Big Data Analytics in Weather Forecasting: A Systematic Review

  • Review article
  • Published: 28 June 2021
  • Volume 29 , pages 1247–1275, ( 2022 )

Cite this article

research paper topics weather

  • Marzieh Fathi 1 ,
  • Mostafa Haghi Kashani 2 ,
  • Seyed Mahdi Jameii   ORCID: orcid.org/0000-0002-9407-665X 2 &
  • Ebrahim Mahdipour 1  

7678 Accesses

63 Citations

Explore all metrics

A Correction to this article was published on 20 July 2021

This article has been updated

Weather forecasting, as an important and indispensable procedure in people’s daily lives, evaluates the alteration happening in the current condition of the atmosphere. Big data analytics is the process of analyzing big data to extract the concealed patterns and applicable information that can yield better results. Nowadays, several parts of society are interested in big data, and the meteorological institute is not excluded. Therefore, big data analytics will give better results in weather forecasting and will help forecasters to forecast weather more accurately. In order to achieve this goal and to recommend favorable solutions, several big data techniques and technologies have been suggested to manage and analyze the huge volume of weather data from different resources. By employing big data analytics in weather forecasting, the challenges related to traditional data management techniques and technology can be solved. This paper tenders a systematic literature review method for big data analytic approaches in weather forecasting (published between 2014 and August 2020). A feasible taxonomy of the current reviewed papers is proposed as technique-based, technology-based, and hybrid approaches. Moreover, this paper presents a comparison of the aforementioned categories regarding accuracy, scalability, execution time, and other Quality of Service factors. The types of algorithms, measurement environments, modeling tools, and the advantages and disadvantages per paper are extracted. In addition, open issues and future trends are debated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research paper topics weather

Similar content being viewed by others

research paper topics weather

Big Data Analytics Using Data Mining Techniques: A Survey

research paper topics weather

Big Data Analytics: A Comparison of Tools and Applications

research paper topics weather

A brief survey on big data: technologies, terminologies and data-intensive applications

Change history, 20 july 2021.

A Correction to this paper has been published: https://doi.org/10.1007/s11831-021-09630-6

Xiao Z, Liu B, Liu H, Zhang D (2012) Progress in climate prediction and weather forecast operations in China. Adv Atmos Sci 29(5):943–957

Google Scholar  

Bengtsson L (1980) The weather forecast. Pure Appl Geophys 119(3):515–537

Kan L, Yu-Shu L (2005) A rough set based fuzzy neural network algorithm for weather prediction. In: 2005 International conference on machine learning and cybernetics, vol 3. pp 1888–1892

Kan L, Yu-Shu L (2002) Fuzzy case-based reasoning: weather prediction. In: Proceedings of the international conference on machine learning and cybernetics, vol 1. pp 107–110

Weiguo X (2010) The weather prediction method based on artificial immune system. In: 2010 International forum on information technology and applications, vol 2. pp 386–389

Haupt SE, Cowie J, Linden S, McCandless T, Kosovic B, Alessandrini S (2018) Machine learning for applied weather prediction. In: 2018 IEEE 14th international conference on e-science (e-Science). pp 276–277

Chung CYC, Kumar VR (1993) Knowledge acquisition using a neural network for a weather forecasting knowledge-based system. Neural Comput Appl 1(3):215–223

Pandey AK, Agrawal CP, Agrawal M (2017) A hadoop based weather prediction model for classification of weather data. In: 2017 Second international conference on electrical, computer and communication technologies (ICECCT). pp 1–5

Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV (2015) Big data analytics: a survey. J Big Data 2(1):21

Rodríguez-Mazahua L, Rodríguez-Enríquez C-A, Sánchez-Cervantes JL, Cervantes J, García-Alcaraz JL, Alor-Hernández G (2016) A general perspective of big data: applications, tools, challenges and trends. J Supercomput 72(8):3073–3113

Talia D (2013) Clouds for scalable big data analytics. Computer 46(5):98–101

Selvaraj P, Marudappa P (2018) A survey of predictive analytics using big data with data mining. Int J Bioinf Res Appl 14:269

Sharma S, Mangat V (2015) Technology and trends to handle big data: survey. In: 2015 Fifth international conference on advanced computing and communication technologies. pp 266–271

Jain H, Jain R (2017) Big data in weather forecasting: applications and challenges. In: 2017 International conference on big data analytics and computational intelligence (ICBDAC). pp 138–142

Reddy PC, Babu AS (2017) Survey on weather prediction using big data analystics. In: 2017 Second international conference on electrical, computer and communication technologies (ICECCT). pp 1–6

Bendre MR, Thool RC, Thool VR (2015) Big data in precision agriculture: weather forecasting for future farming. In: 2015 1st international conference on next generation computing technologies (NGCT). pp 744–750

Mittal S, Sangwan OP (2019) Big data analytics using data mining techniques: a survey. In: Advanced informatics for computing research, Singapore. Springer Singapore, pp 264–273

Leu J-S, Su K-W, Chen C-T (2014) Ambient mesoscale weather forecasting system featuring mobile augmented reality. Multimed Tools Appl 72(2):1585–1609

Corne D, Dissanayake M, Peacock A, Galloway S, Owens E (2014) Accurate localized short term weather prediction for renewables planning. In: 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG). pp 1–8

Roudier P et al (2014) The role of climate forecasts in smallholder agriculture: lessons from participatory research in two communities in Senegal. Clim Risk Mana 2:42–55

Li J, Xu L, Tang L, Wang S, Li L (2018) Big data in tourism research: a literature review. Tour Manag 68:301–323

Scott D, Lemieux C (2010) Weather and climate information for tourism. Procedia Environ Sci 1:146–183

Hazyuk I, Ghiaus C, Penhouet D (2012) Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part I—Building modeling. Build Environ 51:379–387

Enríquez R, Jiménez MJ, Heras MdR (2016) Solar forecasting requirements for buildings MPC. Energy Procedia 91:1024–1032

Smith DA, Sherry L (2008) Decision support tool for predicting aircraft arrival rates from weather forecasts. In: 2008 Integrated communications, navigation and surveillance conference. pp 1–12

Zhang B, Tang L, Roemer M (2018) Probabilistic planning and risk evaluation based on ensemble weather forecasting. IEEE Trans Autom Sci Eng 15(2):556–566

Braman LM, van Aalst MK, Mason SJ, Suarez P, Ait-Chellouche Y, Tall A (2013) Climate forecasts in disaster management: red cross flood operations in West Africa, 2008. Disasters 37(1):144–164

Akhand MH (2003) Disaster management and cyclone warning system in Bangladesh. In: Zschau J, Küppers A (eds) Early warning systems for natural disaster reduction. Springer, Berlin, pp 49–64

Chen C, Duan S, Cai T, Liu B (2011) Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 85(11):2856–2870

Shi J, Lee W, Liu Y, Yang Y, Wang P (2012) Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Trans Ind Appl 48(3):1064–1069

Lazos D, Sproul AB, Kay M (2014) Optimisation of energy management in commercial buildings with weather forecasting inputs: a review. Renew Sustain Energy Rev 39:587–603

Casas DM, González JÁT, Rodríguez JEA, Pet JV (2009) Using data-mining for short-term rainfall forecasting. In: Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Springer, Berlin, pp 487–490

Katal A, Wazid M, Goudar RH (2013) Big data: issues, challenges, tools and good practices. In: 2013 Sixth international conference on contemporary computing (IC3). pp 404–409

Elgendy N, Elragal A (2014) Big data analytics: a literature review paper. In: Advances in data mining. Applications and theoretical aspects. Springer, Cham, pp 214–227

Shadroo S, Rahmani A (2018) Systematic survey of big data and data mining in internet of things. Comput Netw 139:19–47

Bazzaz Abkenar S, Mahdipour E, Jameii SM, Haghi Kashani M (2021) A hybrid classification method for Twitter spam detection based on differential evolution and random forest. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.6381

Article   Google Scholar  

Pathak AR, Pandey M, Rautaray S (2018) Construing the big data based on taxonomy, analytics and approaches. Iran J Comput Sci 1(4):237–259

Bazzaz Abkenar S, Haghi Kashani M, Mahdipour E, Jameii SM (2021) Big data analytics meets social media: a systematic review of techniques, open issues, and future directions. Telemat Inform 57:101517

Khezr SN, Navimipour NJ (2017) MapReduce and its applications, challenges, and architecture: a comprehensive review and directions for future research. J Grid Comput 15(3):295–321

Amer A-B, Amr M, Salah H (2016) A survey on MapReduce implementations. Int J Cloud Appl Comput IJCAC 6(1):59–87

Senger H et al (2016) BSP cost and scalability analysis for MapReduce operations. Concurr Comput Pract Exp 28(8):2503–2527

Lee D, Kim JW, Maeng S (2014) Large-scale incremental processing with MapReduce. Future Gener Comput Syst 36:66–79

Idris M et al (2015) Context-aware scheduling in MapReduce: a compact review. Concurr Comput Pract Exp 27(17):5332–5349

Karimi Y, Haghi Kashani M, Akbari M, Mahdipour E (2021) Leveraging big data in smart cities: a systematic review. J Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.6379

Bakratsas M, Basaras P, Katsaros D, Tassiulas L (2018) Hadoop MapReduce performance on SSDs for analyzing social networks. Big Data Res 11:1–10

Shabestari F, Rahmani AM, Navimipour NJ, Jabbehdari S (2019) A taxonomy of software-based and hardware-based approaches for energy efficiency management in the Hadoop. J Netw Comput Appl 126:162–177

Patwardhan A, Verma AK, Kumar U (2016) A survey on predictive maintenance through big data. In: Current trends in reliability, availability, maintainability and safety. Springer, Cham, pp 437–445

Yang W, Liu X, Zhang L, Yang LT (2013) Big data real-time processing based on storm. In: 2013 12th IEEE international conference on trust, security and privacy in computing and communications. pp 1784–1787

Philip-Chen CL, Zhang C-Y (2014) Data-intensive applications challenges techniques and technologies: a survey on big data. Inf Sci 275:314–347

Lee J, Hong S, Lee J-H (2014) An efficient prediction for heavy rain from big weather data using genetic algorithm. In: Presented at the proceedings of the 8th international conference on ubiquitous information management and communication, Siem Reap, Cambodia

Sahasrabuddhe DV, Jamsandekar P (2015) Data structure for representation of big data of weather forecasting: a review. Int J Comput Sci Trends Technol IJCST 3(6):48–56

Priya SB A survey on weather forecasting to predict rainfall using big data analytics

Hassani H, Silva ES (2015) Forecasting with big data: a review. Ann Data Sci 2(1):5–19

Rao N (2017) Big data and climate smart agriculture-review of current status and implications for agricultural research and innovation in India. In: Proceedings Indian National Science Academy, Forthcoming

de Freitas Viscondi G, Alves-Souza SN (2019) A systematic literature review on big data for solar photovoltaic electricity generation forecasting. Sustain Energy Technol Assess 31:54–63

Vannitsem S et al (2021) Statistical postprocessing for weather forecasts: review, challenges, and avenues in a big data world. Bull Am Meteorol Soc 102(3):E681–E699

Cook DJ, Greengold NL, Ellrodt AG, Weingarten SR (1997) The relation between systematic reviews and practice guidelines. Ann Internal Med 127(3):210–216

Haghi Kashani M, Rahmani AM, Jafari Navimipour N (2020) Quality of service-aware approaches in fog computing. Int J Commun Syst 33(8):e4340

Rahimi M, Songhorabadi M, Haghi Kashani M (2020) Fog-based smart homes: a systematic review. J Netw Comput Appl 153:102531

Bazzaz Abkenar S, Haghi Kashani M, Akbari M, Mahdipour E (2020) Twitter spam detection: a systematic review. arXiv preprint arXiv: 2011.14754 .

Songhorabadi M, Rahimi M, Farid AMM, Kashani MH (2020) Fog computing approaches in smart cities: a state-of-the-art review. arXiv preprint arXiv: 2011.14732

Kashani MH, Ahmadzadeh A, Mahdipour E (2020) Load balancing mechanisms in fog computing: a systematic review. arXiv preprint arXiv: 2011.14706

Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M (2007) Lessons from applying the systematic literature review process within the software engineering domain. J Syst Softw 80(4):571–583

Sheikh Sofla M, Haghi Kashani M, Mahdipour E, Faghih Mirzaee R (2021) Towards effective offloading mechanisms in fog computing: a systematic survey. Multimed Tools Appl

Haghi Kashani M, Madanipour M, Nikravan M, Asghari P, Mahdipour E (2021) A systematic review of IoT in healthcare: applications, techniques, and trends. J Netw Comput Appl

Cheng Y, Zheng Z, Wang J, Yang L, Wan S (2019) Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things. Wirel Commun Mob Comput 2019:8

Cramer S, Kampouridis M, Freitas A (2016) A genetic decomposition algorithm for predicting rainfall within financial weather derivatives. In: Presented at the proceedings of the genetic and evolutionary computation conference 2016, Denver, Colorado, USA

Pooja SB, Siva-Balan RV, Anisha M, Muthukumaran MS, Jothikumar R (2020) Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting. Comput Commun 151:266–274

Kvinge H, Farnell E, Kirby M, Peterson C (2018) Monitoring the shape of weather, soundscapes, and dynamical systems: a new statistic for dimension-driven data analysis on large datasets. In: 2018 IEEE international conference on big data (big data). pp 1045–1051

Buszta A, Mazurkiewicz J (2015) Climate changes prediction system based on weather big data visualisation. In: Theory and engineering of complex systems and dependability. Springer, Cham, pp 75–86

Rasel RI, Sultana N, Meesad P (2018) An application of data mining and machine learning for weather forecasting. In: Recent advances in information and communication technology 2017. Springer, Cham, pp 169–178

Mahmood MR, Patra RK, Raja R, Sinha GR (2019) A novel approach for weather prediction using forecasting analysis and data mining techniques. In: Innovations in electronics and communication engineering. Springer, Singapore, pp 479–489

Azimi R, Ghofrani M, Ghayekhloo M (2016) A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers Manag 127:208–225

Doreswamy IG, Manjunatha BR (2018) Multi-label classification of big NCDC weather data using deep learning model. In: Soft computing systems. Springer, Singapore, pp 232–241

Venkatachalapathy K, Kamaleshwar T, Sundaranarayana D, Prakash VO (2016) An effective framework with N-client transfer dataset for weather prediction using data mining techniques. In: Presented at the proceedings of the international conference on informatics and analytics, Pondicherry, India

Choi C, Kim J, Kim J, Kim D, Bae Y, Kim HS (2018) Development of heavy rain damage prediction model using machine learning based on big data. Adv Meteorol 2018:11

Hubig N, Fengler P, Züfle A, Yang R, Günnemann S (2017) Detection and prediction of natural hazards using large-scale environmental data. In: Advances in spatial and temporal databases. Springer, Cham, pp 300–316

Yonekura K, Hattori H, Suzuki T (2018) Short-term local weather forecast using dense weather station by deep neural network. In: 2018 IEEE international conference on big data (big data). pp 1683–1690

Xu Q et al (2015) A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining. IEEE Trans Sustain Energy 6(4):1283–1291

Jiang P, Dong Q (2015) A new hybrid model based on an intelligent optimization algorithm and a data denoising method to make wind speed predication. Math Probl Eng 2015:16

More PD, Nandgave S, Kadam M (2020) Weather data analytics using hadoop with map-reduce. In: ICCCE 2019. Springer, Singapore, pp 189–196

Wu H (2017) Big data management the mass weather logs. In: Smart computing and communication. Springer, Cham, pp 122–132

Ismail KA, Majid MA, Zain JM, Bakar NAA (2016) Big data prediction framework for weather temperature based on MapReduce algorithm. In: 2016 IEEE conference on open systems (ICOS). pp 13–17

Abdullahi AU, Ahmad R, Zakaria NM (2016) Big data: performance profiling of meteorological and oceanographic data on hive. In: 2016 3rd international conference on computer and information sciences (ICCOINS). pp 203–208

Oury DTM, Singh A (2018) Data analysis of weather data using hadoop technology. In: Smart computing and informatics. Springer, Singapore, pp 723–730

Manogaran G, Lopez D, Chilamkurti N (2018) In-mapper combiner based MapReduce algorithm for processing of big climate data. Future Gener Comput Syst 86:433–445

Jayanthi D, Sumathi G (2017) Weather data analysis using spark—an in-memory computing framework. In: 2017 Innovations in power and advanced computing technologies (i-PACT). pp 1–5

Palamuttam R et al (2015) SciSpark: Applying in-memory distributed computing to weather event detection and tracking. In: 2015 IEEE International conference on big data (big data). pp 2020–2026

Hassaan M, Elghandour I (2016) A real-time big data analysis framework on a CPU/GPU heterogeneous cluster: a meteorological application case study. In: 2016 IEEE/ACM 3rd international conference on big data computing applications and technologies (BDCAT). pp 168–177

Manogaran G, Lopez D (2018) Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput Electr Eng 65:207–221

Madan S, Kumar P, Rawat S, Choudhury T (2018) Analysis of weather prediction using machine learning & big data. In: 2018 International conference on advances in computing and communication engineering (ICACCE). pp 259–264

Dhoot R, Agrawal S, Kumar MS (2019) Implementation and analysis of arima model and kalman filter for weather forcasting in spark computing environment. In: 2019 3rd international conference on computing and communications technologies (ICCCT). pp 105–112

Dhamodharavadhani S, Rathipriya R (2019) Region-wise rainfall prediction using mapreduce-based exponential smoothing techniques. In: Advances in big data and cloud computing. Springer, Singapore, pp 229–239

Namitha K, Jayapriya A, Kumar GS (2015) Rainfall prediction using artificial neural network on map-reduce framework. In: Presented at the proceedings of the third international symposium on women in computing and informatics, Kochi, India

Liu L, Lv J, Ma Z, Wan J, Jingjing M (2015) Toward the association rules of meteorological data mining based on cloud computing. In: Proceedings of the second international conference on mechatronics and automatic control. Springer, Cham, pp 1051–1059

Sahoo S (2017) A parallel forecasting approach using incremental K-means clustering technique. In: Computational intelligence in data mining. Springer, Singapore, pp 165–172

Fang W, Sheng VS, Wen X, Pan W (2014) Meteorological data analysis using MapReduce. Sci World J 2014:10

