protons, and oxygen. The products of the dark reactions are C 3 H 6 O 3 -phosphate, ADP, inorganic phosphate, NADP + , and water.

Where Does Photosynthesis Occur?

In addition to knowing the reactants and products of photosynthesis, you may need to know where photosynthesis occurs in different organisms.

  • In plants, photosynthesis occurs in organelles called chloroplasts. Photosynthetic protists also contain chloroplasts. Leaves contain the highest concentration of chloroplasts in plants. Plants obtain carbon dioxide via diffusion through leaf stomata. Water comes from the roots and travels to the leaves via the xylem . Chlorophyll in chloroplasts absorbs solar energy. Oxygen from photosynthesis exits the plant via leaf stomata.
  • Photosynthesis occurs in photosynthetic bacteria in the plasma membrane. Chlorophyll or related pigments are embedded in this membrane.
  • Bidlack, J.E.; Stern, K.R.; Jansky, S. (2003).  Introductory Plant Biology . New York: McGraw-Hill. ISBN 978-0-07-290941-8.
  • Blankenship, R.E. (2014).  Molecular Mechanisms of Photosynthesis  (2nd ed.). John Wiley & Sons. ISBN 978-1-4051-8975-0.
  • Reece J.B., et al. (2013).  Campbell Biology . Benjamin Cummings. ISBN 978-0-321-77565-8.

Related Posts

What Are the Products of Photosynthesis?

Result of Photosynthesis in Plants

  • Biochemistry
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Photosynthesis is the name given to the set of chemical reactions performed by plants to convert energy from the sun into chemical energy in the form of sugar. Specifically, plants use energy from sunlight to react carbon dioxide and water to produce sugar ( glucose ) and oxygen . Many reactions occur, but the overall chemical reaction for photosynthesis is:

  • 6 CO 2 + 6 H 2 O + light → C 6 H 12 O 6 + 6 O 2
  • Carbon Dioxide + Water + Light yields Glucose + Oxygen

In a plant, the carbon dioxide enters via leaf stomates by diffusion . Water is absorbed through the roots and is transported to leaves through the xylem. Solar energy is absorbed by chlorophyll in the leaves. The reactions of photosynthesis occur in the chloroplasts of plants. In photosynthetic bacteria, the process takes place where chlorophyll or a related pigment is embedded in the plasma membrane. The oxygen and water produced in photosynthesis exit through the stomata.

Key Takeaways

  • In photosynthesis, energy from light is used to convert carbon dioxide and water into glucose and oxygen.
  • For 6 carbon dioxide and 6 water molecules, 1 glucose molecule and 6 oxygen molecules are produced.

Actually, plants reserve very little of the glucose for immediate use. Glucose molecules are combined by dehydration synthesis to form cellulose, which is used as a structural material. Dehydration synthesis is also used to convert glucose to starch, which plants use to store energy.

Intermediate Products of Photosynthesis

The overall chemical equation is a summary of a series of chemical reactions. These reactions occur in two stages. The light reactions require light (as you might imagine), while the dark reactions are controlled by enzymes. They don't require darkness to occur -- they simply don't depend on light.

The light reactions absorb light and harness the energy to power electron transfers. Most photosynthetic organisms capture visible light, although there are some that use infrared light. Products of these reactions are adenosine triphosphate ( ATP ) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). In plant cells, the light-dependent reactions occur in the chloroplast thylakoid membrane. The overall reaction for the light-dependent reactions is:

  • 2 H 2 O + 2 NADP +  + 3 ADP + 3 P i  + light → 2 NADPH + 2 H +  + 3 ATP + O 2

In the dark stage, ATP and NADPH ultimately reduce carbon dioxide and other molecules. Carbon dioxide from the air is "fixed" into a biologically usable form, glucose. In plants, algae, and cyanobacteria, the dark reactions are termed the Calvin cycle. Bacteria may use different reactions, including a reverse Krebs cycle . The overall reaction for the light-independent reaction of a plant (Calvin cycle) is:

  • 3 CO 2  + 9 ATP + 6 NADPH + 6 H +  → C 3 H 6 O 3 -phosphate + 9 ADP + 8 P i  + 6 NADP +  + 3 H 2 O

During carbon fixation, the three-carbon product of the Calvin cycle is converted into the final carbohydrate product.

Factors That Affect the Rate of Photosynthesis

Like any chemical reaction, the availability of the reactants determines the amount of products that can be made. Limiting the availability of carbon dioxide or water slows the production of glucose and oxygen. Also, the rate of the reactions is affected by temperature and the availability of minerals that may be needed in the intermediate reactions.

The overall health of the plant (or other photosynthetic organism) also plays a role. The rate of metabolic reactions is determined in part by the maturity of the organism and whether it's flowering or bearing fruit.

What Is Not a Product of Photosynthesis?

If you're asked about photosynthesis on a test, you may be asked to identify the products of the reaction. That's pretty easy, right? Another form of the question is to ask what is not a product of photosynthesis. Unfortunately, this won't be an open-ended question, which you could easily answer with "iron" or "a car" or "your mom." Usually this is a multiple choice question, listing molecules which are reactants or products of photosynthesis. The answer is any choice except glucose or oxygen. The question may also be phrased to answer what is not a product of the light reactions or the dark reactions. So, it's a good idea to know the overall reactants and products for the photosynthesis general equation, the light reactions, and the dark reactions.