Hamzei M, Navimipour NJ (2018) Toward efficient service composition techniques in the internet of things. IEEE Internet Things J 5(5):3774–3787

Kumar V, Kumar D (2020) A systematic review on firefly algorithm: past, present, and future. Arch Comput Methods Eng 28(4):3269–3291

MathSciNet   Google Scholar  

Nikravan M, Kashani MH (2007) Parallel min–max ant colony system (MMAS) for dynamic process scheduling in distributed operating systems considering load balancing. In: Proceedings of the 21st ECMS international conference on high performance computing & simulation (HPCS), Prague, Czech Republic

Kashani MH, Sarvizadeh R (2011) A novel method for task scheduling in distributed systems using max–min ant colony optimization. In: 2011 3rd international conference on advanced computer control (ICACC). IEEE, pp 422–426

Kashani MH, Zarrabi H, Javadzadeh G (2017) A new metaheuristic approach to task assignment problem in distributed systems. In: 2017 IEEE 4th international conference on knowledge-based engineering and innovation (KBEI). IEEE, pp 0673–0677

Kashani MH, Sarvizadeh R, Jameii M (2012) A new distributed systems scheduling algorithm: a swarm intelligence approach. In: Fourth international conference on machine vision (ICMV 2011): computer vision and image analysis; pattern recognition and basic technologies. International Society for Optics and Photonics

Kashani MH, Jahanshahi M (2009) A new method based on memetic algorithm for task scheduling in distributed systems. Int J Simul Syst Sci Technol 10

Niu B, Wang H (2012) Bacterial colony optimization. Discrete Dyn Nat Soc 2012:28

MathSciNet   MATH   Google Scholar  

Kashani MH, Jahanshahi M (2009) Using simulated annealing for task scheduling in distributed systems. In: 2009 International conference on computational intelligence, modelling and simulation. pp 265–269

Dasgupta D, Ji Z, Gonzalez F (2003) Artificial immune system (AIS) research in the last five years. In: The 2003 congress on evolutionary computation, 2003. CEC '03., vol 1. pp 123–130

Jameii SM, Kashani MH, Karimi R (2015) LASPEA: Learning automata-based strength pareto evolutionary algorithm for multi-objective optimization. Int J Comput Sci Telecommun 6(9):14–19

Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

Yang X-S. Bat algorithm for multi-objective optimisation. arXiv e-prints, Accessed 01 Mar 2012. arXiv:1203.6571Y

Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

Sarvizadeh R, Kashani MH, Zakeri FS, Jameii SM (2012) A novel bee colony approach to distributed systems scheduling. Int J Comput Appl 42(10):1–6

Saneja B, Rani R (2018) A hybrid approach for outlier detection in weather sensor data. In: 2018 IEEE 8th international advance computing conference (IACC). pp 321–326

Al-Madi N, Aljarah I, Ludwig S (2014) Parallel Glowworm Swarm Optimization Clustering Algorithm based on MapReduce

El-Alfy E-SM, Alshammari MA (2016) Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce. Simul Model Pract Theory 64(13):18–29

Download references

Author information

Authors and affiliations.

Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Marzieh Fathi & Ebrahim Mahdipour

Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

Mostafa Haghi Kashani & Seyed Mahdi Jameii

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Seyed Mahdi Jameii .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Fathi, M., Haghi Kashani, M., Jameii, S.M. et al. Big Data Analytics in Weather Forecasting: A Systematic Review. Arch Computat Methods Eng 29 , 1247–1275 (2022). https://doi.org/10.1007/s11831-021-09616-4

Download citation

Received : 27 December 2020

Accepted : 12 June 2021

Published : 28 June 2021

Issue Date : March 2022

DOI : https://doi.org/10.1007/s11831-021-09616-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

atmosphere-logo

Article Menu

research paper topics weather

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Machine learning in weather prediction and climate analyses—applications and perspectives.

research paper topics weather

1. Introduction

2. materials and methods, 3.1. numerical weather prediction, 3.1.1. photovoltaic and wind energy, 3.1.2. atmospheric physics and processes, 3.2. climate, 3.2.1. parametrizations, 3.2.2. extreme events, 3.2.3. climate change, 4. discussion and conclusions, supplementary materials, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest, abbreviations.

ANNArtificial Neural Networks
CPUCentral Processing Unit
DLDeep Learning
ECMWFEuropean Centre for Medium-Range Weather Forecasts
GCMGeneral Circulation Model
GPUGraphics Processing Units
K-meansK-means Clustering
NOAANational Oceanic and Atmospheric Administration
NWPNumerical Weather Prediction
PCAPrincipal Component Analysis
PVPhotovoltaic
RFRandom Forest
SVMSupport Vector Machine
XGBXGBoost
  • Fradkov, A.L. Early History of Machine Learning. IFAC-PapersOnLine 2020 , 53 , 1385–1390. [ Google Scholar ] [ CrossRef ]
  • Mahesh, B. Machine Learning Algorithms—A Review ; International Journal of Science and Research: Raipur, India, 2019. [ Google Scholar ] [ CrossRef ]
  • Dhall, D.; Kaur, R.; Juneja, M. Machine Learning: A Review of the Algorithms and Its Applications. In Lecture Notes in Electrical Engineering, Proceedings of the ICRIC, Jammu, India, 8–9 March 2019 ; Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tanwar, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 47–63. [ Google Scholar ] [ CrossRef ]
  • Singh, A.; Thakur, N.; Sharma, A. A Review of Supervised Machine Learning Algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [ Google Scholar ]
  • Iverson, L.R.; Prasad, A.M.; Liaw, A. New Machine Learning Tools for Predictive Vegetation Mapping after Climate Change: Bagging and Random Forest Perform Better than Regression Tree Analysis. In Landscape Ecology of Trees and Forests, Proceedings of the 12th Annual IALE(UK) Conference, Cirencester, UK, 21–24 June 2004 ; Smithers, R., Ed.; International Association for Landscape Ecology: Piestany, Slovakia, 2004; pp. 317–320. [ Google Scholar ]
  • Huang, L.; Kang, J.; Wan, M.; Fang, L.; Zhang, C.; Zeng, Z. Solar Radiation Prediction Using Different Machine Learning Algorithms and Implications for Extreme Climate Events. Front. Earth Sci. 2021 , 9 , 202. [ Google Scholar ] [ CrossRef ]
  • Abbot, J.; Marohasy, J. The Application of Machine Learning for Evaluating Anthropogenic versus Natural Climate Change. GeoResJ 2017 , 14 , 36–46. [ Google Scholar ] [ CrossRef ]
  • Davenport, F.V.; Diffenbaugh, N.S. Using Machine Learning to Analyze Physical Causes of Climate Change: A Case Study of U.S. Midwest Extreme Precipitation. Geophys. Res. Lett. 2021 , 48 , e2021GL093787. [ Google Scholar ] [ CrossRef ]
  • Tripathi, S.; Srinivas, V.V.; Nanjundiah, R.S. Downscaling of Precipitation for Climate Change Scenarios: A Support Vector Machine Approach. J. Hydrol. 2006 , 330 , 621–640. [ Google Scholar ] [ CrossRef ]
  • Fang, Y.; Chen, H.; Lin, Y.; Zhao, C.; Lin, Y.; Zhou, F. Classification of Northeast China Cold Vortex Activity Paths in Early Summer Based on K-Means Clustering and Their Climate Impact. Adv. Atmos. Sci. 2021 , 38 , 400–412. [ Google Scholar ] [ CrossRef ]
  • Zong, L.; Yang, Y.; Gao, M.; Wang, H.; Wang, P.; Zhang, H.; Wang, L.; Ning, G.; Liu, C.; Li, Y.; et al. Large-Scale Synoptic Drivers of Co-Occurring Summertime Ozone and PM2.5 Pollution in Eastern China. Atmos. Chem. Phys. 2021 , 21 , 9105–9124. [ Google Scholar ] [ CrossRef ]
  • Silge, J.; Robinson, D. tidytext: Text Mining and Analysis Using Tidy Data Principles in R. J. Open Sour. Softw. 2016 , 1 , 37. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • R Core Team. R: A Language and Environment for Statistical Computing ; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 17 December 2021).
  • Kosovic, B.; Haupt, S.E.; Adriaansen, D.; Alessandrini, S.; Wiener, G.; Delle Monache, L.; Liu, Y.; Linden, S.; Jensen, T.; Cheng, W.; et al. A Comprehensive Wind Power Forecasting System Integrating Artificial Intelligence and Numerical Weather Prediction. Energies 2020 , 13 , 1372. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Dong, W.; Yang, Q.; Fang, X. Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques. Energies 2018 , 11 , 1975. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Barque, M.; Martin, S.; Vianin, J.E.N.; Genoud, D.; Wannier, D. Improving Wind Power Prediction with Retraining Machine Learning Algorithms. In Proceedings of the 2018 International Workshop on Big Data and Information Security (IWBIS), Jakarta, Indonesia, 12–13 May 2018; pp. 43–48. [ Google Scholar ] [ CrossRef ]
  • Ma, Y.-J.; Zhai, M.-Y. A Dual-Step Integrated Machine Learning Model for 24h-Ahead Wind Energy Generation Prediction Based on Actual Measurement Data and Environmental Factors. Appl. Sci. 2019 , 9 , 2125. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Wu, Y.-K.; Su, P.-E.; Wu, T.-Y.; Hong, J.-S.; Hassan, M.Y. Probabilistic Wind Power Forecasting Using Weather Ensemble Models. IEEE Trans. Ind. Appl. 2018 , 54 , 5609–5620. [ Google Scholar ] [ CrossRef ]
  • Kim, D.; Hur, J. Short-Term Probabilistic Forecasting of Wind Energy Resources Using the Enhanced Ensemble Method. Energy 2018 , 157 , 211–226. [ Google Scholar ] [ CrossRef ]
  • Donadio, L.; Fang, J.; Porté-Agel, F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies 2021 , 14 , 338. [ Google Scholar ] [ CrossRef ]
  • Bochenek, B.; Jurasz, J.; Jaczewski, A.; Stachura, G.; Sekuła, P.; Strzyżewski, T.; Wdowikowski, M.; Figurski, M. Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction. Energies 2021 , 14 , 2164. [ Google Scholar ] [ CrossRef ]
  • Theocharides, S.; Venizelou, V.; Makrides, G.; Georghiou, G.E. Day-Ahead Forecasting of Solar Power Output from Photovoltaic Systems Utilising Gradient Boosting Machines. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 2371–2375. [ Google Scholar ] [ CrossRef ]
  • Mellit, A. An Overview on the Application of Machine Learning and Deep Learning for Photovoltaic Output Power Forecasting. In Lecture Notes in Electrical Engineering, Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems, Saidia, Morocco, 13–15 April 2020 ; Hajji, B., Mellit, A., Marco, T.G., Rabhi, A., Launay, J., Naimi, S.E., Eds.; Springer: Singapore, 2021; pp. 55–68. [ Google Scholar ] [ CrossRef ]
  • Mathe, J.; Miolane, N.; Sebastien, N.; Lequeux, J. PVNet: A LRCN Architecture for Spatio-Temporal Photovoltaic PowerForecasting from Numerical Weather Prediction. arXiv 2020 , arXiv:1902.01453. [ Google Scholar ]
  • Gómez, J.L.; Martínez, A.O.; Pastoriza, F.T.; Garrido, L.F.; Álvarez, E.G.; García, J.A.O. Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data. Sustainability 2020 , 12 , 10295. [ Google Scholar ] [ CrossRef ]
  • Theocharides, S.; Makrides, G.; Livera, A.; Theristis, M.; Kaimakis, P.; Georghiou, G.E. Day-Ahead Photovoltaic Power Production Forecasting Methodology Based on Machine Learning and Statistical Post-Processing. Appl. Energy 2020 , 268 , 115023. [ Google Scholar ] [ CrossRef ]
  • Kirkwood, C.; Economou, T.; Odbert, H.; Pugeault, N. A Framework for Probabilistic Weather Forecast Post-Processing across Models and Lead Times Using Machine Learning. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2021 , 379 , 20200099. [ Google Scholar ] [ CrossRef ]
  • Cho, D.; Yoo, C.; Im, J.; Cha, D.-H. Comparative Assessment of Various Machine Learning-Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas. Earth Sp. Sci. 2020 , 7 , e2019EA000740. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Belochitski, A.; Krasnopolsky, V. Stable Emulation of an Entire Suite of Model Physics in a State-of-the-Art GCM Using a Neural Network. arXiv 2021 , arXiv:2103.07028. [ Google Scholar ]
  • Walsh, E.; Bessardon, G.; Gleeson, E.; Ulmas, P. Using Machine Learning to Produce a Very High Resolution Land-Cover Map for Ireland. Adv. Sci. Res. 2021 , 18 , 65–87. [ Google Scholar ] [ CrossRef ]
  • Seifert, A.; Rasp, S. Potential and Limitations of Machine Learning for Modeling Warm-Rain Cloud Microphysical Processes. J. Adv. Model. Earth Syst. 2020 , 12 , e2020MS002301. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Zeng, X.; Decker, J. A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method. Atmosphere 2021 , 12 , 1316. [ Google Scholar ] [ CrossRef ]
  • Bodini, N.; Lundquist, J.K.; Optis, M. Can Machine Learning Improve the Model Representation of Turbulent Kinetic Energy Dissipation Rate in the Boundary Layer for Complex Terrain? Geosci. Model Dev. 2020 , 13 , 4271–4285. [ Google Scholar ] [ CrossRef ]
  • Harder, P.; Watson-Parris, D.; Strassel, D.; Gauger, N.; Stier, P.; Keuper, J. Emulating Aerosol Microphysics with Machine Learning. arXiv 2021 , arXiv:2109.10593. [ Google Scholar ]
  • Moosavi, A.; Rao, V.; Sandu, A. A Learning Based Approach for Uncertainty Analysis in Numerical Weather Prediction Models. arXiv 2018 , arXiv:1802.08055. [ Google Scholar ]
  • Moosavi, A.; Rao, V.; Sandu, A. Machine Learning Based Algorithms for Uncertainty Quantification in Numerical Weather Prediction Models. J. Comput. Sci. 2021 , 50 , 101295. [ Google Scholar ] [ CrossRef ]
  • O’Gorman, P.A.; Dwyer, J.G. Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. J. Adv. Model. Earth Syst. 2018 , 10 , 2548–2563. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Yuval, J.; O’Gorman, P.A. Stable Machine-Learning Parameterization of Subgrid Processes for Climate Modeling at a Range of Resolutions. Nat. Commun. 2020 , 11 , 3295. [ Google Scholar ] [ CrossRef ]
  • Pielke, R.A. Chapter 8—New Parameterization Approaches. In Mesoscale Meteorological Modeling ; International Geophysics; Pielke, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 98, pp. 225–235. [ Google Scholar ] [ CrossRef ]
  • Brajard, J.; Carrassi, A.; Bocquet, M.; Bertino, L. Combining Data Assimilation and Machine Learning to Infer Unresolved Scale Parametrization. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2021 , 379 , 20200086. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Watt-Meyer, O.; Brenowitz, N.D.; Clark, S.K.; Henn, B.; Kwa, A.; McGibbon, J.; Perkins, W.A.; Bretherton, C.S. Correcting Weather and Climate Models by Machine Learning Nudged Historical Simulations. Geophys. Res. Lett. 2021 , 48 , e2021GL092555. [ Google Scholar ] [ CrossRef ]
  • Couvreux, F.; Hourdin, F.; Williamson, D.; Roehrig, R.; Volodina, V.; Villefranque, N.; Rio, C.; Audouin, O.; Salter, J.; Bazile, E.; et al. Process-Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement. J. Adv. Model. Earth Syst. 2021 , 13 , e2020MS002217. [ Google Scholar ] [ CrossRef ]
  • Nowack, P.; Braesicke, P.; Haigh, J.; Abraham, N.L.; Pyle, J.; Voulgarakis, A. Using Machine Learning to Build Temperature-Based Ozone Parameterizations for Climate Sensitivity Simulations. Environ. Res. Lett. 2018 , 13 , 104016. [ Google Scholar ] [ CrossRef ]
  • Alfonso, L.; Zamora, J.M. A Two-Moment Machine Learning Parameterization of the Autoconversion Process. Atmos. Res. 2021 , 249 , 105269. [ Google Scholar ] [ CrossRef ]
  • Ukkonen, P.; Pincus, R.; Hogan, R.J.; Pagh Nielsen, K.; Kaas, E. Accelerating Radiation Computations for Dynamical Models With Targeted Machine Learning and Code Optimization. J. Adv. Model. Earth Syst. 2020 , 12 , e2020MS002226. [ Google Scholar ] [ CrossRef ]
  • Beucler, T.; Rasp, S.; Pritchard, M.; Gentine, P. Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling. arXiv 2019 , arXiv:1906.06622. [ Google Scholar ]
  • Ramadhan, A.; Marshall, J.; Souza, A.; Wagner, G.L.; Ponnapati, M.; Rackauckas, C. Capturing Missing Physics in Climate Model Parameterizations Using Neural Differential Equations. arXiv 2020 , arXiv:2010.12559. [ Google Scholar ]
  • Beucler, T.; Pritchard, M.; Yuval, J.; Gupta, A.; Peng, L.; Rasp, S.; Ahmed, F.; O’Gorman, P.A.; Neelin, J.D.; Lutsko, N.J.; et al. Climate-Invariant Machine Learning. arXiv 2021 , arXiv:2112.08440. [ Google Scholar ]
  • Krasnopolsky, V.M.; Fox-Rabinovitz, M.S. Complex Hybrid Models Combining Deterministic and Machine Learning Components for Numerical Climate Modeling and Weather Prediction. Neural Netw. 2006 , 19 , 122–134. [ Google Scholar ] [ CrossRef ]
  • Gentine, P.; Pritchard, M.; Rasp, S.; Reinaudi, G.; Yacalis, G. Could Machine Learning Break the Convection Parameterization Deadlock? Geophy. Res. Lett. 2018 , 45 , 5742–5751. [ Google Scholar ] [ CrossRef ]
  • Rasp, S. Coupled Online Learning as a Way to Tackle Instabilities and Biases in Neural Network Parameterizations. arXiv 2020 , arXiv:1907.01351. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Brenowitz, N.D.; Beucler, T.; Pritchard, M.; Bretherton, C.S. Interpreting and Stabilizing Machine-Learning Parametrizations of Convection. J. Atmos. Sci. 2020 , 77 , 4357–4375. [ Google Scholar ] [ CrossRef ]
  • Brenowitz, N.D.; Henn, B.; McGibbon, J.; Clark, S.K.; Kwa, A.; Perkins, W.A.; Watt-Meyer, O.; Bretherton, C.S. Machine Learning Climate Model Dynamics: Offline versus Online Performance. arXiv 2020 , arXiv:2011.03081. [ Google Scholar ]
  • Gagne, D.J., II; Christensen, H.M.; Subramanian, A.C.; Monahan, A.H. Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz ’96 Model. J. Adv. Model. Earth Syst. 2020 , 12 , e2019MS001896. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Gettelman, A.; Gagne, D.J.; Chen, C.-C.; Christensen, M.W.; Lebo, Z.J.; Morrison, H.; Gantos, G. Machine Learning the Warm Rain Process. J. Adv. Model. Earth Syst. 2021 , 13 , e2020MS002268. [ Google Scholar ] [ CrossRef ]
  • Silva, S.J.; Ma, P.-L.; Hardin, J.C.; Rothenberg, D. Physically Regularized Machine Learning Emulators of Aerosol Activation. Geosci. Model Dev. 2021 , 14 , 3067–3077. [ Google Scholar ] [ CrossRef ]
  • Pielke, R., Sr.; Stokowski, D.; Wang, J.-W.; Vukicevic, T.; Leoncini, G.; Matsui, T.; Castro, C.L.; Niyogi, D.; Kishtawal, C.M.; Biazar, A.; et al. Satellite-Based Model Parameterization of Diabatic Heating. Eos Trans. Am. Geophys. Un. 2007 , 88 , 96–97. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Wang, X.; Han, Y.; Xue, W.; Yang, G.; Zhang, G.J. Stable Climate Simulations Using a Realistic GCM with Neural Network Parameterizations for Atmospheric Moist Physics and Radiation Processes. Geosci. Model Dev. Discuss. 2021 , 1–35. [ Google Scholar ] [ CrossRef ]
  • Yuval, J.; O’Gorman, P.A.; Hill, C.N. Use of Neural Networks for Stable, Accurate and Physically Consistent Parameterization of Subgrid Atmospheric Processes With Good Performance at Reduced Precision. Geophys. Res. Lett. 2021 , 48 , e2020GL091363. [ Google Scholar ] [ CrossRef ]
  • Anochi, J.A.; de Almeida, V.A.; de Campos Velho, H.F. Machine Learning for Climate Precipitation Prediction Modeling over South America. Remote Sens. 2021 , 13 , 2468. [ Google Scholar ] [ CrossRef ]
  • Anderson, G.J.; Lucas, D.D. Machine Learning Predictions of a Multiresolution Climate Model Ensemble. Geophys. Res. Lett. 2018 , 45 , 4273–4280. [ Google Scholar ] [ CrossRef ]
  • Mansfield, L.A.; Nowack, P.J.; Kasoar, M.; Everitt, R.G.; Collins, W.J.; Voulgarakis, A. Predicting Global Patterns of Long-Term Climate Change from Short-Term Simulations Using Machine Learning. NPJ Clim. Atmos. Sci. 2020 , 3 , 1–9. [ Google Scholar ] [ CrossRef ]
  • Hourdin, F.; Williamson, D.; Rio, C.; Couvreux, F.; Roehrig, R.; Villefranque, N.; Musat, I.; Fairhead, L.; Diallo, F.B.; Volodina, V. Process-Based Climate Model Development Harnessing Machine Learning: II. Model Calibration From Single Column to Global. J. Adv. Model. Earth Syst. 2021 , 13 , e2020MS002225. [ Google Scholar ] [ CrossRef ]
  • Bochenek, B.; Ustrnul, Z.; Wypych, A.; Kubacka, D. Machine Learning-Based Front Detection in Central Europe. Atmosphere 2021 , 12 , 1312. [ Google Scholar ] [ CrossRef ]
  • Liu, Y.; Racah, E.; Prabhat; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets. arXiv 2016 , arXiv:1605.01156. [ Google Scholar ]
  • Biard, J.C.; Kunkel, K.E. Automated Detection of Weather Fronts Using a Deep Learning Neural Network. Adv. Stat. Climatol. Meteorol. Oceanogr. 2019 , 5 , 147–160. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Niebler, S.; Miltenberger, A.; Schmidt, B.; Spichtinger, P. Automated Detection and Classification of Synoptic Scale Fronts from Atmospheric Data Grids. Weather. Clim. Dyn. Discuss. [Preprint] 2021 , 1–28. [ Google Scholar ] [ CrossRef ]
  • Knighton, J.; Pleiss, G.; Carter, E.; Lyon, S.; Walter, M.T.; Steinschneider, S. Potential Predictability of Regional Precipitation and Discharge Extremes Using Synoptic-Scale Climate Information via Machine Learning: An Evaluation for the Eastern Continental United States. J. Hydrometeorol. 2019 , 20 , 883–900. [ Google Scholar ] [ CrossRef ]
  • Hu, H.; Ayyub, B.M. Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate. Geosciences 2019 , 9 , 209. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Elsanabary, M.H.; Gan, T.Y. Wavelet Analysis of Seasonal Rainfall Variability of the Upper Blue Nile Basin, Its Teleconnection to Global Sea Surface Temperature, and Its Forecasting by an Artificial Neural Network. Mon. Weather Rev. 2014 , 142 , 1771–1791. [ Google Scholar ] [ CrossRef ]
  • Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet Software in Hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021 , 36 , 100847. [ Google Scholar ] [ CrossRef ]
  • Coulibaly, P.; Burn, D.H. Wavelet Analysis of Variability in Annual Canadian Streamflows. Water Resour. Res. 2004 , 40 . [ Google Scholar ] [ CrossRef ]
  • Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. arXiv 2019 , arXiv:1906.05433. [ Google Scholar ]
  • Schneider, T.; Lan, S.; Stuart, A.; Teixeira, J. Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett. 2017 , 44 , 12396–12417. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019 , 566 , 195–204. [ Google Scholar ] [ CrossRef ]
  • Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine Learning and Artificial Intelligence to Aid Climate Change Research and Preparedness. Environ. Res. Lett. 2019 , 14 , 124007. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Dijkstra, H.A.; Petersik, P.; Hernández-García, E.; López, C. The Application of Machine Learning Techniques to Improve El Niño Prediction Skill. Front. Phys. 2019 , 7 , 153. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Mohammadiziazi, R.; Bilec, M.M. Application of Machine Learning for Predicting Building Energy Use at Different Temporal and Spatial Resolution under Climate Change in USA. Buildings 2020 , 10 , 139. [ Google Scholar ] [ CrossRef ]
  • Piryonesi, S.M.; El-Diraby, T. Climate Change Impact on Infrastructure: A Machine Learning Solution for Predicting Pavement Condition Index. Constr. Build. Mater. 2021 , 306 , 124905. [ Google Scholar ] [ CrossRef ]
  • Leng, G.; Hall, J.W. Predicting Spatial and Temporal Variability in Crop Yields: An Inter-Comparison of Machine Learning, Regression and Process-Based Models. Environ. Res. Lett. 2020 , 15 , 044027. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Feng, P.; Wang, B.; Liu, D.L.; Waters, C.; Yu, Q. Incorporating Machine Learning with Biophysical Model Can Improve the Evaluation of Climate Extremes Impacts on Wheat Yield in South-Eastern Australia. Agric. For. Meteorol. 2019 , 275 , 100–113. [ Google Scholar ] [ CrossRef ]
  • Yu, T.; Zhang, Q.; Sun, R. Comparison of Machine Learning Methods to Up-Scale Gross Primary Production. Remote Sens. 2021 , 13 , 2448. [ Google Scholar ] [ CrossRef ]
  • Duan, Z.; Yang, Y.; Zhou, S.; Gao, Z.; Zong, L.; Fan, S.; Yin, J. Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product. Remote Sens. 2021 , 13 , 4229. [ Google Scholar ] [ CrossRef ]
  • Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global Terrestrial Carbon Fluxes of 1999–2019 Estimated by Upscaling Eddy Covariance Data with a Random Forest. Sci. Data 2020 , 7 , 313. [ Google Scholar ] [ CrossRef ]
  • Zeng, Z.; Wang, Z.; Gui, K.; Yan, X.; Gao, M.; Luo, M.; Geng, H.; Liao, T.; Li, X.; An, J.; et al. Daily Global Solar Radiation in China Estimated From High-Density Meteorological Observations: A Random Forest Model Framework. Earth Space Sci. 2020 , 7 , e2019EA001058. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Yang, Y.; Zhang, M.; Li, Q.; Chen, B.; Gao, Z.; Ning, G.; Liu, C.; Li, Y.; Luo, M. Modulations of Surface Thermal Environment and Agricultural Activity on Intraseasonal Variations of Summer Diurnal Temperature Range in the Yangtze River Delta of China. Sci. Environ. 2020 , 736 , 139445. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Li, X.; Yang, Y.; Mi, J.; Bi, X.; Zhao, Y.; Huang, Z.; Liu, C.; Zong, L.; Li, W. Leveraging Machine Learning for Quantitative Precipitation Estimation from Fengyun-4 Geostationary Observations and Ground Meteorological Measurements. Atmos. Meas. Tech. 2021 , 14 , 7007–7023. [ Google Scholar ] [ CrossRef ]
  • Ustrnul, Z. Zmienność Cyrkulacji Atmosfery na Półkuli Północnej w XX Wieku (Variability of the Atmospheric Circulation on the Northern Hemisphere in the 20th Century) ; Materiały Badawcze, seria Meteorologia; IMGW: Warszawa, Poland, 1997; Volume 27, p. 208, (In Polish, Eng. Summary). [ Google Scholar ]
  • Tveito, O.E.; Ustrnul, Z. A Review of The Use of Large-Scale Atmospheric Circulation Classification in Spatial Climatology ; KLIMA; DNMI: Oslo, Norway, 3 October 2003; p. 27. [ Google Scholar ]
  • Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008 , 1146 , 105–152. [ Google Scholar ] [ CrossRef ]
  • Ustrnul, Z.; Wypych, A.; Czekierda, D. Composite circulation index of weather extremes (the example for Poland). Meteorol. Z. 2013 , 22 , 551–559. [ Google Scholar ] [ CrossRef ]
  • Gordon, A.D. Classification ; Chapman & Hall: London, UK; New York, NY, USA; Washington, DC, USA, 1999. [ Google Scholar ]
  • Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis ; Arnold: London, UK; Oxford University Press: New York, NY, USA, 2001. [ Google Scholar ]
  • Bednorz, E.; Kolendowicz, L.; Bielec-Bąkowska, Z.; Bokwa, A.; Żelazny, M.; Kicińska, B.; Lewik, P.; Nowosad, M.; Ustrnul, Z. Regionalizacje, typologie i wydzielanie sezonów klimatycznych z zastosowaniem analizy skupień (Regionalisations, typologies and climatic seasons with application of cluster analysis). Prz. Geofiz. 2003 , 1–2 , 11–32, (In Polish, Eng. Summary). [ Google Scholar ]
  • Sheridan, S.C.; Lee, C.C. The self-organizing map in synoptic climatological research. Prog. Phys. Geogr. Earth Environ. 2011 , 35 , 109–119. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Lee, C.C.; Sheridan, S.C. A six-step approach to developing future synoptic classifications based on GCM output. Int. J. Climatol. 2012 , 32 , 1792–1802. [ Google Scholar ] [ CrossRef ]
  • Davis, R.E.; Kalkstein, L.S. Development of an automated spatial synoptic classification. Int. J. Climatol. 1990 , 10 , 769–794. [ Google Scholar ] [ CrossRef ]
  • Wilks, S.D. Statistical Methods in the Atmospheric Sciences, an Introduction ; Academic Press: San Diego, CA, USA, 1995; p. 464. [ Google Scholar ]
  • Oliver, J.E. The history, status, and future of climatic classifications. Phys. Geogr. 1991 , 12 , 231–251. [ Google Scholar ] [ CrossRef ]
  • Yarnal, B. Synoptic Climatology in Environmental Analysis: A Primer ; Belhaven Press: London, UK, 1993; pp. xv + 195. [ Google Scholar ]
  • Barry, R.G.; Carleton, A.M. Synoptic and Dynamic Climatology ; Routledge: London, UK, 2001; p. 664. [ Google Scholar ] [ CrossRef ]
  • Yarnal, B.; Comrie, A.C.; Frakes, B.; Brown, D.P. Developments and prospects in synoptic climatology. Int. J. Climatol. 2001 , 21 , 1923–1950. [ Google Scholar ] [ CrossRef ]
  • Palarz, A.; Luterbacher, J.; Ustrnul, Z.; Xoplaki, E.; Celiński-Myslaw, D. Representation of low-tropospheric temperature inversions in ECMWF reanalyses over Europe. Environ. Res. Lett. 2020 , 15 , 074043. [ Google Scholar ] [ CrossRef ]
  • Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation ; Addison-Wesley Publ. Company: Reading, MA, USA, 1991. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Pasini, A.; Pelino, V.; Potesta, S. A neural network model for visibility nowcasting from surface observations: Results and sensitivity to physical input variables. J. Geophys. Res. Atmos. 2001 , 106 , 14951–14960. [ Google Scholar ] [ CrossRef ]
  • Domańska, D.; Wojtylak, M. Application of fuzzy time series models for forecasting pollution concentrations. Expert. Syst. Appl. 2012 , 39 , 7673–7679. [ Google Scholar ] [ CrossRef ]
  • Czernecki, B.; Marosz, M.; Jędruszkiewicz, J. Assessment of Machine Learning Algorithms in Short-Term Forecasting of PM10 and PM2.5 Concentrations in Selected Polish Agglomerations. Aerosol Air Qual. Res. 2021 , 21 , 200586. [ Google Scholar ] [ CrossRef ]
  • Zalewska, T.; Biernacik, D.; Marosz, M. Correlations between 7Be, 210Pb, Dust and PM10 Concentrations in Relation to Meteorological Conditions in Northern Poland in 1998–2018. J. Environ. Radioact. 2021 , 228 , 106526. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dixon, P.G.; Allen, M.; Gosling, S.N.; Hondula, D.M.; Vijendra, I.; Lucas, R.; Vanos, J. Perspectives on the Synoptic Climate Classification and its Role in Interdisciplinary Research. Geogr. Compass 2016 , 10 , 147–164. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Bauer, P.; Dueben, P.D.; Hoefler, T.; Quintino, T.; Schulthess, T.C.; Wedi, N.P. The Digital Revolution of Earth-System Science. Nat. Comput. Sci. 2021 , 1 , 104–113. [ Google Scholar ] [ CrossRef ]
  • Dewitte, S.; Cornelis, J.P.; Müller, R.; Munteanu, A. Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction. Remote Sens. 2021 , 13 , 3209. [ Google Scholar ] [ CrossRef ]
  • Mock, C.J.; Shinker, J.J. Paleoclimate—Modern Analog Approaches in Paleoclimatology. In Paleoclimate, Encyclopedia of Quaternary Science , 2nd ed.; Elias, S.A., Mock, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 102–112. [ Google Scholar ]

Click here to enlarge figure

MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere 2022 , 13 , 180. https://doi.org/10.3390/atmos13020180

Bochenek B, Ustrnul Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere . 2022; 13(2):180. https://doi.org/10.3390/atmos13020180

Bochenek, Bogdan, and Zbigniew Ustrnul. 2022. "Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives" Atmosphere 13, no. 2: 180. https://doi.org/10.3390/atmos13020180

Article Metrics

Article access statistics, supplementary material.

ZIP-Document (ZIP, 346 KiB)

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

forecasting-logo

Journal Menu

  • Forecasting Home
  • Aims & Scope

Editorial Board

  • Topical Advisory Panel
  • Instructions for Authors
  • Special Issues
  • Sections & Collections
  • Article Processing Charge
  • Indexing & Archiving
  • Most Cited & Viewed
  • Journal Statistics
  • Journal History
  • Journal Awards
  • Editorial Office

Journal Browser

  • arrow_forward_ios Forthcoming issue arrow_forward_ios Current issue
  • Vol. 6 (2024)
  • Vol. 5 (2023)
  • Vol. 4 (2022)
  • Vol. 3 (2021)
  • Vol. 2 (2020)
  • Vol. 1 (2019)

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

Weather and Forecasting

A section of Forecasting (ISSN 2571-9394).

Section Information

Papers published, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

NASA

  • GPM Core Observatory
  • GPM Microwave Imager (GMI)
  • Dual-frequency Precipitation Radar (DPR)
  • GPM Constellation
  • Spacecraft and Instruments
  • Extreme Weather News
  • Data Directory
  • Data Sources
  • Data Policy
  • Ground Validation Data
  • Precipitation Climatology
  • Seasonal Precipitation Variations
  • IMERG Global Viewer
  • NASA Worldview
  • Precipitation & Applications Viewer
  • Water & Agriculture
  • Disease Initiative
  • Who's Using GPM Data
  • Applications Highlights

Storm Structure and Mesoscale Dynamics

The global water cycle, climate analysis, precipitation microphysics.

  • Field Campaigns
  • Ground and Airborne Instruments
  • Precipitation Algorithms
  • PMM Science Team
  • Frequently Asked Questions
  • Image Gallery
  • Video Gallery
  • GPM Refereed Publications
  • TRMM Refereed Publications
  • 3D Printed GPM Precipitation Data
  • Media & Press Resources
  • All Articles
  • Water Cycle
  • Weather & Climate
  • Societal Applications

Research Topics

PMM Science Banner

NASA’s Global Precipitation Measurement mission ( GPM ) develops and deploys advanced space-borne sensors to gain physical insights into precipitation processes and to enable improved monitoring and forecasting of climate, weather and precipitation-related natural hazards. The GPM mission's Core Observatory satellite launched in February 2014 and is currently operational, while its predecessor the Tropical Rainfall Measuring Mission ( TRMM ) satellite was operational from 1998 to 2015. GPM pursues a unique and innovative approach to measuring precipitation from space through collection of observations by both active and passive sensors, which are then converted into quantitative precipitation estimates. These datasets are used by scientists for analysis and research that leads to new scientific discoveries, and are used by operational agencies for real-time societal applications. The NASA Precipitation Measurement Missions Science Team conducts scientific research on a wide range of areas including precipitation and latent heating algorithm development, ground validation and integrated science applications.