  • Bidlack, J.E.; Stern, K.R.; Jansky, S. (2003). Introductory Plant Biology . New York: McGraw-Hill. ISBN 978-0-07-290941-8.
  • Blankenship, R.E. (2014). Molecular Mechanisms of Photosynthesis (2nd ed.). John Wiley & Sons. ISBN 978-1-4051-8975-0.
  • Reece J.B., et al. (2013). Campbell Biology . Benjamin Cummings. ISBN 978-0-321-77565-8.
  • Photosynthesis Basics - Study Guide
  • Photosynthesis Vocabulary Terms and Definitions
  • The Photosynthesis Formula: Turning Sunlight into Energy
  • Calvin Cycle Steps and Diagram
  • 10 Fascinating Photosynthesis Facts
  • Chloroplast Function in Photosynthesis
  • Chlorophyll Definition and Role in Photosynthesis
  • What Is the Primary Function of the Calvin Cycle?
  • The Balanced Chemical Equation for Photosynthesis
  • All About Photosynthetic Organisms
  • Examples of Chemical Reactions in Everyday Life
  • Thylakoid Definition and Function
  • Simple Chemical Reactions
  • Chemosynthesis Definition and Examples
  • An Introduction to Types of Respiration
  • Understanding Endothermic and Exothermic Reactions

Visible Body Learn Anatomy

  • Overview of Cells
  • Prokaryotic Cells
  • Eukaryotic Cells
  • Prokaryotic vs. Eukaryotic Cells
  • Monocot and Dicot Overview
  • Monocot and Dicot Roots
  • Monocot and Dicot Stems
  • Monocot and Dicot Leaves
  • Monocot Glossary
  • Dicot Glossary
  • DNA and Chromosomes Overview
  • Eukaryotic Chromosomes
  • Prokaryotic Chromosomes
  • Eukaryotic vs. Prokaryotic Chromosomes
  • DNA Structure
  • Red Blood Cells and Platelets
  • Granular Myeloid White Blood Cells
  • Agranular Myeloid White Blood Cells
  • Lymphoid White Blood Cells
  • Reactants and Products

Leaf Structures

Photosynthesis Reactions

  • Evolution Overview
  • Mechanisms of Evolution

Visible Body Learn Biology

Photosynthesis: Reactants and Products

© 2024 Visible Body

Photosynthesis

what is the end product of the photosynthesis

1. Photosynthesis is the process plants use to make their own food.

Like all living things, plants need energy to carry out the processes that keep them alive. They get this energy from food. Humans and most other animals are heterotrophs, meaning we have to consume other organisms—plants, other animals, or some combination of the two—for food. However, plants are autotrophs, meaning they create their own food.

Plants use sunlight to convert water and carbon dioxide into glucose and oxygen in a process called photosynthesis . In biology, this information is often expressed using a chemical equation .

Chemical equations typically show the molecules that enter the reaction (the reactants ) to the left and the molecules that result from the reaction (the products ) to the right, separated by an arrow that indicates a reaction taking place.

[Reactants] → [Products]

You can think of the reactants as the ingredients for preparing a meal and the products as the different dishes in that meal.

With that in mind, let’s take a look at the chemical equation for photosynthesis:

Sunlight + 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 CO 2 = carbon dioxide H 2 O = water C 6 H 12 O 6 = glucose O 2 = oxygen * Sometimes, you’ll see sunlight, or a symbol indicating the sun, over the arrow in the equation.

Therefore, to produce one molecule of glucose (and 6 molecules of oxygen gas), a plant needs 6 molecules of carbon dioxide and 6 molecules of water.

2. The reactants of photosynthesis are carbon dioxide and water.

We’ve established that plants need carbon dioxide (CO 2 ) and water (H 2 O) to produce their food, but where do these reactants come from and how do they get where they need to go inside the plant?

Plants take in carbon dioxide from the air through small openings in their leaves called stomata. Some plants (most monocots) have stomata on both sides of their leaves, and others (dicots and a few monocots) only have stomata on the underside, or lower epidermis.

Plants take in carbon dioxide from the air through small openings in their leaves called stomata.

Plants get water from the soil surrounding their roots, and water gets to the leaves by traveling through the xylem, part of the plant’s vascular system. In leaves, the xylem and phloem are contained in the vascular bundle.

Once inside the leaf, the carbon dioxide and water molecules move into the cells of the mesophyll, the layer of ground tissue between the upper and lower epidermis. Within these cells, organelles called chloroplasts use the carbon dioxide and water to carry out photosynthesis.

3. Light energy from the sun initiates photosynthesis in the chloroplasts of plant cells.

Plant cells have special organelles called chloroplasts, which serve as the sites for the reactions that make up photosynthesis. Their thylakoid membranes contain a pigment called chlorophyll, which absorbs photons (light energy) from the sun, initiating the light-dependent reactions that take place within the thylakoids.

Chloroplasts are organelles within plant cells that serve as the sites for the reactions that make up photosynthesis.

During these reactions, water molecules (H 2 O) are broken down. NADPH and ATP—high energy molecules that power the production of glucose—are produced during the light-dependent reactions, as well. Electrons and hydrogen ions from the water are used to build NADPH. Hydrogen ions also power the conversion of ADP to ATP.

4. The products of photosynthesis are glucose and oxygen.

Did you know that oxygen is actually a waste product of photosynthesis? Although the hydrogen atoms from the water molecules are used in the photosynthesis reactions, the oxygen molecules are released as oxygen gas (O 2 ). (This is good news for organisms like humans and plants that use oxygen to carry out cellular respiration!) Oxygen passes out of the leaves through the stomata.

The light-independent reactions of photosynthesis—also known as the Calvin cycle—use enzymes in the stroma, along with the energy-carrying molecules (ATP and NADPH) from the light-dependent reactions, to break down carbon dioxide molecules (CO 2 ) into a form that is used to build glucose.The mitochondria in the plant’s cells use cellular respiration to break glucose down into a usable form of energy (ATP), which fuels all the plant’s activities.

After the light-independent reactions, glucose is often made into larger sugars like sucrose or carbohydrates like starch or cellulose. Sugars leave the leaf through the phloem and can travel to the roots for storage or to other parts of the plant, where they’re used as energy to fuel the plant’s activities.

Download lab activities

Download biology eBooks

External Sources

An article on chemical equation notation from cK-12.

Related Articles

3D rendering of a dissected frog with the words "A biology course for everyone"

For students

For instructors

Get our awesome anatomy emails!

When you select "Subscribe" you will start receiving our email newsletter. Use the links at the bottom of any email to manage the type of emails you receive or to unsubscribe. See our privacy policy for additional details.