Seeing Through the Clouds

Conventional weather satellites have the ability to measure visible and infrared light and so can detect and monitor clouds over vast regions, including over oceans and other regions where conventional weather data is sparse, both day and night.  They can also be used to quantify their size and coverage as well as estimate cloud heights.  However, they still lack the ability to see deep within clouds where the precipitation is; TRMM and GPM changed that.  With their active radars, TRMM and GPM gave scientists the ability to examine the detailed precipitation structures of clouds and cloud systems over much of the globe.  Foremost among these being tropical cyclones. TRMM and GPM have allowed us to examine the inner structure of a great many storms in relation to their intensity and environment and have strengthened our understanding of hurricane dynamics, in particular the relation between “hot towers” and storm intensification.  

At 1 PM EDT (1700 UTC) on September 5, 2017, the radar onboard the Global Precipitation Measurement mission (GPM) satellite captured this 3D view of the heat engine inside of category-5 Hurricane Irma. Under the central ring of clouds that circles the eye, water that had evaporated from the ocean surface condenses, releases heat, and powers the circling winds of the hurricane. The radar on the GPM satellite is able to estimate how much water is falling as precipitation inside of the hurricane, which serves as a guide to how much energy is being released inside the hurricane's central "heat engine." Learn more.  Credit: NASA / Owen Kelley

Another important class of storms are mesoscale convective systems, or MCS's. An MCS is a grouping of thunderstorms ranging in size from tens to several hundred kilometers in length that can last for a few hours or more and propagate over great distances. Typically they contain two distinct regions: a convective region containing heavier precipitation and active thunderstorms, and a sometimes broad stratiform region of lighter more uniform rain.  Not only can the rainfall from these systems lead to dangerous flooding over short periods with significant social and economic impacts, but it can also provide an important contribution to the annual rainfall for a given region.  Rainfall estimates derived from GPM and TRMM, coupled with the ability to characterize that rainfall have allowed us to quantify the climatological contribution of MCS precipitation to the annual water budget at different scales across the Earth. 

TRMM was revolutionary in its ability to observe storms within the tropics. Not only did it provide important information about the structure and intensity of rain storms in the tropics, it filled a critical gap in our observations, namely a comprehensive estimate of the amount and type of rain falling over the global tropics.  By linking this rainfall data with the corresponding latent heat released, it also furthered our understanding of how energy moving through the tropics and sub-tropics impacts atmospheric circulations throughout the globe.

The Global Precipitation Measurement (GPM) mission expands our observational capabilities beyond the tropics and subtropics to higher latitudes.  GPM gives us the ability to sample a wider variety of storms from not only tropical and subtropical regions but also extratropical and post tropical, including mid and high latitude snow events over both the land and ocean, including those outside the range of conventional radar networks. Just as TRMM gave us a unique perspective for studying tropical cyclones, GPM now brings that same ability to penetrate through the clouds and examine the detailed precipitation structures of higher latitude extratropical storms. GPM maintains the ability to study tropical cyclones and now includes those that transition to post tropical storms beyond the tropics.  As with TRMM, GPM allows us to obtain comprehensive precipitation estimates in addition to providing detailed looks at storm precipitation structures and characteristics. With the enhanced sensitivity of its Dual-frequency Precipitation Radar ( DPR ) allowing us to measure lighter precipitation, GPM allows us to improve these estimates and expand them well beyond the tropics to higher latitudes. This gives us a more complete and accurate description of the Earth’s precipitation budget.

Learn more:

  • GPM Applications for Weather
  • GPM Extreme Weather News

How Water Moves

The water cycle describes the movement of water over, above and below the Earth’s surface.  Water can easily change between any of its three states: vapor, liquid and ice. Its phase transitions among the gaseous, liquid and solid states dominate the behavior of the weather, climate and environmental systems. The way water moves between all three phases is a powerful vehicle for rearranging Earth’s energy budget. In addition, the bulk movement of water by precipitation, infiltration, transpiration, runoff and subsurface flow redistributes water around the globe.

Diagram of Earth's water cycle. Learn more on the Precipitation Education website.  Credit: NASA GPM

Key to the connection between water and energy cycles is how the solar radiation affects the atmosphere. The direct contribution from the sun explains only about 25% of the energy in global atmospheric dynamics. The other 75% is transferred to the atmosphere through the evaporation of water from the surface, primarily from the oceans. This water vapor then condenses into clouds and in doing so, releases its latent heat into the atmosphere. This latent heat drives atmospheric circulation, playing a major role not only in cloud formation and storm development, but in the large-scale movement of air around the world. TRMM created the first reliable global latent heating estimates ever made by measuring the profile of rain as it falls through the sky, as a function of altitude.

GPM provides for combined radar / radiometer estimates of both precipitation rates and the 3D characteristics and structure or precipitation. This allows us to estimate the three dimensional latent heating structures of precipitation systems and their microphysics as well as their surface water fluxes. The enhanced measurement and sampling capabilities of GPM help us understand how precipitation patterns change over time across local, regional and global scales. These patterns translate into changes in hydrologic fluxes and states (e.g, runoff, evapotranspiration, soil moisture and groundwater recharge) both directly and in combination with land process models.

By providing more accurate estimates of the rate of transfer of water from the atmosphere to the surface, GPM reduces a significant source of uncertainty in the global water/energy budget. Scientists combine GPM observations with land surface data to provide better estimates of soil moisture, leading to better predictions of vegetation cover, weather forecasts and integrated hydrologic models.

  • GPM Applicatinos for Water &  Agriculture
  • GPM Applications for Ecology
  • GPM Applications for Health
  • Precipitation Education: The Water Cycle
  • Texas A&M Catalog of Precipitation Features

Trends & Patterns

The distribution of the world’s rainfall is shifting as our climate changes. Wet areas may become wetter, dry areas drier, storms more intense, leading to more chaotic weather around the world. According to the Intergovernmental Panel on Climate Change (IPCC, 2011), an increase in the average global temperature is very likely to lead to changes in precipitation and atmospheric moisture, including shifts towards more extreme precipitation during storms.

As the lower atmosphere (the troposphere) becomes warmer, evaporation rates increase, which leads to an increase in the amount of moisture circulating. When the troposphere has more moisture, more intense precipitation occurs, thus potentially triggering more flooding over land.  Conversely in other areas, warmer temperatures may lead to increased drying accelerating the onset of drought.

Average annual rainfall (mm/year) for June 2000 - May 2019 computed using the Integrated Multi-satellite Retrievals for GPM (IMERG) "Late Run" data product.

To predict future changes in climate, scientists use very sophisticated computer models that rely on available global data to describe climate as it is today and project how it may behave in the future. The key information offered by both TRMM and GPM helps scientists more accurately estimate the rate of water transfer within the Earth's atmosphere and on the surface. It also reconciles the different parts of the overall water budget. By providing measurements of surface water fluxes, cloud/precipitation microphysics and latent heat release in the atmosphere, GPM advances Earth system modeling and analysis. More accurate global precipitation estimates improve the accuracy and effectiveness of climate models and advance understanding of climate sensitivity and future climatic change.

  • GPM IMERG Precipitation Climatology Data & Visualizations
  • Texas A&M TRMM Climatology

Raindrop Shapes

TRMM’s Precipitation Radar ( PR ) was the first space-borne radar to observe rain drop characteristics through the atmosphere. These measurements yielded invaluable information on the intensity and distribution of the rain, the type of rain, the height of the storm and the altitude at which falling snow melts into rain. Estimates of the heat released into the atmosphere at different heights based on these measurements are valuable for improving the models used to simulate  Earth’s atmospheric circulation.

Not all raindrops are created equal. The size of falling raindrops depends on several factors, including where the cloud producing the drops is located on the globe and where the drops originate in the cloud. For the first time, scientists have three-dimensional snapshots of raindrops and snowflakes around the world from space, thanks to the joint NASA and Japan Aerospace Exploration Agency Global Precipitation Measurement (GPM) mission. With the new global data on raindrop and snowflake sizes this mission provides, scientists can improve rainfall estimates from satellite data and in numerical weather forecast models, helping us better understand and prepare for extreme weather events.

Download this video in high resolution from the NASA Goddard Scientific Visualization Studio

GPM’s Dual-frequency Precipitation Radar ( DPR ) adds a second frequency to its radar instrument which provides more accurate precipitation information and improves our ability to look at raindrop characteristics, including structure, intensity and related microphysical processes throughout the atmospheric column. Information on the distribution and size of precipitation particles, together with microwave radiometer information, improves the accuracy of rain and snowfall estimates. DPR measurements offer insight into the microphysical processes of precipitation, including evaporation, collision / coalescence and aggregation, among others, and helps to distinguish between regions of rain, snow and sleet. They also allow us to obtain bulk precipitation properties such as intensity, water fluxes and columnar water content. GPM’s advanced instruments significantly improve our ability to detect light rain and falling snow and are helping us investigate potential links between rainfall and human impacts on the environment such as pollution and urban environments.

  • Remote Sensing Fundamentals and Precipitation Algorithms

GPM Supports the IMPACTS Airborne Campaign to Study Snowfall

MODIS imagery of the snowstorm in Jan. 2022

Thunderstorms Rumble over the Great Plains

Average Precipitation Daytime vs. Nighttime

Watching Thunderstorms March Across Lake Victoria

Maps showing the Average Precipitation Rate in Lake Victoria, Africa - Day vs. Night

IMERG Sees a Dry September

IMERG Sees a Dry September

Observing the ITCZ with IMERG

Observing the Intertropical Convergence Zone with IMERG

Measuring Latent Heating in Storm Systems

How TRMM and GPM Study Latent Heating

Finding Strong Storms with TRMM & GPM

Finding Strong Storms with TRMM & GPM

TMPA Shows El Niño Conditions in the Pacific

TMPA Shows El Niño Conditions in the Pacific

Top 5 GPM Research Highlights

Top 5 GPM Research Highlights

GPM Gets Flake-y

GPM Gets Flake-y

  • Atmospheric Sciences
  • Meteorology

Weather Forecast Prediction: An Integrated Approach for Analyzing and Measuring Weather Data

  • December 2018
  • International Journal of Computer Applications 182(34):20-24
  • 182(34):20-24

Munmun Biswas at BGC Trust University Bangladesh

  • BGC Trust University Bangladesh

Tanni Dhoom at Premier University

  • Premier University

Sayantanu Barua at BGC Trust University Bangladesh

Abstract and Figures

Accuracy by class of training dataset.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • I Gusti Ayu Wulan Anggasari
  • Ahmad Fuad Zainuddin
  • Sapto Wahyu Indratno
  • Muhammad Haekal Yunus
  • THEOR APPL CLIMATOL

Tajrian Mollick

  • Chenghong Zhang

Jin Feng

  • Toai Kim Tran

Roman Senkerik

  • Hanh Thi Xuan Vo

Ivan Zelinka

  • Mohamed Shouman

Md. Habibur Rahman

  • Oluwabunmi O. A.
  • Zainab I. A.
  • Adeolu L. S.
  • Gaurav Kumar Singh
  • Pawandeep Singh Ughara
  • Malik Muzamil Ishaq
  • Kanak Chauhan
  • W. P. S. W. Weerasinghe
  • M. D. K. M. Goonatilleke
  • W. V. C. Prasadi

Hansika Mahaadikara

  • Shashwat Tandon
  • Sushmitha Kothapalli

Shashikumar Totad

  • ZhanJie Wang

A B M Mazharul Mujib

  • Sunil Navadia
  • Pintukumar Yadav
  • Jobin Thomas

Shakila Shaikh

  • Afan Galih Salman

Bayu Kanigoro

  • Mehrnoosh Torabi

Sattar Hashemi

  • Micheline Kamber

Imran Maqsood

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

337 Climate Change Research Topics & Examples

You will notice that there are many climate change research topics you can discuss. Our team has prepared this compilation of 185 ideas that you can use in your work.

📝 Key Points to Use to Write an Outstanding Climate Change Essay

🏆 best climate change title ideas & essay examples, 🥇 most interesting climate change topics to write about, 🎓 simple & easy research titles about climate change, 👍 good research topics about climate change, 🔍 interesting topics to write about climate change, ⭐ good essay topics on climate change, ❓ climate change essay questions.

A climate change essay is familiar to most students who learn biology, ecology, and politics. In order to write a great essay on climate change, you need to explore the topic in great detail and show your understanding of it.

This article will provide you with some key points that you could use in your paper to make it engaging and compelling.

First of all, explore the factors contributing to climate change. Most people know that climate change is associated with pollution, but it is essential to examine the bigger picture. Consider the following questions:

  • What is the mechanism by which climate change occurs?
  • How do the activities of large corporations contribute to climate change?
  • Why is the issue of deforestation essential to climate change?
  • How do people’s daily activities promote climate change?

Secondly, you can focus on solutions to the problems outlined above.

Climate change essay topics often provide recommendations on how individuals and corporations could reduce their environmental impact. These questions may help to guide you through this section:

  • How can large corporations decrease the influence of their operations on the environment?
  • Can you think of any examples of corporations who have successfully decreased their environmental footprint?
  • What steps can people take to reduce pollution and waste as part of their daily routine?
  • Do you believe that trends such as reforestation and renewable energy will help to stop climate change? Why or why not?
  • Can climate change be reversed at all, or is it an inescapable trend?

In connection with these topics, you could also discuss various government policies to address climate change. Over the past decades, many countries enacted laws to reduce environmental damage. There are plenty of ideas that you could address here:

  • What are some famous national policies for environmental protection?
  • Are laws and regulations effective in protecting the environment? Why or why not?
  • How do environmentally-friendly policies affect individuals and businesses?
  • Are there any climate change graphs that show the effectiveness of national policies for reducing environmental damage?
  • How could government policies on climate change be improved?

Despite the fact that there is definite proof of climate change, the concept is opposed by certain politicians, business persons, and even scientists.

You could address the opposition to climate change in your essay and consider the following:

  • Why do some people think that climate change is not real?
  • What is the ultimate proof of climate change?
  • Why is it beneficial for politicians and business persons to argue against climate change?
  • Do you think that climate change is a real issue? Why or why not?

The impact of ecological damage on people, animals, and plants is the focus of most essay titles on global warming and climate change. Indeed, describing climate change effects in detail could earn you some extra marks. Use scholarly resources to research these climate change essay questions:

  • How has climate change impacted wildlife already?
  • If climate change advances at the same pace, what will be the consequences for people?
  • Besides climate change, what are the impacts of water and air pollution? What does the recent United Nations’ report on climate change say about its effects?
  • In your opinion, could climate change lead to the end of life on Earth? Why or why not?

Covering at least some of the points discussed in this post will help you write an excellent climate change paper! Don’t forget to search our website for more useful materials, including a climate change essay outline, sample papers, and much more!

  • Climate Change – Problems and Solutions It is important to avoid cutting trees and reduce the utilization of energy to protect the environment. Many organizations have been developed to enhance innovation and technology in the innovation of eco-friendly machines.
  • Causes and Effects of Climate Changes Climate change is the transformation in the distribution patterns of weather or changes in average weather conditions of a place or the whole world over long periods.
  • Is Climate Change a Real Threat? Climate change is a threat, but its impact is not as critical as wrong political decisions, poor social support, and unstable economics.
  • Climate Change: Human Impact on the Environment This paper is an in-depth exploration of the effects that human activities have had on the environment, and the way the same is captured in the movie, The Eleventh Hour.
  • Global Warming as Serious Threat to Humanity One of the most critical aspects of global warming is the inability of populations to predict, manage, and decrease natural disruptions due to their inconsistency and poor cooperation between available resources.
  • The Role of Technology in Climate Change The latter is people’s addiction, obsession, and ingenuity when it comes to technology, which was the main cause of climate change and will be the primary solution to it as well.
  • Climate Change and Its Impacts on the UAE Currently, the rise in temperature in the Arctic is contributing to the melting of the ice sheets. The long-range weather forecast indicates that the majority of the coastal areas in the UAE are at the […]
  • Climate Change Causes and Predictions These changes are as a result of the changes in the factors which determine the amount of sunlight that gets to the earth surface.
  • Climate Change and Extreme Weather Conditions The agreement across the board is that human activities such as emissions of the greenhouse gases have contributed to global warming.
  • Climate Change: Mitigation Strategies To address the latter views, the current essay will show that the temperature issue exists and poses a serious threat to the planet.
  • Climate Change, Development and Disaster Risk Reduction However, the increased cases of droughts, storms, and very high rainfalls in different places are indicative of the culmination of the effects of climate change, and major disasters are yet to follow in the future.
  • The Role of Science and Technology in International Relations Regarding Climate Change This paper examines the role of science and technology as it has been used to address the challenge of climate change, which is one of the major issues affecting the global societies today.
  • Global Warming and Human Impact: Pros and Cons These points include the movement of gases in the atmosphere as a result of certain human activities, the increase of the temperature because of greenhouse gas emissions, and the rise of the oceans’ level that […]
  • Climate Change – Global Warming For instance, in the last one century, scientists have directly linked the concentration of these gases in the atmosphere with the increase in temperature of the earth.
  • The Impact of Climate Change on Food Security Currently, the world is beginning to encounter the effects of the continuous warming of the Earth. Some of the heat must be reflected in space to ensure that there is a temperature balance in the […]
  • Climate Change Impacts on Ocean Life The destruction of the ozone layer has led to the exposure of the earth to harmful radiation from the sun. The rising temperatures in the oceans hinder the upward flow of nutrients from the seabed […]
  • Climate Change for Australian Magpie-Lark Birds Observations in the northern parts of Australia indicate that Magpie-lark birds move to the coast during the dry season and return back during the wet season.
  • Climate Change Impact on Bangladesh Today, there are a lot of scientists from the fields of ecology and meteorology who are monitoring the changes of climate in various regions of the world.
  • Transportation Impact on Climate Change It is apparent that the number of motor vehicles in the world is increasing by the day, and this translates to an increase in the amount of pollutants produced by the transportation industry annually.
  • Global Warming and Climate Change: Annotated Bibliography The author shows the tragedy of the situation with climate change by the example of birds that arrived too early from the South, as the buds begin to bloom, although it is still icy.
  • Technology Influence on Climate Change Undoubtedly, global warming is a portrayal of climate change in the modern world and hence the need for appropriate interventions to foster the sustainability of the environment.
  • Climate Change’s Negative Impact on Biodiversity This essay’s primary objective is to trace and evaluate the impact of climate change on biological diversity through the lens of transformations in the marine and forest ecosystems and evaluation of the agricultural sector both […]
  • Climate Change in Communication Moreover, environmental reporting is not accurate and useful since profits influence and political interference affect the attainment of truthful, objective, and fair facts that would promote efficiency in newsrooms on environmental reporting.
  • Global Warming and Effects Within 50 Years Global warming by few Scientists is often known as “climate change” the reason being is that according to the global warming is not the warming of earth it basically is the misbalance in climate.
  • Negative Impacts of Climate Change in the Urban Areas and Possible Strategies to Address Them The current essay is an attempt to outline the problems caused by the negative impacts of climate change in the urban areas.
  • Climate Change and Renewable Energy Options The existence of various classes of world economies in the rural setting and the rise of the middle class economies has put more pressure on environmental services that are highly demanded and the use of […]
  • The Climate Change Articles Comparison In a broader sense, both articles address the concept of sustainability and the means of reinforcing its significance in the context of modern global society to prevent further deterioration of the environment from happening.
  • Climate Change and Its Effects on Tourism in Coastal Areas It is hereby recommended that governments have a huge role to play in mitigating the negative effects of climate change on coastal towns.
  • Climate Change Definition and Description The wind patterns, the temperature and the amount of rainfall are used to determine the changes in temperature. Usually, the atmosphere changes in a way that the energy of the sun absorbed by the atmosphere […]
  • Technology’s Impact on Climate Change To examine the contribution of technology to climate change; To present a comprehensive review of technologically-mediated methods for responding to global flooding caused by anthropogenic climate change; To suggest the most effective and socially just […]
  • Climate Change: The Complex Issue of Global Warming By definition, the greenhouse effect is the process through which the atmosphere absorbs infrared radiation emitted from the Earth’s surface once it is heated directly by the sun during the day.
  • How Aviation Impacts Climate Change A measurement of the earth’s radiation budget imbalance brought on by changes in the quantities of gases and aerosols or cloudiness is known as radiative forcing.
  • Maize Production and Climate Change in South Africa Maize farming covers 58% of the crop area in South Africa and 60% of this is in drier areas of the country.
  • Global Warming and Climate Change: Fighting and Solutions The work will concentrate on certain aspects such as the background of the problem, the current state of the problem, the existing literature on the problem, what has already been attempted to solve the problem, […]
  • Climate Change Impacts on the Aviation Industry The last two research questions focus on investigating the challenges experienced by stakeholders in the aviation industry in reducing the carbon blueprint of the sector and discussing additional steps the aviation industry can take to […]
  • Cost Benefit Analysis (CBA) in Reducing the Effects of Climate Change The concept remains relevant since it provides fundamental incentives that enable managers to determine the feasibility nature of a project and its viability.
  • Starbucks: Corporate Social Responsibility and Global Climate Change Then in the 90s and onwards to the 21st century, Starbucks coffee can be seen almost anywhere and in places where one least expects to see a Starbucks store.
  • Saving the Forest and Climate Changes The greenhouse gases from such emissions play a key role in the depletion of the most essential ozone layer, thereby increasing the solar heating effect on the adjacent Earth’s surface as well as the rate […]
  • Climate Change and Threat to Animals In the coming years, the increase in the global temperatures will make many living populations less able to adapt to the emergent conditions or to migrate to other regions that are suitable for their survival.
  • Evidence of Climate Change The primary reason for the matter is the melting of ice sheets, which adds water to the ocean. The Republic of Maldives is already starting to feel the effects of global sea-level rise now.
  • Climate Change in Abu Dhabi Abu Dhabi is an emirate in the country and it could suffer some of the worst effects of climate change in the UAE.
  • Energy Conservation for Solving Climate Change Problem The United States Environmental Protection Agency reports that of all the ways energy is used in America, about 39% is used to generate electricity.
  • Global Warming and Its Effects on the Environment This paper explores the impacts of global warming on the environment and also suggests some of the measures that can be taken to mitigate the impact of global warming on the environment.
  • The Key Drivers of Climate Change The use of fossil fuel in building cooling and heating, transportation, and in the manufacture of goods leads to an increase in the amount of carbon dioxide released into the atmosphere.
  • Research Driven Critique: Steven Maher and Climate Change The ravaging effects of Covid-19 must not distract the world from the impending ramifications of severe environmental and climatic events that shaped the lives of a significant portion of the population in the past year.
  • Global Warming: People Impact on the Environment One of the reasons for the general certainty of scientists about the effects of human activities on the change of climate all over the globe is the tendency of climate change throughout the history, which […]
  • Organisational Sustainability and Climate Change Strategy Porter and Kramer are of the opinion that an organisation has to create a set of effective share values between the society and the firm in order to enhance organisational performance.
  • The Negative Effects of Climate Change in Cities This is exemplified by the seasonal hurricanes in the USA and the surrounding regions, the hurricanes of which have destroyed houses and roads in the past.
  • Tourism and Climate Change Problem There are a number of factors that propelled the growth of tourism and these factors include the improvement of the standards of living in many developed nations, good work polices allowing more time for vacations […]
  • Anthropogenic Climate Change Since anthropogenic climate change occurs due to the cumulative effect of greenhouse gases, it is imperative that climatologists focus on both immediate and long term interventions to avert future crises of global warming that seem […]
  • Climate Change’s Impact on Crop Production I will address the inefficiencies of water use in our food production systems, food waste, and the impact of temperature on crop yield.
  • Climate Change and Role of Government He considers that the forest’s preservation is vital, as it is the wellspring of our human well-being. As such, the legislature can pass policies that would contribute to safeguarding our nation’s well-being, but they do […]
  • Climate Change: The Day After Tomorrow In the beginning of the film “The Day After Tomorrow”, the main character, Professor Jack Hall, is trying to warn the world of the drastic consequences of a changing climate being caused by the polluting […]
  • Moral Obligations to Climate Change and Animal Life To be able to become a rational person, it is essential to think critically about the concepts and domains that the individual faces and the way it will be sensible to react to them.
  • Climate Change as a Global Security Threat It is important to stress that agriculture problems can become real for the USA as well since numerous draughts and natural disasters negatively affect this branch of the US economy.
  • Climate Change: Causes and Effects Orbital variations lead to changes in the levels of solar radiation reaching the earth mainly due to the position of the sun and the distance between the earth and the sun during each particular orbital […]
  • China Climate Change Majority of developed and developing countries for example, the U.S.and China have failed to heed to the call of the need to save Mother Nature through implementation of pollution mitigating measures, for example, the Kyoto […]
  • Impact of Food Waste on Climate Change In conclusion, I believe that some of the measures that can be taken to prevent food waste are calculating the population and their needs.
  • Climate Change and Resource Sustainability in Balkan: How Quickly the Impact is Happening In addition, regarding the relief of the Balkans, their territory is dominated by a large number of mountains and hills, especially in the west, among which the northern boundary extends to the Julian Alps and […]
  • Climate Change: Renewable Energy Sources Climate change is the biggest threat to humanity, and deforestation and “oil dependency” only exacerbate the situation and rapidly kill people. Therefore it is important to invest in the development of renewable energy sources.
  • Climate Change and the Allegory of the Cave Plato’s allegory of the cave reflects well our current relationship with the environment and ways to find a better way to live in the world and live with it.
  • Climate Change, Economy, and Environment Central to the sociological approach to climate change is studying the relationship between the economy and the environment. Another critical area of sociologists ‘ attention is the relationship between inequality and the environment.
  • The Three Myths of Climate Change In the video, Linda Mortsch debunks three fundamental misconceptions people have regarding climate change and sets the record straight that the phenomenon is happening now, affects everyone, and is not easy to adapt.
  • Terrorism, Corruption, and Climate Change as Threats Therefore, threats affecting countries around the globe include terrorism, corruption, and climate change that can be mitigated through integrated counter-terror mechanisms, severe punishment for dishonest practices, and creating awareness of safe practices.
  • Climate Change’s Impact on Hendra Virus Transmission to humans occurs once people are exposed to an infected horse’s body fluids, excretions, and tissues. Land clearing in giant fruit bats’ habitats has exacerbated food shortages due to climate change, which has led […]
  • Global Climate Change and Environmental Conservation There may be a significantly lesser possibility that skeptics will acknowledge the facts and implications of climate change, which may result in a lower desire on their part to adopt adaptation. The climate of Minnesota […]
  • Beef Production’s Impact on Climate Change This industry is detrimental to the state of the planet and, in the long term, can lead to irreversible consequences. It is important to monitor the possible consequences and reduce the consumption of beef.
  • Cities and Climate Change: Articles Summary The exponential population growth in the United States of America and the energy demands put the nation in a dilemma. Climate change challenges are experienced as a result of an increase in greenhouse gas emissions […]
  • The Impact of Climate Change on Vulnerable Human Populations The fact that the rise in temperatures caused by the greenhouse effect is a threat to humans development has focused global attention on the “emissions generated from the combustion” of fossil fuels.
  • Food Waste Management: Impact on Sustainability and Climate Change How effective is composting food waste in enhancing sustainability and reducing the effects of climate change? The following key terms are used to identify and scrutinize references and study materials.”Food waste” and sustain* “Food waste” […]
  • Protecting the Environment Against Climate Change The destruction of the ozone layer, which helps in filtering the excessive ray of light and heat from the sun, expose people to some skin cancer and causes drought.
  • The Global Warming Problem and Solution Therefore, it is essential to make radical decisions, first of all, to reduce the use of fossil fuels such as oil, carbon, and natural gas. One of the ways of struggle is to protest in […]
  • Climate Change and Immigration Issues Due to its extensive coverage of the aspects of climate migration, the article will be significant to the research process in acquiring a better understanding of the effects of climate change on different people from […]
  • Global Warming: Speculation and Biased Information For example, people or organizations that deny the extent or existence of global warming may finance the creation and dissemination of incorrect information.
  • Impacts of Climate Change on Ocean The development of phytoplankton is sensitive to the temperature of the ocean. Some marine life is leaving the ocean due to the rising water temperature.
  • Impact of Climate Change on the Mining Sector After studying the necessary information on the topic of sustainability and Sustainability reports, the organization was allocated one of the activities that it performs to maintain it.
  • Climate Change: Historical Background and Social Values The Presidential and Congress elections in the US were usually accompanied by the increased interest in the issue of climate change in the 2010s.
  • Communities and Climate Change Article by Kehoe In the article, he describes the stringent living conditions of the First Nations communities and estimates the dangers of climate change for these remote areas.
  • Discussion: Reverting Climate Change Undertaking some of these activities requires a lot of finances that have seen governments setting aside funds to help in the budgeting and planning of the institutions.
  • Was Climate Change Affecting Species? It was used because it helps establish the significance of the research topic and describes the specific effects of climate change on species.
  • Climate Change Attitudes and Counteractions The argument is constructed around the assumption that the deteriorating conditions of climate will soon become one of the main reasons why many people decide to migrate to other places.
  • How Climate Change Could Impact the Global Economy In “This is How Climate Change Could Affect the World Economy,” Natalie Marchand draws attention to the fact that over the next 30 years, global GDP will shrink by up to 18% if global temperatures […]
  • Effective Policy Sets to Curb Climate Change A low population and economic growth significantly reduce climate change while reducing deforestation and methane gas, further slowing climate change. The world should adopt this model and effectively increase renewable use to fight climate change.
  • Climate Change: Social-Ecological Systems Framework One of the ways to understand and assess the technogenic impact on various ecological systems is to apply the Social-Ecological Systems Framework.
  • The Climate Change Mitigation Issues Indeed, from the utilitarian perspective, the current state of affairs is beneficial only for the small percentage of the world population that mostly resides in developed countries.
  • The Dangers of Global Warming: Environmental and Economic Collapse Global warming is caused by the so-called ‘Greenhouse effect’, when gases in Earth’s atmosphere, such as water vapor or methane, let the Sun’s light enter the planet but keep some of its heat in.
  • Wildfires and Impact of Climate Change Climate change has played a significant role in raise the likelihood and size of wildfires around the world. Climate change causes more moisture to evaporate from the earth, drying up the soil and making vegetation […]
  • Aviation, Climate Change, and Better Engine Designs: Reducing CO2 Emissions The presence of increasing levels of CO2 and other oxides led to the deterioration of the ozone layer. More clients and partners in the industry were becoming aware and willing to pursue the issue of […]
  • Climate Change as a Problem for Businesses and How to Manage It Additionally, some businesses are directly contributing to climate change due to a lack of measures that will minimise the emission of carbon.
  • Climate Change and Disease-Carrying Insects In order to prevent the spreading of the viruses through insects, the governments should implement policies against the emissions which contribute to the growth of the insects’ populations.
  • Aspects of Global Warming Global warming refers to the steadily increasing temperature of the Earth, while climate change is how global warming changes the weather and climate of the planet.
  • David Lammy on Climate Change and Racial Justice However, Lammy argues that people of color living in the global south and urban areas are the ones who are most affected by the climate emergency.
  • Moral Aspects of Climate Change Addresses However, these approaches are anthropocentric because they intend to alleviate the level of human destruction to the environment, but place human beings and their economic development at the center of all initiatives.
  • Feminism: A Road Map to Overcoming COVID-19 and Climate Change By exposing how individuals relate to one another as humans, institutions, and organizations, feminism aids in the identification of these frequent dimensions of suffering.
  • Global Warming: Moral and Political Challenge That is, if the politicians were to advocate the preservation of the environment, they would encourage businesses completely to adopt alternative methods and careful usage of resources.
  • Climate Change: Inconsistencies in Reporting An alternative route that may be taken is to engage in honest debates about the issue, which will reduce alarmism and defeatism.
  • Climate Change: The Chornobyl Nuclear Accident Also, I want to investigate the reasons behind the decision of the USSR government to conceal the truth and not let people save their lives.
  • “World on the Edge”: Managing the Causes of Climate Change Brown’s main idea is to show the possibility of an extremely unfortunate outcome in the future as a result of the development of local agricultural problems – China, Iran, Mexico, Saudi Arabia, and others – […]
  • The Straw Man Fallacy in the Topic of Climate Change The straw man fallacy is a type of logical fallacy whereby one person misrepresents their opponent’s question or argument to make it easier to respond.