  • User Agreement
  • Permissions

ENCYCLOPEDIC ENTRY

Photosynthesis.

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.

Loading ...

Learning materials, instructional links.

  • Photosynthesis (Google doc)

Most life on Earth depends on photosynthesis .The process is carried out by plants, algae, and some types of bacteria, which capture energy from sunlight to produce oxygen (O 2 ) and chemical energy stored in glucose (a sugar). Herbivores then obtain this energy by eating plants, and carnivores obtain it by eating herbivores.

The process

During photosynthesis, plants take in carbon dioxide (CO 2 ) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose. The plant then releases the oxygen back into the air, and stores energy within the glucose molecules.

Chlorophyll

Inside the plant cell are small organelles called chloroplasts , which store the energy of sunlight. Within the thylakoid membranes of the chloroplast is a light-absorbing pigment called chlorophyll , which is responsible for giving the plant its green color. During photosynthesis , chlorophyll absorbs energy from blue- and red-light waves, and reflects green-light waves, making the plant appear green.

Light-dependent Reactions vs. Light-independent Reactions

While there are many steps behind the process of photosynthesis, it can be broken down into two major stages: light-dependent reactions and light-independent reactions. The light-dependent reaction takes place within the thylakoid membrane and requires a steady stream of sunlight, hence the name light- dependent reaction. The chlorophyll absorbs energy from the light waves, which is converted into chemical energy in the form of the molecules ATP and NADPH . The light-independent stage, also known as the Calvin cycle , takes place in the stroma , the space between the thylakoid membranes and the chloroplast membranes, and does not require light, hence the name light- independent reaction. During this stage, energy from the ATP and NADPH molecules is used to assemble carbohydrate molecules, like glucose, from carbon dioxide.

C3 and C4 Photosynthesis

Not all forms of photosynthesis are created equal, however. There are different types of photosynthesis, including C3 photosynthesis and C4 photosynthesis. C3 photosynthesis is used by the majority of plants. It involves producing a three-carbon compound called 3-phosphoglyceric acid during the Calvin Cycle, which goes on to become glucose. C4 photosynthesis, on the other hand, produces a four-carbon intermediate compound, which splits into carbon dioxide and a three-carbon compound during the Calvin Cycle. A benefit of C4 photosynthesis is that by producing higher levels of carbon, it allows plants to thrive in environments without much light or water. The National Geographic Society is making this content available under a Creative Commons CC-BY-NC-SA license . The License excludes the National Geographic Logo (meaning the words National Geographic + the Yellow Border Logo) and any images that are included as part of each content piece. For clarity the Logo and images may not be removed, altered, or changed in any way.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

March 20, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

ASU for You, learning resources for everyone

  • News/Events
  • Arts and Sciences
  • Design and the Arts
  • Engineering
  • Global Futures
  • Health Solutions
  • Nursing and Health Innovation
  • Public Service and Community Solutions
  • University College
  • Thunderbird School of Global Management
  • Polytechnic
  • Downtown Phoenix
  • Online and Extended
  • Lake Havasu
  • Research Park
  • Washington D.C.
  • Biology Bits
  • Bird Finder
  • Coloring Pages
  • Experiments and Activities
  • Games and Simulations
  • Quizzes in Other Languages
  • Virtual Reality (VR)
  • World of Biology
  • Meet Our Biologists
  • Listen and Watch
  • PLOSable Biology
  • All About Autism
  • Xs and Ys: How Our Sex Is Decided
  • When Blood Types Shouldn’t Mix: Rh and Pregnancy
  • What Is the Menstrual Cycle?
  • Understanding Intersex
  • The Mysterious Case of the Missing Periods
  • Summarizing Sex Traits
  • Shedding Light on Endometriosis
  • Periods: What Should You Expect?
  • Menstruation Matters
  • Investigating In Vitro Fertilization
  • Introducing the IUD
  • How Fast Do Embryos Grow?
  • Helpful Sex Hormones
  • Getting to Know the Germ Layers
  • Gender versus Biological Sex: What’s the Difference?
  • Gender Identities and Expression
  • Focusing on Female Infertility
  • Fetal Alcohol Syndrome and Pregnancy
  • Ectopic Pregnancy: An Unexpected Path
  • Creating Chimeras
  • Confronting Human Chimerism
  • Cells, Frozen in Time
  • EvMed Edits
  • Stories in Other Languages
  • Virtual Reality
  • Zoom Gallery
  • Ugly Bug Galleries
  • Ask a Question
  • Top Questions
  • Question Guidelines
  • Permissions
  • Information Collected
  • Author and Artist Notes
  • Share Ask A Biologist
  • Articles & News
  • Our Volunteers
  • Teacher Toolbox

Question icon

show/hide words to know

ATP: adenosine triphosphate. ATP is the energy-carrying molecule of all cells...... more

Cellulose: the structural material found in the cell wall in most plants. Cellulose is used to make many products, including paper and cloth...  more

Electron transport chain: cell process that uses electrons to generate chemical energy...  more

Ion: an atom or molecule that does not have the same number of electrons as it has protons. This gives the atom or molecule a negative or positive charge...  more

Light-dependent reaction: the first part of photosynthesis where (sun)light energy is captured and stored by a plant...  more

Molecule: a chemical structure that has two or more atoms held together by a chemical bond. Water is a molecule of two hydrogen atoms and one oxygen atom (H2O)...  more

Protein: a type of molecule found in the cells of living things, made up of special building blocks called amino acids.

Starch: made by all green plants and used to store energy for later use...  more

Thylakoid: the disk-shaped parts of a plant cell where light-dependent reactions occur...  more

In with One Energy and out with Another

The light-dependent reactions take place in the thylakoid membrane, inside chloroplasts. Since they are light 'dependent' reactions, you can guess that these reactions need light to work. Remember that the purpose of this first part of photosynthesis is to convert sunlight energy into other forms of energy?

Sunlight through tree branches

The light-dependent reactions of photosynthesis require sunlight. Image by Mell27.