  • Gendering Climate Change: Geographical Insights In the given article, the author discusses the implications of climate change on gender and social relations and encourages scholars and activists to think critically and engage in debates on a global scale.
  • Climate Change and Its Consequences for Oklahoma This concept can be defined as a rise in the Earth’s temperature due to anthropogenic activity, resulting in alteration of usual weather in various parts of the planet.
  • Climate Change Impacts in Sub-Saharan Africa This is why I believe it is necessary to conduct careful, thorough research on why climate change is a threat to our planet and how to stop it.
  • Climate Change: Global Warming Intensity Average temperatures on Earth are rising faster than at any time in the past 2,000 years, and the last five of them have been the hottest in the history of meteorological observations since 1850.
  • The Negative Results of Climate Change Climate change refers to the rise of the sea due to hot oceans expanding and the melting of ice sheets and glaciers.
  • Addressing Climate Change: The Collective Action Problem While all the nations agree that climate change is a source of substantial harm to the economy, the environment, and public health, not all countries have similar incentives for addressing the problem. Addressing the problem […]
  • Health Issues on the Climate Change However, the mortality rate of air pollution in the United States is relatively low compared to the rest of the world.
  • Collective Climate Change Responsibility The fact is that individuals are not the most critical contributors to the climate crisis, and while ditching the plastic straw might feel good on a personal level, it will not solve the situation.
  • Climate Change and Challenges in Miami, Florida The issue of poor environment maintenance in Miami, Florida, has led to climate change, resulting in sea-level rise, an increase of flood levels, and droughts, and warmer temperatures in the area.
  • Global Perspectives in the Climate Change Strategy It is required to provide an overview of those programs and schemes of actions that were used in the local, federal and global policies of the countries of the world to combat air pollution.
  • Climate Change as Systemic Risk of Globalization However, the integration became more complex and rapid over the years, making it systemic due to the higher number of internal connections.
  • Impact of Climate Change on Increased Wildfires Over the past decades, America has experienced the most severe fires in its history regarding the coverage of affected areas and the cost of damage.
  • Creating a Policy Briefing Book: Climate Change in China After that, a necessary step included the evaluation of the data gathered and the development of a summary that perfectly demonstrated the crucial points of this complication.
  • Natural Climate Solutions for Climate Change in China The social system and its response to climate change are directly related to the well-being, economic status, and quality of life of the population.
  • Climate Change and Limiting the Fuel-Powered Transportation When considering the options for limiting the extent of the usage of fuel-powered vehicles, one should pay attention to the use of personal vehicles and the propensity among most citizens to prefer diesel cars as […]
  • Climate Change Laboratory Report To determine the amount of carbon dioxide in the atmosphere causing global warming in the next ten decades, if the estimated rate of deforestation is maintained.
  • Climate Change: Causes, Impact on People and the Environment Climate change is the alteration of the normal climatic conditions in the earth, and it occurs over some time. In as much as there are arguments based around the subject, it is mainly caused by […]
  • Climate Change and Stabilization Wages The more the annual road activity indicates that more cars traversed throughout a fiscal year, the higher the size of the annual fuel consumption. The Carbon Capture and Storage technology can also reduce carbon emissions […]
  • UK Climate Change Act 2008 The aim of the UK is to balance the levels of greenhouse gases to circumvent the perilous issue of climate change, as well as make it probable for people to acclimatize to an inevitable climate […]
  • Sustainability, Climate Change Impact on Supply Chains & Circular Economy With recycling, reusing of materials, and collecting waste, industries help to fight ecological issues, which are the cause of climate change by saving nature’s integrity.
  • Climate Change Indicators and Media Interference There is no certainty in the bright future for the Earth in the long-term perspective considering the devastating aftereffects that the phenomenon might bring. The indicators are essential to evaluate the scale of the growing […]
  • Climate Change: Sustainability Development and Environmental Law The media significantly contributes to the creation of awareness, thus the importance of integrating the role of the news press with sustainability practices.
  • How Climate Change Affects Conflict and Peace The review looks at various works from different years on the environment, connections to conflict, and the impact of climate change.
  • Toyota Corporation: The Effects of Climate Change on the Word’s Automobile Sector Considering the broad nature of the sector, the study has taken into account the case of Toyota Motor Corporation which is one of the firms operating within the sector.
  • The Impact of Climate Change on Agriculture However, the move to introduce foreign species of grass such as Bermuda grass in the region while maintaining the native grass has been faced by challenges related to the fiscal importance of the production.
  • Health and Climate Change Climate change, which is a universal problem, is thought to have devastating effects on human and animal health. However, the precise health effects are not known.
  • The Issue of Climate Change The only confirmed facts are the impact of one’s culture and community on willingness to participate in environmental projects, and some people can refuse to join, thereby demonstrating their individuality.
  • Climate Change as a Battle of Generation Z These issues have attracted the attention of the generation who they have identified climate change as the most challenging problem the world is facing today.
  • Climate Change and Health in Nunavut, Canada Then, the authors tend to use strict and formal language while delivering their findings and ideas, which, again, is due to the scholarly character of the article. Thus, the article seems to have a good […]
  • Climate Change: Anticipating Drastic Consequences Modern scientists focus on the problem of the climate change because of expecting the dramatic consequences of the process in the future.
  • The Analysis of Process of Climate Change Dietz is the head of the Division of Nutrition and Physical Activity at the federal Centers for Disease Control and Prevention in Atlanta.
  • The Way Climate Change Affects the Planet It can help analyze past events such as the Pleistocene ice ages, but the current climate change does not fit the criteria. It demonstrates how slower the change was when compared to the current climate […]
  • Polar Bear Decline: Climate Change From Pole to Pole In comparison to 2005 where five of the populations were stable, it shows that there was a decline in stability of polar bear population.
  • Preparing for the Impacts of Climate Change The three areas of interest that this report discusses are the impacts of climate change on social, economic and environmental fronts which are the key areas that have created a lot of debate and discussion […]
  • Strategy for Garnering Effective Action on Climate Change Mitigation The approach should be participatory in that every member of the community is aware of ways that leads to climate change in order to take the necessary precaution measures. Many member nations have failed to […]
  • Impact of Global Climate Change on Malaria There will be a comparison of the intensity of the changes to the magnitude of the impacts on malaria endemicity proposed within the future scenarios of the climate.
  • Climate Change Economics: A Review of Greenstone and Oliver’s Analysis The article by Greenstone and Oliver indicates that the problem of global warming is one of the most perilous disasters whose effects are seen in low agricultural output, poor economic wellbeing of people, and high […]
  • Rainforests of Victoria: Potential Effects of Climate Change The results of the research by Brooke in the year 2005 was examined to establish the actual impacts of climate change on the East Gippsland forest, especially for the fern specie.
  • Pygmy-Possum Burramys Parvus: The Effects of Climate Change The study will be guided by the following research question: In what ways will the predicted loss of snow cover due to climate change influence the density and habitat use of the mountain pygmy-possum populations […]
  • Climate Change and the Occurrence of Infectious Diseases This paper seeks to explore the nature of two vector-borne diseases, malaria, and dengue fever, in regards to the characteristics that would make them prone to effects of climate change, and to highlight some of […]
  • Links Between Methane, Plants, and Climate Change According to the Intergovernmental Panel on Climate Change, it is the anthropogenic activities that has increased the load of greenhouse gases since the mid-20th century that has resulted in global warming. It is only the […]
  • United Nations Climate Change Conference In the Kyoto protocol, members agreed that nations needed to reduce the carbon emissions to levels that could not threaten the planet’s livelihoods.
  • The Involve of Black People in the Seeking of Climate Change Whereas some researchers use the magnitude of pollution release as opposed to closeness to a hazardous site to define exposure, others utilize the dispersion of pollutants model to comprehend the link between exposure and population.
  • Climate Change Dynamics: Are We Ready for the Future? One of the critical challenges of preparedness for future environmental changes is the uncertainty of how the climate system will change in several decades.
  • How Climate Change Impacts Ocean Temperature and Marine Life The ocean’s surface consumes the excess heat from the air, which leads to significant issues in all of the planet’s ecosystems.
  • Climate Change Mitigation and Adaptation Plan for Abu Dhabi City, UAE Abu Dhabi is the capital city of the UAE and the Abu Dhabi Emirate and is located on a triangular island in the Persian Gulf.
  • Global Pollution and Climate Change Both of these works address the topic of Global pollution, Global warming, and Climate change, which are relevant to the current situation in the world.
  • Climate Change: The Key Issues An analysis of world literature indicates the emergence in recent years of a number of scientific publications on the medical and environmental consequences of global climate change.
  • Climate Change Is a Scientific Fallacy Even in the worst-case scenario whereby the earth gives in and fails to support human activities, there can always be a way out.
  • Climate Change: Change Up Your Approach People are becoming aware of the relevance of things and different aspects of their life, which is a positive trend. However, the share of this kind of energy will be reduced dramatically which is favorable […]
  • Climate Change: The Broken Ozone Layer It explains the effects of climate change and the adaptation methods used. Vulnerability is basically the level of exposure and weakness of an aspect with regard to climate change.
  • Climate Change and Economic Growth The graph displays the levels of the carbon dioxide in the atmosphere and the years before our time with the number 0 being the year 1950.
  • Tropic of Chaos: Climate Change and the New Geography of Violence The point of confluence in the cattle raids in East Africa and the planting of opium in the poor communities is the struggle to beat the effects of climatic changes.
  • Personal Insight: Climate Change To my mind, economic implications are one of the most concerning because the economy is one of the pillars of modern society.
  • A Shift From Climate Change Awareness Under New President Such statements raised concerns among American journalists and general population about the future of the organization as one of the main forces who advocated for the safe and healthy environment of Americans and the global […]
  • Human Influence on Climate Change Climate changes are dangerous because they influence all the living creatures in the world. Thus, it is hard to overestimate the threat for humankind the climate changes represent.
  • Environmental Studies: Climate Changes Ozone hole is related to forest loss in that the hole is caused by reaction of different chemicals that are found in the atmosphere and some of these gases, for example, the carbon dioxide gas […]
  • Global Warming: Negative Effects to the Environment The effect was the greening of the environment and its transformation into habitable zones for humans The second system has been a consequence of the first, storage.
  • Global Warming Problem Overview: Significantly Changing the Climate Patterns The government is not in a position to come up with specific costs that are attached to the extent of environmental pollution neither are the polluters aware about the costs that are attached to the […]
  • Desert, Glaciers, and Climate Change When the wind blows in a relatively flat area with no vegetation, this wind moves loose and fine particles to erode a vast area of the landscape continuously in a process called deflation.
  • Global Change Biology in Terms of Global Warming A risk assessment method showed that the current population could persist for at least 2000 years at hatchling sex ratios of up to 75% male.
  • The Politics of Climate Change, Saving the Environment
  • Global Warming Issues Review and Environmental Sustainability
  • Neolithic Revolution and Climate Change
  • Global Warming: Ways to Help End Global Warming
  • Global Warming-The Early Signs of Warning
  • Biofuels and Climate Change
  • The Influence of Global Warming and Pollution on the Environment
  • How Global Warming Has an Effect on Wildlife?
  • Climate Change Risks in South Eastern Australia
  • The Politics and Economics of International Action on Climate Change
  • Climate Change: Influence on Lifestyle in the Future
  • Global Warming: Causes and Impact on Health, Environment and the Biodiversity
  • Climate Change During Socialism and Capitalistic Epochs
  • Climate Change and Public Health Policies
  • Climate Changes: Cause and Effect
  • Global Warming: Causes and Consequences
  • World Trade as the Adjustment Mechanism of Agriculture to Climate Change by Julia & Duchin
  • Risk Communication, Public Engagement, and Climate Change
  • Everyday Communication Surrounding Climate Change
  • Chad Frischmann: The Young Minds Solving Climate Change
  • Climate Change and the Syrian Civil War Revisited
  • Public Health Education on Climate Change Effects
  • Research Plan “Climate Change”
  • Diets and Climate Change
  • The Role of Human Activities on the Climate Change
  • Corporations’ Impact on Climate Change
  • Climate Change Factors and Countermeasures
  • Climate Change Effects on Population Health
  • Climate Change: Who Is at Fault?
  • Technological and Policy Solutions to Prevent Climate Change
  • Climate Change: Reducing Industrial Air Pollution
  • Global Climate Change and Biological Implications
  • Weather Abnormalities and Climate Change
  • Global Warming, Its Consequences and Prevention
  • Climate Change and Risks for Business in Australia
  • Climate Change Solutions for Australia
  • Climate Change, Industrial Ecology and Environmental Chemistry
  • “Climate Change May Destroy Alaskan Towns” Video
  • Science of Global Warming and Climate Change
  • Climate Change Effects on Kenya’s Tea Industry
  • Dealing With the Climate Change Issues
  • Environmental Perils: Climate Change Issue
  • Technologically Produced Emissions Impact on Climate Change
  • City Trees and Climate Change: Act Green and Get Healthy
  • Climate Change and American National Security
  • Anthropogenic Climate Change and Policy Problems
  • Climate Change, Air Pollution, Soil Degradation
  • Climate Change in Canada
  • International Climate Change Agreements
  • Polar Transformations as a Global Warming Issue
  • Climate Change Debates and Scientific Opinion
  • Earth’s Geologic History and Global Climate Change
  • CO2 Emission and Climate Change Misconceptions
  • Geoengineering as a Possible Response to Climate Change
  • Climate Change: Ways of Eliminating Negative Effects
  • Climate Change Probability and Predictions
  • Climate Changes and Human Population Distribution
  • Climate Change as International Issue
  • Climate Change Effects on Ocean Acidification
  • Climate Change Governance: Concepts and Theories
  • Climate Change Management and Risk Governance
  • United Nation and Climate Change
  • Human Rights and Climate Change Policy-Making
  • Climate Change: Anthropological Concepts and Perspectives
  • Climate Change Impacts on Business in Bangladesh
  • Environmental Risk Perception: Climate Change Viewpoints
  • Pollution & Climate Change as Environmental Risks
  • Climate Change: Nicholas Stern and Ross Garnaut Views
  • Challenges Facing Humanity: Technology and Climate Change
  • Climate Change Potential Consequences
  • Climate Change in United Kingdom
  • Climate Change From International Relations Perspective
  • Climate Change and International Collaboration
  • International Security and Climate Change
  • Climate and Conflicts: Security Risks of Global Warming
  • Climate Change Effects on World Economy
  • Climate Change Vulnerability in Scotland
  • Global Warming and Climate Change
  • Responsible Factors for Climate Change
  • The Effect of Science on Climate Change
  • “Climate Change: Turning Up the Heat” by Barrie Pittock
  • Vulnerability of World Countries to Climate Change
  • Anthropogenic Climate Change
  • The Implementation of MOOCs on Climate Change
  • The Climate Change and the Asset-Based Community Development
  • Climate Change Research Studies
  • Environmental Issue – Climate Change
  • Climate Change Negative Health Impacts
  • Managing the Impacts of Climate Change
  • Early Climate Change Science
  • Views Comparison on the Problem of Climate Change
  • Climate Change and Corporate World
  • Climate Change Affecting Coral Triangle Turtles
  • Introduction to Climate Change: Major Threats and the Means to Avoid Them
  • Climate Change and Its Effects on Indigenous Peoples
  • Asian Drivers of Global Change
  • The Causes and Effects of Climate Change in the US
  • Metholdogy for Economic Discourse Analysis in Climate Change
  • The Impact of Climate Change on New Hampshire Business
  • Climate Change Effects on an Individual’s Life in the Future
  • Ideology of Economic Discourse in Climate Change
  • The Role of Behavioural Economics in Energy and Climate Policy
  • The Economic Cost of Climate Change Effects
  • Transforming the Economy to Address Climate Change and Global Resource Competition
  • Climate Change: Is Capitalism the Problem or the Solution?
  • Climate Change: Floods in Queensland Australia
  • Impact of Climate Change and Solutions
  • Climate Change and Its Global Implications in Hospitality and Tourism
  • Climate Change Needs Human Behavior Change
  • Climate Changes: Snowpack
  • Climate Change and Consumption: Which Way the Wind Blows in Indiana
  • The United Nation’s Response to Climate Change
  • Need for Topic on Climate Change in Geography Courses
  • Critical Review: “Food’s Footprint: Agriculture and Climate Change” by Jennifer Burney
  • Global Warming: Justing Gillis Discussing Studies on Climate Change
  • Economics and Human Induced Climate Change
  • Biology of Climate Change
  • Business & Climate Change
  • Global Warming Causes and Unfavorable Climatic Changes
  • Spin, Science and Climate Change
  • Climate Change, Coming Home: Global Warming’s Effects on Populations
  • Social Concepts and Climate Change
  • Climate Change and Human Health
  • Climate Changes: Human Activities and Global Warming
  • Public Awareness of Climate Changes and Carbon Footprints
  • Climate Change: Impact of Carbon Emissions to the Atmosphere
  • Problems of Climate Change
  • Solving the Climate Change Crisis Through Development of Renewable Energy
  • Climate Change Is the Biggest Challenge in the World That Affects the Flexibility of Individual Specie
  • Climate Changes
  • Ways to Reduce Global Warming
  • Climate Change Definition and Causes
  • Climate Change: Nearing a Mini Ice Age
  • Global Warming Outcomes and Sea-Level Changes
  • Protecting Forests to Prevent Climate Change
  • Climate Change in Saudi Arabia and Miami
  • Effects of Global Warming on the Environment
  • Threat to Biodiversity Is Just as Important as Climate Change
  • Does Climate Change Affect Entrepreneurs?
  • Does Climate Change Information Affect Stated Risks of Pine Beetle Impacts on Forests
  • Does Energy Consumption Contribute to Climate Change?
  • Does Forced Solidarity Hinder Adaptation to Climate Change?
  • Does Risk Communication Really Decrease Cooperation in Climate Change Mitigation?
  • Does Risk Perception Limit the Climate Change Mitigation Behaviors?
  • What Are the Differences Between Climate Change and Global Warming?
  • What Are the Effects of Climate Change on Agriculture in North East Central Europe?
  • What Are the Policy Challenges That National Governments Face in Addressing Climate Change?
  • What Are the Primary Causes of Climate Change?
  • What Are the Risks of Climate Change and Global Warming?
  • What Does Climate Change Mean for Agriculture in Developing Countries?
  • What Drives the International Transfer of Climate Change Mitigation Technologies?
  • What Economic Impacts Are Expected to Result From Climate Change?
  • What Motivates Farmers’ Adaptation to Climate Change?
  • What Natural Forces Have Caused Climate Change?
  • What Problems Are Involved With Establishing an International Climate Change?
  • What Role Has Human Activity Played in Causing Climate Change?
  • Which Incentives Does Regulation Give to Adapt Network Infrastructure to Climate Change?
  • Why Climate Change Affects Us?
  • Why Does Climate Change Present Potential Dangers for the African Continent?
  • Why Economic Analysis Supports Strong Action on Climate Change?
  • Why Should People Care For the Perceived Event of Climate Change?
  • Why the Climate Change Debate Has Not Created More Cleantech Funds in Sweden?
  • Why Worry About Climate Change?
  • Will African Agriculture Survive Climate Change?
  • Will Carbon Tax Mitigate the Effects of Climate Change?
  • Will Climate Change Affect Agriculture?
  • Will Climate Change Cause Enormous Social Costs for Poor Asian Cities?
  • Will Religion and Faith Be the Answer to Climate Change?
  • Flood Essay Topics
  • Ecosystem Essay Topics
  • Atmosphere Questions
  • Extinction Research Topics
  • Desert Research Ideas
  • Greenhouse Gases Research Ideas
  • Recycling Research Ideas
  • Water Issues Research Ideas
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, March 2). 337 Climate Change Research Topics & Examples. https://ivypanda.com/essays/topic/climate-change-essay-examples/

"337 Climate Change Research Topics & Examples." IvyPanda , 2 Mar. 2024, ivypanda.com/essays/topic/climate-change-essay-examples/.

IvyPanda . (2024) '337 Climate Change Research Topics & Examples'. 2 March.

IvyPanda . 2024. "337 Climate Change Research Topics & Examples." March 2, 2024. https://ivypanda.com/essays/topic/climate-change-essay-examples/.

1. IvyPanda . "337 Climate Change Research Topics & Examples." March 2, 2024. https://ivypanda.com/essays/topic/climate-change-essay-examples/.

Bibliography

IvyPanda . "337 Climate Change Research Topics & Examples." March 2, 2024. https://ivypanda.com/essays/topic/climate-change-essay-examples/.

National Academies Press: OpenBook

Critical Issues in Weather Modification Research (2003)

Chapter: front matter.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

CRITICAL ISSUES IN WEATHER MODIFICATION RESEARCH Committee on the Status of and Future Directions in U.S. Weather Moclification Research and Operations Board on Atmospheric Sciences and Climate Division on Earth and Life Studies NATIONAl RESEARCH COlJbJCll OF Tf-fE NATIONAL ACADEMfES : yip #X—*^ ~ 'l-d W]~ ~ -fir —.~ f ~—# . ~ ~ .——

THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by the National Oceanic and Atmospheric Administration under Contract No. 50-DGNA-1-90024-T0006. Any opinions, findings, and conclusions, or recommendations expressed in this publication are those of the authorts) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number 0-309-09053-9 (Book' International Standard Book Number 0-309-518520-0 (PDF) Library of Contress Control Number 2003115099 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W, Lockbox 285, Washington, D.C. 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Cover: Photograph taken by Dr. William L. Woodley at 7:39 pm CDT on August 11, 2001, from a Texas seeder aircraft flying at 20,000 ft. The cloud shown reaching cumulonimbus stature had been seeded near its top 10 minutes earlier with ejectable silver iodide pyrotechnics. Copyright 2003 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medirine The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M.-Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. ~ ' ' ' ' ' ' ' ' ~ unct~on~ng In accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www. national-academies. ore

COMMITTEE ON THE STATUS OF AND FUTURE DIRECTIONS IN U.S. WEATHER MODIFI CATION RE SEARCH AND OPERATIONS MICHAEL GARSTANG (chair), University of Virginia, Charlottesville ROSCOE R. BRAHAM, JR., North Carolina State University, Raleigh ROELOF T. BRUINTJES, National Center for Atmospheric Research, Boulder, Colorado STEVEN F. CLIFFORD, University of Colorado, Boulder ROSS N. HOFFMAN, Atmospheric & Environmental Research, Inc., Lexington, Massachusetts DOUGLAS K. LILLY, University of Oklahoma, Norman ROLAND LIST*, University of Toronto, Ontario, Canada ROBERT J. SERAFIN, National Center for Atmospheric Research, Boulder, Colorado PAUL D. TRY, Science & Technology Corporation, Silver Spring, Maryland JOHANNES VERLINDE, Pennsylvania State University, University Park NRC Staff LAURIE GELLER, Study Director (until 7/3 1/03) VAUGHAN C TUREKIAN, Study Director (until 8/31/02) ELIZABETH A. GALINIS, Project Assistant JULIE DEMUTH, Research Associate * Resigned 9/02 v

BOARD ON ATMOSPHERIC SCIENCES AND CLIMATE ERIC J. BARRON, (chair", Pennsylvania State University, University Park RAYMOND J. BAN, The Weather Channel, Inc., Atlanta, Georgia ROBERT C. BEARDSLEY, Woods Hole Oceanographic Institution, Massachusetts ROSINA M. BIERBAUM, University of Michigan, Ann Arbor HOWARD B. BLUESTEIN*, University of Oklahoma, Norman RAFAEL L. BRAS, Massachusetts Institute of Technology, Cambridge STEVEN F. CLIFFORD*, University of Colorado/CIRES, Boulder CASSANDRA G. FESEN, Dartmouth College, Hanover, New Hampshire GEORGE L. FREDERICK*, Vaisala Inc., Boulder, Colorado JUDITH L. LEAN*, Naval Research Laboratory, Washington, D.C. MARGARET A. LEMONE, National Center for Atmospheric Research, Boulder, Colorado MARIO J. MOLINA, Massachusetts Institute of Technology, Cambridge MICHAEL J. PRATHER*, University of California, Irvine WILLIAM J. RANDEL, National Center for Atmospheric Research, Boulder, Colorado RICHARD D. ROSEN, Atmospheric & Environmental Research, Inc., Lexington, Massachusetts THOMAS F. TASCIONE*, Sterling Software, Inc., Bellevue, Nebraska JOHN C. WYNGAARD, Pennsylvania State University, University Park Ex officio Members EUGENE M. RASMUSSON, University of Maryland, College Park ERIC F. WOOD, Princeton University, New Jersey NRC SfaJ0f CHRIS ELFRING, Director ELBERT W. (JOE) FRIDAY, JR., Senior Scholar LAURIE GELLER, Senior Program Officer AMANDA STAUDT, Program Officer SHELDON DROBOT, Program Officer JULIE DEMUTH, Research Associate ELIZABETH A. GALINIS, Project Assistant ROB GREENWAY, Project Assistant DIANE GUSTAFSON, Administrative Associate ROBIN MORRIS, Financial Associate * Term ended 2128103 Vl

Preface The growing evidence that human activities can affect the weather on scales ranging from local to global has added a new and important dimension to the place of weather modification in the field of atmospheric sciences. There is a need, more urgent than ever, to understand the fundamental processes related to intentional and unintentional changes in the atmosphere. The question of how well current technology, practice, and theory are equipped to meet these broader goals of weather modification is central to this report. The challenge to find the right balance between assured knowledge and the need for action is one which must guide the future actions of both scientists and administrators concerned with weather modification. Difficulties demonstrating repeatability of weather modification experiments, providing convincing scientific evidence of success, and overcoming serious social and legal problems led to the moderation of the early predictions of success in weather modification by the late 1970s. The need to understand the fundamental physical and chemical processes underlying weather modification became obvious, thus a dedicated research effort was repeatedly recommended by successive national panels. Failure to devote significant public and private resources to basic research polarized both the support agencies and scientific community, generating serious feelings of ambivalence within these communities toward weather modification. Despite significant advances in computational capabilities to deal with complex processes in the atmosphere and remarkable advances in observing technology, little of this collective power has been applied in any coherent way to weather modification. The potential for progress in weather modification as seen by this Committee is dependent upon an improved fundamental understanding of crucial cloud, precipitation, and larger- scale atmospheric processes. The Committee believes that such progress is now within reach should the above advances be applied in a sustained manner to answer fundamental outstanding questions. While the Committee acknowledges the prospect of achieving significant advances in the ability of humans to exercise a degree of control over the weather, we caution that such progress is not possible without a concerted and sustained effort at understanding basic processes in the atmosphere. Furthermore, such results are as likely to lead to viable weather modification methodologies as they are to indicate that intentional modification of a weather system is neither currently possible nor desirable. . . V11

. ~ . V111 PREFACE A significant part of the advances projected from applying the current intellectual and technological tools to solving critical uncertainties in weather modification will produce results well beyond the initial objective and will lead to applications in totally unexpected areas. For example, the ability to make useful precipitation forecasts, particularly from convective storms, may be a valuable by-product of weather modification research. The Committee is also acutely conscious of the fact that, particularly in modifying severe weather, researchers may be required to have, before attempting treatment, a reliable and proven ability to predict what would have taken place had the system not been modified. As a chaotic system, the atmosphere is inherently predictable only for a limited time, with the time limit shorter for smaller spatial scales. Thus, predictions must be couched in probabilistic terms that may not satisfy the user community that a reliable prediction has been made. This report is the latest in a series of assessments of weather modification carried out by the National Academies, which produced reports in 1964, 1966, and 1973, aimed at guiding weather modification research and policy development. The last National Academies report is nearly three decades old and, despite more recent assessments by other bodies such as the American Meteorological Society and the World Meteorological Organization, a need was seen for an evaluation of weather modification research and operations in the United States. In November 2000, the National Academies' Board on Atmospheric Sciences and Climate (BASCJ organized a program development workshop to assess whether it would be useful to take a fresh look at the scientific underpinnings of weather modification. A year later, a study committee was convened, and four committee meetings were held over eight months. The Committee received input from individuals in federal and state agencies, scientists who have or are conducting relevant research, and professionals active in operational weather programs. The charge to the Committee explicitly excluded consideration of the complex social and legal issues associated with weather modification. This part of the question is of such importance in any weather modification effort that the Committee did go so far as to note, but not elaborate upon, the most critical questions in this area. Also in accordance with its charge, the Committee did not address inadvertent global-scale modification of climate and weather (e.g., global warming). However, the potential local and regional impacts of both intentional and inadvertent weather modification are considered. The report is addressed primarily to Administration officials and funding agencies who determine the direction of atmospheric research through budget decisions. The Committee recognizes, however, that weather modification has a wide audience. The Preface and the Executive Summary are directed at this wider audience, while a greater level of technical detail is contained within the body of the report. Michael Garstang, Chair Committee on the Status of and Future Directions in U.S. Weather Modification Research and Operations

Acknowledgments This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council's Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Richard Anthes, University Corporation for Atmospheric Research Rafael Bras, Massachusetts Institute of Technology Stanley A. Changnon, Illinois State Water Survey William Cotton, Colorado State University John Hallett, Desert Research Institute Daniel Rosenfeld, Hebrew University Joanne Simpson, NASA Goddard Space Flight Center Gabor Vali, University of Wyoming Francis Zwiers, University of Victoria Although the reviewers listed above have provided constructive comments and suggestions, they were not asked to endorse the report's conclusions or recommendations, nor did they see the final draft of the report before its release. The review ofthis report was overseen by John A. Dutton, The Pennsylvania State University. Appointed by the National Research Council, he was responsible for making certain that an independent examination ofthis report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution. ix

Contents EXECUTIVE SUMMARY 1 INTRODUCTION Motivation, 9 Cloud Physics, 13 First Experiments and First Controversies, 15 An Emerging Industry and Developing Public Concern, 16 The Pioneering Experiments, 17 The Need for Impartial Assessment of Seeding Results, 18 2 CURRENT STATUS OF WEATHER MODIFICATION OPERATIONS AND RESEARCH Current Operational Efforts, 23 Current Scientific Efforts, 24 Other Results, 35 Recognition of Key Uncertainties in Weather Modification, 36 EVALUATION REQUIREMENTS FOR WEATHER MODIFICATION Physical Evaluation, 39 Statistical Evaluation, 40 Measurement Uncertainties, 42 Uncertainties in Defining and Tracking the Target, 42 Uncertainties in Reaching the Target, 43 Assessing the Area Affecte d, 44 4 TOOLS AND TECHNIQUES FOR ADVANCING OUR UNDERSTANDING Measurement and Observing Technologies, 45 Modeling and Data Assimilation, 54 Laboratory Studies, 61 Field Studies, 63 Xl 1 9 23 39 45

. . X11 CONCLUS IONS AND RE COMM ENDATIONS Conclusions, 67 Recommendations, 72 REFERENCES APPENDIXES B C D Glaciogenic and Hygroscopic Seeding: Previous Research and Current Status, 89 Modern Statistical Methods and Weather Modification Research, 107 Glossary, 1 14 Acronyms, 118 E Community Participation, 1 19 F Committee Member B fog raphies, 1 2 1 CONTENTS 67 75 89

The weather on planet Earth is a vital and sometimes fatal force in human affairs. Efforts to control or reduce the harmful impacts of weather go back far in time. In this, the latest National Academies' assessment of weather modification, the committee was asked to assess the ability of current and proposed weather modification capabilities to provide beneficial impacts on water resource management and weather hazard mitigation. It examines new technologies, reviews advances in numerical modeling on the cloud and mesoscale, and considers how improvements in computer capabilities might be applied to weather modification. Critical Issues in Weather Modification Research examines the status of the science underlying weather modification in the United States. It calls for a coordinated national research program to answer fundamental questions about basic atmospheric processes and to address other issues that are impeding progress in weather modification.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

NSSL NOAA National Severe Storms Laboratory

NSSL researcher

Research at NSSL

Severe weather has touched every state in the United States. Hurricanes, tornadoes, blizzards, wildfires, floods and droughts are very real threats to our property and our lives. NSSL researchers work to observe, understand and predict severe weather in ways that will help our partners save lives and reduce property damage.

Thunderstorms

At NSSL we study all types of thunderstorms including supercell thunderstorms, mesoscale convective systems, quasi-linear convective systems and bow-echoes. We also study their environment and their life-cycle.

Read more →

Much about tornadoes remains a mystery. They are rare, unpredictable and deadly. The U.S. has more tornadoes than anywhere else in the world. NSSL scientists study the lifecycles of tornadoes, why some supercells produce tornadoes and others do not, and what exactly causes a tornado to form. We also look for ways to improve tornado warning accuracy and lead-time.

Except for heat related fatalities, more deaths occur from flooding than any other hazard ( NWS Jetstream ). NSSL flood research focuses on improving ways to monitor water levels and precipitation amounts in ways that will improve flood and flash flood forecasts and warnings.

Lightning not only injures and kills people, it also ignites forest and brush fires. NSSL scientists find unique ways to measure and study lightning in the field. We also create computer simulations of lightning, and look for ways to use lightning data in forecasts of severe weather.

Hail can cause billions of dollars of damage to structures, crops and livestock. NSSL hail research focuses on improving detection and warning of hail to give people time to protect their property and seek shelter.

Damaging Winds

Straight-line winds are responsible for most of the damage from thunderstorms. These winds can cause as much destruction as a strong tornado. NSSL works to better understand the thunderstorms that produce damaging winds, so the NWS can make better predictions and warnings for them.

Winter Weather

Forecasting winter weather accurately is difficult because a degree or two of temperature change can mean the difference between snow or freezing rain. NSSL research includes looking for ways to make forecasting winter precipitation easier.

Societal Impacts

NSSL researchers work to understand and provide the weather information society needs. NSSL social science research directly involves emergency managers, broadcast meteorologists, and operational forecasters, in addition to the United States public, to assure innovations in weather research are holistically integrated into the weather communication system.

research paper topics weather

Explore your training options in 10 minutes Get Started

  • Graduate Stories
  • Partner Spotlights
  • Bootcamp Prep
  • Bootcamp Admissions
  • University Bootcamps
  • Coding Tools
  • Software Engineering
  • Web Development
  • Data Science
  • Tech Guides
  • Tech Resources
  • Career Advice
  • Online Learning
  • Internships
  • Apprenticeships
  • Tech Salaries
  • Associate Degree
  • Bachelor's Degree
  • Master's Degree
  • University Admissions
  • Best Schools
  • Certifications
  • Bootcamp Financing
  • Higher Ed Financing
  • Scholarships
  • Financial Aid
  • Best Coding Bootcamps
  • Best Online Bootcamps
  • Best Web Design Bootcamps
  • Best Data Science Bootcamps
  • Best Technology Sales Bootcamps
  • Best Data Analytics Bootcamps
  • Best Cybersecurity Bootcamps
  • Best Digital Marketing Bootcamps
  • Los Angeles
  • San Francisco
  • Browse All Locations
  • Digital Marketing
  • Machine Learning
  • See All Subjects
  • Bootcamps 101
  • Full-Stack Development
  • Career Changes
  • View all Career Discussions
  • Mobile App Development
  • Cybersecurity
  • Product Management
  • UX/UI Design
  • What is a Coding Bootcamp?
  • Are Coding Bootcamps Worth It?
  • How to Choose a Coding Bootcamp
  • Best Online Coding Bootcamps and Courses
  • Best Free Bootcamps and Coding Training
  • Coding Bootcamp vs. Community College
  • Coding Bootcamp vs. Self-Learning
  • Bootcamps vs. Certifications: Compared
  • What Is a Coding Bootcamp Job Guarantee?
  • How to Pay for Coding Bootcamp
  • Ultimate Guide to Coding Bootcamp Loans
  • Best Coding Bootcamp Scholarships and Grants
  • Education Stipends for Coding Bootcamps
  • Get Your Coding Bootcamp Sponsored by Your Employer
  • GI Bill and Coding Bootcamps
  • Tech Intevriews
  • Our Enterprise Solution
  • Connect With Us
  • Publication
  • Reskill America
  • Partner With Us

Career Karma

  • Resource Center
  • Bachelor’s Degree
  • Master’s Degree

The Top 10 Most Interesting Climate Change Research Topics

Finishing your environmental science degree may require you to write about climate change research topics. For example, students pursuing a career as environmental scientists may focus their research on environmental-climate sensitivity or those studying to become conservation scientists will focus on ways to improve the quality of natural resources.

Climate change research paper topics vary from anthropogenic climate to physical risks of abrupt climate change. Papers should focus on a specific climate change research question. Read on to learn more about examples of climate change research topics and questions.

Find your bootcamp match

What makes a strong climate change research topic.

A strong climate change research paper topic should be precise in order for others to understand your research. You must use research methods to find topics that discuss a concern about climate issues. Your broader topic should be of current importance and a well-defined discourse on climate change.

Tips for Choosing a Climate Change Research Topic

  • Research what environmental scientists say. Environmental scientists study ecological problems. Their studies include the threat of climate change on environmental issues. Studies completed by these professionals are a good starting point.
  • Use original research to review articles for sources. Starting with a general search is a good place to get ideas. However, as you begin to refine your search, use original research papers that have passed through the stage of peer review.
  • Discover the current climatic conditions of the research area. The issue of climate change affects each area differently. Gather information on the current climate and historical climate conditions to help bolster your research.
  • Consider current issues of climate change. You want your analyses on climate change to be current. Using historical data can help you delve deep into climate change effects. First, however, it needs to back up climate change risks.
  • Research the climate model evaluation options. There are different approaches to climate change evaluation. Choosing the right climate model evaluation system will help solidify your research.

What’s the Difference Between a Research Topic and a Research Question?

A research topic is a broad area of study that can encompass several different issues. An example might be the key role of climate change in the United States. While this topic might make for a good paper, it is too broad and must be narrowed to be written effectively.

A research question narrows the topic down to one or two points. The question provides a framework from which to start building your paper. The answers to your research question create the substance of your paper as you report the findings.

How to Create Strong Climate Change Research Questions

To create a strong climate change research question, start settling on the broader topic. Once you decide on a topic, use your research skills and make notes about issues or debates that may make an interesting paper. Then, narrow your ideas down into a niche that you can address with theoretical or practical research.

Top 10 Climate Change Research Paper Topics

1. climate changes effect on agriculture.

Climate change’s effect on agriculture is a topic that has been studied for years. The concern is the major role of climate as it affects the growth of crops, such as the grains that the United States cultivates and trades on the world market. According to the scientific journal Nature , one primary concern is how the high levels of carbon dioxide can affect overall crops .

2. Economic Impact of Climate Change

Climate can have a negative effect on both local and global economies. While the costs may vary greatly, even a slight change could cost the United States a loss in the Global Domestic Product (GDP). For example, rising sea levels may damage the fiber optic infrastructure the world relies on for trade and communication.

3. Solutions for Reducing the Effect of Future Climate Conditions

Solutions for reducing the effect of future climate conditions range from reducing the reliance on fossil fuels to reducing the number of children you have. Some of these solutions to climate change are radical ideas and may not be accepted by the general population.

4. Federal Government Climate Policy

The United States government’s climate policy is extensive. The climate policy is the federal government’s action for climate change and how it hopes to make an impact. It includes adopting the use of electric vehicles instead of gas-powered cars. It also includes the use of alternative energy systems such as wind energy.

5. Understanding of Climate Change

Understanding climate change is a broad climate change research topic. With this, you can introduce different research methods for tracking climate change and showing a focused effect on specific areas, such as the impact on water availability in certain geographic areas.

6. Carbon Emissions Impact of Climate Change

Carbon emissions are a major factor in climate change. Due to the greenhouse effect they cause, the world is seeing a higher number of devastating weather events. An increase in the number and intensity of tsunamis, hurricanes, and tornados are some of the results.

7. Evidence of Climate Change

There is ample evidence of climate change available, thanks to the scientific community. However, some of these implications of climate change are hotly contested by those with poor views about climate scientists. Proof of climate change includes satellite images, ice cores, and retreating glaciers.

8. Cause and Mitigation of Climate Change

The causes of climate change can be either human activities or natural causes. Greenhouse gas emissions are an example of how human activities can alter the world’s climate. However, natural causes such as volcanic and solar activity are also issues. Mitigation plans for these effects may include options for both causes.