Plants cannot use light energy directly to make sugars. Instead, the plant changes the light energy into a form it can use: chemical energy. Chemical energy is all around us. For example, cars need the chemical energy from gasoline to run. The chemical energy that plants use are stored in ATP and NADPH. ATP and NADPH are two kinds of energy-carrying molecules. These two molecules are not only in plants, as animals use them as well.

A Recipe for Energy

Plants need water to make NADPH. This water is broken apart to release electrons (negatively charged subatomic particles). When water is broken it also creates oxygen, a gas that we all breathe.

The electrons must travel through special proteins stuck in the thylakoid membrane. They go through the first special protein (the photosystem II protein) and down the electron transport chain. Then they pass through a second special protein (photosystem I protein).

Photosystem I and Photosystem II

Wait a second... first electrons go through the second photosystem and second they go through the first? That seems really confusing. Why would they name the photosystems that way?

Water droplets on a plant

Water molecules are broken down to release electrons. These electrons then move down a gradient, storing energy in ATP in the process. Image by Jina Lee.

Photosystem I and II don't align with the route electrons take through the transport chain because they weren't discovered in that order. Photosystem I was discovered first. Later, photosystem II was discovered and found to be earlier in the electron transport chain. But it was too late, the name stuck. Electrons first travel through photosystem II and then photosystem I.

The Electron Transport Chain

While at photosystem II and I, the electrons gather energy from sunlight. How do they do that? Chlorophyll, which is present in the photosystems, soaks up light energy. The energized electrons are then used to make NADPH. The electron transport chain is a series of molecules that accept or donate electrons easily. By moving step-by-step through these, electrons are moved in a specific direction across a membrane. The movement of hydrogen ions are coupled with this. This means that when electrons are moved, hydrogen ions move too. ATP is created when hydrogen ions are pumped into the inner space (lumen) of the thylakoid. Hydrogen ions have a positive charge. Like in magnets, the same charges repel, so the hydrogen ions want to get away from each other. They escape the thylakoid through a membrane protein called ATP synthase. By moving through the protein they give it power, like water moving through a dam. When hydrogen ions move through the protein and down the electron transport chain, ATP is created. This is how plants turn to sunlight into chemical energy that they can use.

The Calvin Cycle: Building Life from Thin Air

How does something like air become the wood of a tree? The answer lies in what makes up the air.

Tree trunk

How can the air surrounding a tree be turned into tree material? Through a complex set of reactions that use the carbon from the air to make other materials. Image by André Karwath.

The air holds different elements like oxygen, carbon, and nitrogen. These elements make up molecules like carbon dioxide (CO2). Carbon dioxide is made out of one carbon atom and two oxygen atoms. Plants take the carbon atom from carbon dioxide and use it to build sugars. This is done using the Calvin cycle. The Calvin cycle occurs inside chloroplasts, but outside the thylakoids (where ATP was created). The ATP and NADPH from the light-dependent reactions are used in the Calvin cycle. Parts of the Calvin cycle are sometimes called light-independent reactions. But don't let the name fool you... those reactions do require sunlight to work. The protein RuBisCO also helps in the process to change carbon from the air into sugars. RuBisCO works slowly, so plants need a lot of it. In fact, RuBisCO is the most abundant protein in the world! The products of the Calvin cycle are used to make the simple sugar glucose. Glucose is used to build more complex sugars like starch and cellulose. Starch stores energy for the plant and cellulose is the stuff of which plants are made.

Images via Wikimedia Commons. Seedling image by Bff.

Read more about: Snacking on Sunlight

View citation, bibliographic details:.

  • Article: Photosynthesis
  • Author(s): Heather Kropp, Angela Halasey
  • Publisher: Arizona State University School of Life Sciences Ask A Biologist
  • Site name: ASU - Ask A Biologist
  • Date published: May 25, 2017
  • Date accessed: May 8, 2024
  • Link: https://askabiologist.asu.edu/photosynthesis

Heather Kropp, Angela Halasey. (2017, May 25). Photosynthesis. ASU - Ask A Biologist. Retrieved May 8, 2024 from https://askabiologist.asu.edu/photosynthesis

Chicago Manual of Style

Heather Kropp, Angela Halasey. "Photosynthesis". ASU - Ask A Biologist. 25 May, 2017. https://askabiologist.asu.edu/photosynthesis

MLA 2017 Style

Heather Kropp, Angela Halasey. "Photosynthesis". ASU - Ask A Biologist. 25 May 2017. ASU - Ask A Biologist, Web. 8 May 2024. https://askabiologist.asu.edu/photosynthesis

Seedling pushing out of the soil

Plants need chemical energy to grow and survive. But how do they convert energy in sunlight into chemical energy?

Snacking on Sunlight

more bio bits

Be Part of Ask A Biologist

By volunteering, or simply sending us feedback on the site. Scientists, teachers, writers, illustrators, and translators are all important to the program. If you are interested in helping with the website we have a Volunteers page to get the process started.

Share to Google Classroom

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Biology

Course: ap®︎/college biology   >   unit 3.

  • Photosynthesis
  • Intro to photosynthesis
  • Breaking down photosynthesis stages
  • Conceptual overview of light dependent reactions

The light-dependent reactions

  • The Calvin cycle
  • Photosynthesis evolution
  • Photosynthesis review

Introduction

  • Plants carry out a form of photosynthesis called oxygenic photosynthesis . In oxygenic photosynthesis, water molecules are split to provide a source of electrons for the electron transport chain, and oxygen gas is released as a byproduct. Plants organize their photosynthetic pigments into two separate complexes called photosystems (photosystems I and II), and they use chlorophylls as their reaction center pigments.
  • Purple sulfur bacteria, in contrast, carry out anoxygenic photosynthesis , meaning that water is not used as an electron source and oxygen gas is not produced. Instead, these bacteria use hydrogen sulfide ( H 2 S ‍   ) as an electron source and produce elemental sulfur as a byproduct. In addition, purple sulfur bacteria have only one photosystem, and they use chlorophyll-like molecules called bacteriochlorophylls as reaction center pigments 1 , 2 , 3 ‍   .

Overview of the light-dependent reactions

  • Light absorption in PSII. When light is absorbed by one of the many pigments in photosystem II, energy is passed inward from pigment to pigment until it reaches the reaction center. There, energy is transferred to P680, boosting an electron to a high energy level. The high-energy electron is passed to an acceptor molecule and replaced with an electron from water. This splitting of water releases the O 2 ‍   we breathe.
  • ATP synthesis. The high-energy electron travels down an electron transport chain, losing energy as it goes. Some of the released energy drives pumping of H + ‍   ions from the stroma into the thylakoid interior, building a gradient. ( H + ‍   ions from the splitting of water also add to the gradient.) As H + ‍   ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as chemiosmosis .
  • Light absorption in PSI. The electron arrives at photosystem I and joins the P700 special pair of chlorophylls in the reaction center. When light energy is absorbed by pigments and passed inward to the reaction center, the electron in P700 is boosted to a very high energy level and transferred to an acceptor molecule. The special pair's missing electron is replaced by a new electron from PSII (arriving via the electron transport chain).
  • NADPH formation. The high-energy electron travels down a short second leg of the electron transport chain. At the end of the chain, the electron is passed to NADP + ‍   (along with a second electron from the same pathway) to make NADPH.

What is a photosystem?

Photosystem i vs. photosystem ii.

  • Special pairs. The chlorophyll a special pairs of the two photosystems absorb different wavelengths of light. The PSII special pair absorbs best at 680 nm, while the PSI special absorbs best at 700 nm. Because of this, the special pairs are called P680 and P700 , respectively.
  • Primary acceptor . The special pair of each photosystem passes electrons to a different primary acceptor. The primary electron acceptor of PSII is pheophytin, an organic molecule that resembles chlorophyll, while the primary electron acceptor of PSI is a chlorophyll called A 0 ‍   7 , 8 ‍   .
  • Source of electrons . Once an electron is lost, each photosystem is replenished by electrons from a different source. The PSII reaction center gets electrons from water, while the PSI reaction center is replenished by electrons that flow down an electron transport chain from PSII.

Photosystem II

Electron transport chains and photosystem i, some electrons flow cyclically, attribution:, works cited:.

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Molecular analysis of photosystems. In Molecular cell biology (4th ed., section 16.4). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK21484/ .
  • Boundless. (2015, July 21). Anoxygenic photosynthetic bacteria. In Boundless microbiology . Retrieved from https://www.boundless.com/microbiology/textbooks/boundless-microbiology-textbook/microbial-evolution-phylogeny-and-diversity-8/nonproteobacteria-gram-negative-bacteria-105/anoxygenic-photosynthetic-bacteria-551-7338/ .
  • Purple sulfur bacteria. (2015, July 16). Retrieved October 24, 2015 from Wikipedia: https://en.wikipedia.org/wiki/Purple_sulfur_bacteria .
  • Soda lake. (2015, September 26). Retrieved October 24, 2015 from Wikipedia: https://en.wikipedia.org/wiki/Soda_lake .
  • Gutierrez, R. Bio41 Week 7 Biochemistry Lectures 11 and 12. Bio41. 2009.
  • Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Accessory pigments funnel energy into reaction centers. In Biochemistry (5th ed., section 19.5). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK22604/ .
  • Pheophytin. (2015, February 11). Retrieved October 28, 2015 from Wikipedia: https://en.wikipedia.org/wiki/Pheophytin .
  • Photosystem I. (2016, June 25). Retrieved from Wikipedia on July 22, 2016: https://en.wikipedia.org/wiki/Photosystem_I .
  • Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Two photosystems generate a proton gradient and NADPH in oxygenic photosynthesis. In Biochemistry (5th ed., section 19.3). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK22538/#_A2681_ .
  • Joliot, P. and Johnson, G. N. (2011). Regulation of cyclic and linear electron flow in higher plants. PNAS, 108(32), 13317-13322. http://dx.doi.org/10.1073/pnas.1110189108 .
  • Johnson, Giles N. (2011). Physiology of PSI cyclic electron transport in higher plants. Biochimica et Biophysica Acta - Bioenergetics , 1807 (8), 906-911. http://dx.doi.org/doi:10.1016/j.bbabio.2010.11.009 .
  • Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). A proton gradient across the thylakoid membrane drives ATP synthesis. In Biochemistry (5th ed., section 19.4). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK22519/ .
  • Takahashi, S., Milward, S. E., Fan, D.-Y., Chow, W. S., and Badger, M. R. (2008). How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiology , 149 (3), 1560-1567. http://dx.doi.org/10.1104/pp.108.134122 .

Additional references:

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

8.6: The Light-Dependent Reactions of Photosynthesis - Processes of the Light-Dependent Reactions

  • Last updated
  • Save as PDF
  • Page ID 13208

Learning Objectives

  • Describe how light energy is converted into ATP and NADPH.

How Light-Dependent Reactions Work

The overall function of light-dependent reactions, the first stage of photosynthesis, is to convert solar energy into chemical energy in the form of NADPH and ATP, which are used in light-independent reactions and fuel the assembly of sugar molecules. Protein complexes and pigment molecules work together to produce NADPH and ATP.