9. Health Threats and Climate Change

Climate change can have an adverse effect on human health. The impacts on health from climate change can include extreme heat, air pollution, and increasing allergies. The CDC warns these changes can cause respiratory threats, cardiovascular issues, and heat-related illnesses.

10. Industrial Pollution and the Effects of Climate Change

Just as car emissions can have an adverse effect on the climate, so can industrial pollution. It is one of the leading factors in greenhouse gas effects on average temperature. While the US has played a key role in curtailing industrial pollution, other countries need to follow suit to mitigate the negative impacts it causes.

Other Examples of Climate Change Research Topics & Questions

Climate change research topics.

  • The challenge of climate change faced by the United States
  • Climate change communication and social movements
  • Global adaptation methods to climate change
  • How climate change affects migration
  • Capacity on climate change and the effect on biodiversity

Climate Change Research Questions

  • What are some mitigation and adaptation to climate change options for farmers?
  • How do alternative energy sources play a role in climate change?
  • Do federal policies on climate change help reduce carbon emissions?
  • What impacts of climate change affect the environment?
  • Do climate change and social movements mean the end of travel?

Choosing the Right Climate Change Research Topic

Choosing the correct climate change research paper topic takes continuous research and refining. Your topic starts as a general overview of an area of climate change. Then, after extensive research, you can narrow it down to a specific question.

You need to ensure that your research is timely, however. For example, you don’t want to address the effects of climate change on natural resources from 15 or 20 years ago. Instead, you want to focus on views about climate change from resources within the last five years.

Climate Change Research Topics FAQ

A climate change research paper has five parts, beginning with introducing the problem and background before moving into a review of related sources. After reviewing, share methods and procedures, followed by data analysis . Finally, conclude with a summary and recommendations.

A thesis statement presents the topic of your paper to the reader. It also helps you as you begin to organize your paper, much like a mission statement. Therefore, your thesis statement may change during writing as you start to present your arguments.

According to the US Forest Service, climate change issues are related to topics regarding forest management, biodiversity, and species distribution. Climate change is a broad focus that affects many topics.

To write a research paper title, a good strategy is not to write the title right away. Instead, wait until the end after you finish everything else. Then use a short and to-the-point phrase that summarizes your document. Use keywords from the paper and avoid jargon.

About us: Career Karma is a platform designed to help job seekers find, research, and connect with job training programs to advance their careers. Learn about the CK publication .

What's Next?

icon_10

Get matched with top bootcamps

Ask a question to our community, take our careers quiz.

Denise Sullivan

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Apply to top tech training programs in one click

A family of four plus their dog sit in the back of a flooded pickup truck, submerged in water up to the doorhandles.

The link between extreme weather and climate change has never been more clear

Experts say drawing the direct connection from specific storms to the nebulous idea of climate change can help people grasp the urgency of our crisis.

A decade ago, scientists would say they were pretty sure a specific hurricane, heatwave, flood, drought or raging wildfire was more severe due to climate change, but they could rarely pinpoint its exact contribution. Now, thanks to a convergence of human brainpower, mathematical models, precise weather data, and superpower computers, climate fingerprints are being calculated for many major weather events.

The purpose of this climate attribution is to drive home the extent that greenhouse gases from the burning of fossil fuel relates to the weather effects people are seeing.  

“We want everyone to understand how what we as humans have done translates into the intensities and frequencies of extreme events,” says Joyce Kimutai, a climate scientist at the London-based nonprofit   World Weather Attribution   (WWA), a leader in this research. “We’re not saying that climate change caused a particular extreme weather event. What we are saying is, ‘Here’s the extent climate change has modified it’.”  

More than 400 extreme weather events, many in the past few years, have been studied to determine to what extent the grade of the phenomenon was driven by climate change.    

For example, researchers at Climate Central, a nonprofit organization that collaborates with WWA, found that last summer’s heat wave in the Southwestern United States—where temperatures in July were some 10 degrees Fahrenheit above normal—was   five or more times more likely   because of climate change.

Heat waves like that “are not just blips,” but will become much more frequent if the world doesn’t quickly transition away from fossil fuels and other greenhouse gases, says   Andrew Pershing, the lead scientist for attribution research at   Climate Central.  

Climate has worsened heat, floods, and storms  

Complex weather events are triggered by several environmental factors, including high- or low-pressure systems, jet streams, and more. But it’s long been known that warmer air and ocean surface temperatures are additional important contributors that have worsened many recent disasters.  

Scientists have calculated, for example, that total rainfall from six of the major hurricanes that struck the Atlantic coast in the past 20 years—Katrina,   Irma, Maria, Harvey, Dorian, and Florence—and which collectively caused more than $500 billion in damage, were four to 15 times more intense (depending on the hurricane) than they would have been had the Earth been cooler.

You May Also Like

research paper topics weather

2024 hurricane season forecasted to be record-breaking year

research paper topics weather

What is El Niño—and will it lead to more snow this winter?

research paper topics weather

Will the supermoon make Hurricane Idalia worse? We asked the experts.

Last year’s unusually warm Midwestern Christmas week was   at least twice more likely   due to climate change, a Climate Central analysis found. While some put the blame for that snow-free Christmas on El Niño—the periodic warming on the surface of the Pacific Ocean that does affect weather—without global warming the area might have received some holiday snow.

On average, heatwaves that would have happened once in 10 years in pre-industrial times now occur some three times more often, and they’re frequently 1.2 degrees Celsius hotter than in the past, WWA says. The record-smashing heatwave that buckled roads in the Pacific Northwest and Western Canada in the summer of 2021 would have been all but impossible without the contribution of climate change.  

Could your own home have been saved?

Scientists now aim to calculate and disseminate these climate fingerprints within days or a few weeks of an extreme weather event, when people are paying close attention, says Michael Wehner, a senior staff scientist who calculates attributions at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory in California.  

Quickly connecting the dots between the event and greenhouse gases “helps people realize that climate change isn’t our children’s and grandchildren’s problem. Significant things are happening now,” Wehner says.

As soon as massive downpours began flowing in Dubai in mid-April this year—in which up to 10 inches of rain fell in less than two days—researchers at WWA dug into the data. A week after the rain, they reported that such an event became twice as likely from today’s climate.

Another recent focus is to document the event’s extra impacts rather than just the increased odds.

For example, researchers determined that Hurricane Harvey, which struck Houston in 2017, contained 19 percent more rainfall than would have occurred without climate change, Wehner noted in a paper in   Physics Today . Then they figured out what this meant for residents:   14 percent more flooded areas   and a quadrupling of the financial loss in what was ultimately a $90 billion storm.  

People living in the storm’s path can even review Wehner’s   flood model map   to learn whether their house would have been spared absent climate change—something he estimates was the case for 32 percent of the damaged homes.

Some weather events are harder to crunch

Attribution science relies on climate models showing the impacts of greenhouse gases on the planet, which are then combined with current weather information gleaned from ground stations and weather satellites,   historical information from global datasets , and other inputs.

Statistical techniques culled from epidemiology are also used, since that field also teases apart the relative contributions of various factors, such as how much smoking habits, family history, and obesity each contribute to a population’s heart disease odds.

Heatwaves are simpler to calculate than hurricanes, and droughts are toughest of all, Kimutai says. Drought requires knowing not just how much how much rain has or hasn’t fallen but soil moisture levels, air evaporation rates, and other data. In many parts of the world, especially underdeveloped countries, this current and historical data does not exist.

Extraordinary events are also proving challenging. Climate is increasing the frequency of once-in-a-hundred-year events to 10- or 20-years. With the Pacific Northwest heatwave, for example, “we have more than 100 years of data, but there was nothing like it,” Wehner says.  

Most of the studies have focused on extreme weather, but everyday life is also different than it would have been without climate change, Pershing says. That’s why two years ago, Climate Central   launched its “climate shift” temperature website detailing how each U.S. area’s seven-day forecast diverges from its historical norms.

Minnesota’s site visitors last winter learned that many days were much warmer than usual—which climate change made three or more times more likely.  

This type of everyday event may not attract a splashy report from attribution scientists, Pershing says, “but it was certainly important to the residents who live there.”  

Related Topics

  • CLIMATOLOGY
  • CLIMATE CHANGE

research paper topics weather

Extreme weather is coming for our homes. Experts weigh in on how to prepare.

research paper topics weather

What are hurricanes, typhoons, and cyclones?

research paper topics weather

Here’s what extreme heat does to the body

research paper topics weather

Wildfires are making their way east—where they could be much deadlier

research paper topics weather

The world’s historic sites face climate change. Can Petra lead the way?

  • Perpetual Planet
  • Environment

History & Culture

  • History & Culture
  • Race in America
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Home — Essay Samples — Environment — Climate & Weather

one px

Essays on Climate & Weather

The gazzaniga split brain experiment, junior reserve officer training corps on youth development, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

Empowering Lifesavers: The Urgent Need for Widespread CPR Training

Analyzing the themes and implications of "there will come soft rains", an analysis of susannah cahalan's "brain on fire", descriptive paper on snow day, let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Comparison: The Differences Between Summer Vs. Winter

Compare and contrast summer and summer, what does the rain symbolize in the great gatsby, rebuilding jackson's water system: a critical necessity, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

The Broader Implications and Future Visions Post-jackson Water Crisis

The jackson water crisis and environmental justice, exploring the jackson water crisis, winter: a magical and challenging season, the beauty and significance of rainy days, the revival of nature: exploring the wonders of spring, the problems caused by heavy rainfall, why winter is my favorite season, effects of heavy rainfall on the landslide probability, topics in this category, popular categories.

  • Human Impact
  • Earth & Nature
  • Environmental Sustainability
  • Environmental Protection
  • Environment Problems

clock-banner-side

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

research paper topics weather

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Research articles

research paper topics weather

Global warming decreases connectivity among coral populations

The authors develop a high-resolution model of coral larval dispersal for the southern Great Barrier Reef. They show that 2 °C of warming decreases larval dispersal distance and connectivity of reefs, hampering post-disturbance recovery and the potential spread of warm-adapted genes.

  • Joana Figueiredo
  • Christopher J. Thomas
  • Emmanuel Hanert

research paper topics weather

Phenological mismatches between above- and belowground plant responses to climate warming

The authors conduct a meta-analysis to reveal mismatches in above- and belowground plant phenological responses to warming that differ by plant type (herbaceous versus woody). The work highlights a need for further research and consideration of under-represented belowground phenological changes.

  • Huiying Liu
  • Madhav P. Thakur

research paper topics weather

Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways

There is a balance in mitigation pathway design between economic transition cost and physical climate threats. This study provides a comprehensive framework to assess the near- and long-term risks under various warming scenarios globally and in particular regions.

  • Ajay Gambhir
  • Seth Monteith

research paper topics weather

Hysteresis of the intertropical convergence zone to CO 2 forcing

In idealized model experiments where CO 2 increases four-fold before returning to its original level, temperature and precipitation show almost linear responses to CO 2 forcing. In contrast, the response of the Intertropical Convergence Zone lags behind CO 2 changes, associated with delayed energy exchanges.

  • Jong-Seong Kug
  • Jongsoo Shin

research paper topics weather

Contextualizing cross-national patterns in household climate change adaptation

The context and motivation around adaptation are influenced by local culture and institutions. In the United States, China, Indonesia and the Netherlands, some factors (such as perceived costs) have similar influences on household adaptation to flooding, but others (such as flood experience) differ between countries.

  • Brayton Noll
  • Tatiana Filatova
  • Alessandro Taberna

research paper topics weather

Ocean warming and accelerating Southern Ocean zonal flow

The remoteness and paucity of historic observations of the Southern Ocean limit understanding of the effects of climate change on circulation. Using observations, CMIP6 and eddy-resolving models, this Article shows that acceleration of its zonal flow emerged in recent decades as a result of uneven ocean warming.

  • Jia-Rui Shi
  • Lynne D. Talley

research paper topics weather

Cost and attainability of meeting stringent climate targets without overshoot

Current emissions scenarios include pathways that overshoot the temperature goals set out in the Paris Agreement and rely on future net negative emissions. Limiting overshoot would require near-term investment but would result in longer-term economic benefit.

  • Keywan Riahi
  • Christoph Bertram
  • Behnam Zakeri

research paper topics weather

Net zero-emission pathways reduce the physical and economic risks of climate change

Mitigation pathways allowing for temperature overshoot often ignore the related climate and macroeconomic impacts. Net-zero pathways with limited overshoot could reduce low-probability high-consequence risks and economic loss.

  • Laurent Drouet
  • Valentina Bosetti
  • Massimo Tavoni

research paper topics weather

Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls

Climate mitigation policies often provide health co-benefits. Analysis of individual power plants under future climate–energy policy scenarios shows reducing air pollution-related deaths does not automatically align with emission reduction policies and that policy design needs to consider public health.

  • Guannan Geng
  • Steven J. Davis

research paper topics weather

Climate action with revenue recycling has benefits for poverty, inequality and well-being

Climate policy analyses often ignore the possibility of progressive redistribution of carbon tax revenues and assume that mitigation cost will burden the poor in the short term. Integrated Assessment Model (IAM) estimation suggests such redistribution could reduce inequality, alleviate poverty and increase well-being globally.

  • Mark Budolfson
  • Francis Dennig
  • Stéphane Zuber

research paper topics weather

Observed increases in extreme fire weather driven by atmospheric humidity and temperature

Climate change has led to increased fire activity in parts of the globe due to observed increases in fire weather extremes. These trends are driven predominantly by decreasing relative humidity and increasing temperature.

  • Piyush Jain
  • Dante Castellanos-Acuna
  • Mike D. Flannigan

research paper topics weather

Climate and land-use changes reduce the benefits of terrestrial protected areas

The authors project future rates of temporal and spatial displacement of climate and land-use in protected areas (PAs), and show that more than one-quarter of the world’s PAs are highly threatened, with particular risk to PAs across tropical moist and grassland biomes.

  • Ernest F. Asamoah
  • Linda J. Beaumont
  • Joseph M. Maina

research paper topics weather

Demand-side solutions to climate change mitigation consistent with high levels of well-being

Evaluation of mitigation actions often focuses on cost and overlooks the direct effects on well-being. This work shows demand-side measures have large mitigation potential and beneficial effects on well-being outcomes.

  • Felix Creutzig
  • Leila Niamir
  • Diana Ürge-Vorsatz

research paper topics weather

A multi-model analysis of long-term emissions and warming implications of current mitigation efforts

Mitigation pathways tend to focus on an end temperature target and calculate how to keep within these bounds. This work uses seven integrated assessment models to consider current mitigation efforts and project likely temperature trajectories.

  • Ida Sognnaes
  • Glen P. Peters

research paper topics weather

Risk transfer policies and climate-induced immobility among smallholder farmers

Smallholder farmers will be impacted substantially by climate change and need to adapt. Agent-based modelling shows that interventions, particularly cash transfer paired with risk transfer mechanisms, lead to increased migration and uptake of cash crops, with higher income and lower inequality.

  • Nicolas Choquette-Levy
  • Matthias Wildemeersch
  • Simon A. Levin

research paper topics weather

Climatic limit for agriculture in Brazil

Soybean and maize yields in the Amazon-Cerrado region of Brazil are dependent on water from rain. Warming and drying will make the climate less suitable for agricultural production; changes have already moved 28% of croplands out of their optimum climate space.

  • Ludmila Rattis
  • Paulo M. Brando
  • Michael T. Coe

research paper topics weather

Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities

Heat extremes threaten the health of urban residents with particularly strong impacts from day–night sustained heat. Observation and simulation data across eastern China show increasing risks of compound events attributed to anthropogenic emissions and urbanization.

research paper topics weather

A systematic global stocktake of evidence on human adaptation to climate change

Determining progress in adaptation to climate change is challenging, yet critical as climate change impacts increase. A stocktake of the scientific literature on implemented adaptation now shows that adaptation is mostly fragmented and incremental, with evidence lacking for its impact on reducing risk.

  • Lea Berrang-Ford
  • A. R. Siders
  • Thelma Zulfawu Abu

research paper topics weather

Threatened salmon rely on a rare life history strategy in a warming landscape

Highlighting the importance of rare phenotypes in population persistence, the authors show that spring-run Chinook salmon late-migrant juveniles were critical for cohort success in drought and ocean heatwave years. Combined further warming and impassable dams threaten these late migrants’ survival.

  • F. Cordoleani
  • C. C. Phillis
  • R. C. Johnson

research paper topics weather

Impact of high-speed rail on road traffic and greenhouse gas emissions

Intercity high-speed rail (HSR) can have large climate benefits with its high energy efficiency. This study explores the substitution effects of HSR on road traffic in China, which can be translated to an annual reduction of 14.76 million tons of CO 2 -equivalent emissions.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper topics weather

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Heat waves: a hot topic in climate change research

Werner marx.

1 Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

Robin Haunschild

Lutz bornmann.

2 Science Policy and Strategy Department, Max Planck Society, Administrative Headquarters, Hofgartenstr. 8, 80539 Munich, Germany

Associated Data

Not applicable.

Research on heat waves (periods of excessively hot weather, which may be accompanied by high humidity) is a newly emerging research topic within the field of climate change research with high relevance for the whole of society. In this study, we analyzed the rapidly growing scientific literature dealing with heat waves. No summarizing overview has been published on this literature hitherto. We developed a suitable search query to retrieve the relevant literature covered by the Web of Science (WoS) as complete as possible and to exclude irrelevant literature ( n  = 8,011 papers). The time evolution of the publications shows that research dealing with heat waves is a highly dynamic research topic, doubling within about 5 years. An analysis of the thematic content reveals the most severe heat wave events within the recent decades (1995 and 2003), the cities and countries/regions affected (USA, Europe, and Australia), and the ecological and medical impacts (drought, urban heat islands, excess hospital admissions, and mortality). An alarming finding is that the limit for survivability may be reached at the end of the twenty-first century in many regions of the world due to the fatal combination of rising temperatures and humidity levels measured as “wet-bulb temperature” (WBT). Risk estimation and future strategies for adaptation to hot weather are major political issues. We identified 104 citation classics, which include fundamental early works of research on heat waves and more recent works (which are characterized by a relatively strong connection to climate change).

Introduction

As a consequence of the well-documented phenomenon of global warming, climate change has become a major research field in the natural and medical sciences, and more recently also in the social and political sciences. The scientific community