Producing Chemical Energy

Light energy is converted into chemical energy in a multiprotein complex called a photosystem. Two types of photosystems, photosystem I (PSI) and photosystem II (PSII), are found in the thylakoid membrane inside the chloroplast. Each photosystem consists of multiple antenna proteins that contain a mixture of 300–400 chlorophyll a and b molecules, as well as other pigments like carotenoids. Cytochrome b6f complex and ATP synthase are also major protein complexes in the thylakoid membrane that work with the photosystems to create ATP and NADPH.

image

The two photosystems absorb light energy through proteins containing pigments, such as chlorophyll. The light-dependent reactions begin in photosystem II. In PSII, energy from sunlight is used to split water, which releases two electrons, two hydrogen atoms, and one oxygen atom. When a chlorophyll a molecule within the reaction center of PSII absorbs a photon, the electron in this molecule attains a higher energy level. Because this state of an electron is very unstable, the electron is transferred to another molecule creating a chain of redox reactions called an electron transport chain (ETC). The electron flow goes from PSII to cytochrome b6f to PSI; as electrons move between these two photosystems, they lose energy. Because the electrons have lost energy prior to their arrival at PSI, they must be re-energized by PSI. Therefore, another photon is absorbed by the PSI antenna. That energy is transmitted to the PSI reaction center. This reaction center, known as P700, is oxidized and sends a high-energy electron to reduce NADP+ to NADPH. This process illustrates oxygenic photosynthesis, wherein the first electron donor is water and oxygen is created as a waste product.

image

Cytochrome b6f and ATP synthase work together to create ATP. This process, called photophosphorylation, occurs in two different ways. In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump hydrogen ions from the lumen (an area of high concentration) to the stroma (an area of low concentration). The energy released by the hydrogen ion stream allows ATP synthase to attach a third phosphate group to ADP, which forms ATP. This flow of hydrogen ions through ATP synthase is called chemiosmosis because the ions move from an area of high to an area of low concentration through a semi-permeable structure. In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from both PSII and PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to maintain the right proportions of NADPH and ATP, which will carry out light-independent reactions later on.

The net-reaction of all light-dependent reactions in oxygenic photosynthesis is: 2H 2 O + 2NADP+ + 3ADP + 3Pi → O 2 + 2NADPH + 3ATP

  • Light energy splits water and extracts electrons in photosystem II (PSII); then electrons are moved from PSII to cytochrome b6f to photosystem I (PSI) and reduce in energy.
  • Electrons are re-energized in PSI and those high energy electrons reduce NADP + to NADPH.
  • In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump hydrogen ions from the lumen to the stroma; this energy allows ATP synthase to attach a third phosphate group to ADP, which forms ATP.
  • In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from both PSII and PSI to create more ATP and to stop the production of NADPH, maintaining the right proportions of NADPH and ATP.
  • photosystem : Either of two biochemical systems, active in chloroplasts, that are part of photosynthesis.
  • photophosphorylation : The addition of a phosphate (PO43-) group to a protein or other organic molecule by photosynthesis.
  • chemiosmosis : The movement of ions across a selectively permeable membrane, down their electrochemical gradient.

Contributions and Attributions

  • visible light. Provided by : Wiktionary. Located at : http://en.wiktionary.org/wiki/visible_light . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Biology. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...ol11448/latest . License : CC BY: Attribution
  • Boundless. Provided by : Boundless Learning. Located at : www.boundless.com//biology/de...netic-spectrum . License : CC BY-SA: Attribution-ShareAlike
  • wavelength. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/wavelength . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_03.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_02.jpg . License : CC BY: Attribution
  • spectrophotometer. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/spectrophotometer . License : CC BY-SA: Attribution-ShareAlike
  • carotenoid. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/carotenoid . License : CC BY-SA: Attribution-ShareAlike
  • chlorophyll. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/chlorophyll . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_04.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest..._02_05abcd.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_06.jpg . License : CC BY: Attribution
  • photosystem. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/photosystem . License : CC BY-SA: Attribution-ShareAlike
  • Cell Biology/Energy supply/Light Dependent Reactions. Provided by : Wikibooks. Located at : en.wikibooks.org/wiki/Cell_Bi...dent_Reactions . License : CC BY-SA: Attribution-ShareAlike
  • photophosphorylation. Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/photophosphorylation . License : CC BY-SA: Attribution-ShareAlike
  • chemiosmosis. Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/chemiosmosis . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_08.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...08_02_07ab.png . License : CC BY: Attribution

The UBJ

When will we achieve artificial photosynthesis for renewable energy?

Posted: May 9, 2024 | Last updated: May 9, 2024

While challenges remain, experts project that practical artificial photosynthesis systems could become commercially viable within the next decade. Continued research, innovation, and collaboration are essential for overcoming technical barriers and realizing the full potential of artificial photosynthesis for renewable energy production.  ]]>

Timeline for Commercialization

Raising public awareness and education about the potential of artificial photosynthesis is crucial for garnering support and investment in renewable energy research and development. Outreach initiatives, educational programs, and public engagement efforts can increase understanding and appreciation of the importance of artificial photosynthesis for a sustainable future.  ]]>

Public Awareness and Education

Collaboration between researchers, institutions, and industry partners is essential for accelerating progress in artificial photosynthesis. Open access to data, shared resources, and collaborative research initiatives can foster innovation, facilitate technology transfer, and drive collective efforts towards achieving renewable energy goals.  ]]>

Collaboration and Knowledge Sharing

Policy support and funding initiatives play a critical role in advancing artificial photosynthesis research and deployment. Governments, research institutions, and industry stakeholders must collaborate to provide funding, incentives, and regulatory frameworks that accelerate innovation and facilitate the transition to renewable energy sources.  ]]>

Policy and Funding Support

Scaling up artificial photosynthesis from laboratory prototypes to field-deployable systems presents significant challenges in terms of cost, reliability, and performance. Developing scalable manufacturing processes, robust reactor designs, and efficient deployment strategies is essential for commercializing artificial photosynthesis technology.  ]]>

Scale-Up Challenges

Artificial photosynthesis requires an integrated systems approach that combines multiple components, including light absorbers, catalysts, membranes, and reactors, into functional devices. Designing multifunctional systems that optimize energy conversion, mass transport, and product separation is key to achieving practical artificial photosynthesis.  ]]>

Integrated Systems Approach

Materials innovation is crucial for advancing artificial photosynthesis, with researchers exploring new catalysts, semiconductors, and light-absorbing materials optimized for solar fuel production. Tailoring material properties such as bandgap, stability, and catalytic activity is essential for enhancing performance and durability in artificial photosynthesis systems.  ]]>

Materials Innovation

Despite progress, artificial photosynthesis faces technical challenges related to efficiency, stability, and scalability. Improving the efficiency of light harvesting, charge separation, and catalytic reactions remains a priority, along with addressing issues such as catalyst degradation, corrosion, and unwanted side reactions.  ]]>

Technical Challenges

Research in artificial photosynthesis has made significant strides in recent years, with scientists developing novel materials, catalysts, and reactor designs for solar fuel generation. Advances in photoelectrochemical cells, molecular catalysts, and bio-inspired systems have brought artificial photosynthesis closer to practical application.  ]]>

Current State of Research

Artificial photosynthesis aims to replicate and improve upon the efficiency of natural photosynthesis for renewable energy production. By developing artificial systems that mimic the key processes of light absorption, charge separation, and catalytic reactions, scientists seek to generate sustainable fuels such as hydrogen or hydrocarbons directly from sunlight.  ]]>

The Promise of Artificial Photosynthesis

Natural photosynthesis in plants, algae, and certain bacteria serves as the inspiration for artificial photosynthesis. By harnessing sunlight, water, and carbon dioxide, photosynthetic organisms produce carbohydrates and oxygen, capturing solar energy and converting it into chemical energy.  ]]>

Understanding Natural Photosynthesis

More for you.

Justin and Hailey Bieber Expecting First Child

Justin and Hailey Bieber Expecting First Child

Don't use these phrases in a job interview, they are ‘major red flags,’ says ex-Google recruiter

Don't use these phrases in a job interview, they are ‘major red flags,’ says ex-Google recruiter

‘I’ve sacrificed my career’: My husband and I may divorce soon, but he will inherit $1 million. How do I make sure I get half?

‘I’ve sacrificed my career’: My husband and I may divorce soon, but he will inherit $1 million. How do I make sure I get half?

Planet Fitness is ditching the $10 membership it has had for 26 years, and hiking basic prices by 50%

Planet Fitness is ditching the $10 membership it has had for 26 years, and hiking basic prices by 50%

Gloved Hand Holds Blood Vial

Your Blood Type Affects Your Risk of Early Stroke, Scientists Discover

Engoron Faces Questions After Lawyer Says HeAdvisedonTrumpCase

Judge Engoron Faces Questions After Lawyer Says He Advised on Trump Case

How to Get Rid of Carpenter Bees That Are Bugging Your Home in 4 Steps

How to Get Rid of Carpenter Bees That Are Bugging Your Home in 4 Steps

Cabinet Worker Shares Her Tips On How to Pick The Right Size Screw Every Time

Carpenter's Hack for Starting Screws Makes Life So Much Easier

We've studied over 30,000 couples—here are 6 phrases you'll hear in the most successful relationships

We've studied over 30,000 couples—here are 6 phrases you'll hear in the most successful relationships

Technology stocks show signs of ‘breaking down’ ahead of Big Tech earnings

‘No return’ left for U.S. stock market in 2024, says Goldman’s David Kostin

Heart Attack vs. Panic Attack: Differences and Details to Know

Heart Attack vs. Panic Attack: Differences and Details to Know

This Small North Carolina Town Has Stunning Mountain Scenery, Hikes to Waterfalls, and Themed Train Rides

This Small North Carolina Town Has Stunning Mountain Scenery, Hikes to Waterfalls, and Themed Train Rides

Photo

Jimmy Johnson, legendary 49er Hall of Famer, dies at 86

“The big fella averaged 39.9” -Robert Parish on Kareem Abdul-Jabbar giving him welcome-to-the-NBA moment

“The big fella averaged 39.9” -Robert Parish on Kareem Abdul-Jabbar giving him welcome-to-the-NBA moment

Bestselling album from the year you graduated high school

The #1 album from the year you graduated high school

This Artificial Intelligence (AI) Stock Just Plunged. Should You Buy the Dip?

This Artificial Intelligence (AI) Stock Just Plunged. Should You Buy the Dip?

Carter Osborne left his full-time public relations job for his tutoring side hustle

29-year-old's side hustle made $114,000 a year, so he quit his full-time job: I'm more successful and I work less

close up of wolf spider

How To Tell The Difference Between A Safe Wolf Spider And Dangerous Brown Recluse

NFL Schedule Leaks 2024: Tracking Latest Rumors, News as Schedule Release Nears

NFL Schedule Leaks 2024: Tracking Latest Rumors, News Ahead of May 15 Schedule Release

Which Vodka Is Best? A Taste Test of Svedka, Stoli, Grey Goose, and More

Which Vodka Is Best? A Taste Test of Svedka, Stoli, Grey Goose, and More

CameraIcon

What is the end product of photosynthesis?

Photosynthesis: photosynthesis is the process by which plants produce their own food from raw resources such as sunlight, chlorophyll, water, and carbon dioxide. it is the primary source of all food on earth. it is also responsible for the release of oxygen into the atmosphere by green plants. the end product of photosynthesis: glucose and oxygen are the final products of photosynthesis..

flag

COMMENTS

  1. What Is the End Product of Photosynthesis?

    The Formula. The formula associated with the process of photosynthesis is. 6H 2 O + 6CO 2 = C 6 H 12 O 6 + 6O 2. This formula tells you is that six molecules of water plus six molecules of carbon dioxide will produce one molecule of glucose plus six molecules of oxygen. This entire process goes through two distinct stages before it is completed.

  2. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2 ), hydrogen ions (H ...

  3. Photosynthesis review (article)

    In photosynthesis, solar energy is harvested as chemical energy in a process that converts water and carbon dioxide to glucose. Oxygen is released as a byproduct. In cellular respiration, oxygen is used to break down glucose, releasing chemical energy and heat in the process. Carbon dioxide and water are products of this reaction.

  4. 8.1: Overview of Photosynthesis

    Main Structures and Summary of Photosynthesis. Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 8.1.3 8.1. 3 ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in ...

  5. Photosynthesis

    Products of Photosynthesis. The direct products of the light reactions and the Calvin cycle are 3-phosphoglycerate and G3P, two different forms of a 3-carbon sugar molecule. Two of these molecules combined equals one glucose molecule, the product seen in the photosynthesis equation. While this is the main food source for plants and animals ...

  6. The Calvin cycle (article)

    Carbon atoms end up in you, and in other life forms, thanks to the second stage of photosynthesis, known as the Calvin cycle (or the light-independent reactions). Overview of the Calvin cycle In plants, carbon dioxide ( CO 2 ‍ ) enters the interior of a leaf via pores called stomata and diffuses into the stroma of the chloroplast—the site ...

  7. What Are the Products of Photosynthesis?

    The products of photosynthesis are glucose (a sugar) and oxygen. Photosynthesis is a set of chemical reactions that plants and other organisms use to make chemical energy in the form of sugar. Like any chemical reaction, photosynthesis has reactants and products. Overall, the reactants of photosynthesis are carbon dioxide and water, while the ...

  8. Photosynthesis in organisms (article)

    Photosynthesis is powered by energy from sunlight. This energy is used to rearrange atoms in carbon dioxide and water to make oxygen and sugars. Carbon dioxide and water are inputs of photosynthesis. These inputs come from the environment. Oxygen and sugars are outputs of photosynthesis. The oxygen is released into the environment.

  9. What Are the Products of Photosynthesis?

    Photosynthesis is the name given to the set of chemical reactions performed by plants to convert energy from the sun into chemical energy in the form of sugar. Specifically, plants use energy from sunlight to react carbon dioxide and water to produce sugar ( glucose) and oxygen. Many reactions occur, but the overall chemical reaction for ...

  10. Photosynthesis: Reactants and Products

    During photosynthesis, light energy converts carbon dioxide and water (the reactants) into glucose and oxygen (the products). 1. Photosynthesis is the process plants use to make their own food. Like all living things, plants need energy to carry out the processes that keep them alive. They get this energy from food.

  11. Photosynthesis

    Photosynthesis ( / ˌfoʊtəˈsɪnθəsɪs / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their activities.

  12. Photosynthesis

    Photosynthesis - Oxygen, Glucose, Carbon: As has been stated, carbohydrates are the most-important direct organic product of photosynthesis in the majority of green plants. The formation of a simple carbohydrate, glucose, is indicated by a chemical equation, Little free glucose is produced in plants; instead, glucose units are linked to form starch or are joined with fructose, another sugar ...

  13. 2.23: Photosynthesis Summary

    At the end of the light reactions, the energy from sunlight is transferred to NADP +, producing NADPH. This energy in NADPH is then used in the Calvin cycle. ... Though the final product of photosynthesis is glucose, the glucose is conveniently stored as starch. Starch is approximated as (C 6 H 10 O 5) n, where n is in the thousands. Starch is ...

  14. Photosynthesis

    The process. During photosynthesis, plants take in carbon dioxide (CO 2) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose.

  15. Intro to photosynthesis (article)

    Photosynthesis is the process in which light energy is converted to chemical energy in the form of sugars. In a process driven by light energy, glucose molecules (or other sugars) are constructed from water and carbon dioxide, and oxygen is released as a byproduct. The glucose molecules provide organisms with two crucial resources: energy and ...

  16. Photosynthesis

    Photosynthesis is also used by algae to convert solar energy into chemical energy. Oxygen is liberated as a by-product and light is considered as a major factor to complete the process of photosynthesis. Photosynthesis occurs when plants use light energy to convert carbon dioxide and water into glucose and oxygen.

  17. 8.2: The Light-Dependent Reactions of Photosynthesis

    The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy supports the light-independent reactions and fuels the assembly of sugar molecules. The light-dependent reactions are depicted in Figure 8.2.7 8.2. 7.

  18. chapter 7 Flashcards

    Study with Quizlet and memorize flashcards containing terms like What are the end products of photosynthesis? A. water and carbon dioxide B. water and oxygen C. oxygen and carbohydrate D. carbohydrate and water, What organisms are capable of photosynthesis? A. plants only B. plants and algae only C. plants and some bacteria only D. plants, algae, and some bacteria, Which of these is NOT a ...

  19. Photosynthesis and the Electron Transport Chain

    The electron transport chain is a series of molecules that accept or donate electrons easily. By moving step-by-step through these, electrons are moved in a specific direction across a membrane. The movement of hydrogen ions are coupled with this. This means that when electrons are moved, hydrogen ions move too.

  20. Light-dependent reactions (photosynthesis reaction) (article)

    The light-dependent reactions use light energy to make two molecules needed for the next stage of photosynthesis: the energy storage molecule ATP and the reduced electron carrier NADPH. In plants, the light reactions take place in the thylakoid membranes of organelles called chloroplasts.

  21. 8.6: The Light-Dependent Reactions of Photosynthesis

    This process illustrates oxygenic photosynthesis, wherein the first electron donor is water and oxygen is created as a waste product. Figure \(\PageIndex{1}\): Photosystem II: In the photosystem II (PSII) reaction center, energy from sunlight is used to extract electrons from water. The electrons travel through the chloroplast electron ...

  22. Name the end product of photosynthesis.

    Photosynthesis: It is the process by which plants use sunlight, water, and carbon dioxide to make sugar i.e., glucose. Glucose is the food material for plants. In this light energy is converted into chemical energy. The chemical reaction of photosynthesis: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2; The end product of photosynthesis is glucose and ...

  23. When will we achieve artificial photosynthesis for renewable energy?

    Artificial photosynthesis aims to replicate and improve upon the efficiency of natural photosynthesis for renewable energy production. By developing artificial systems that mimic the key processes ...

  24. What are the end product of photosynthesis ? Biology Q&A

    Photosynthesis: Photosynthesis is the process by which plants produce their own food from raw resources such as sunlight, chlorophyll, water, and carbon dioxide. It is the primary source of all food on earth. It is also responsible for the release of oxygen into the atmosphere by green plants. The end product of photosynthesis: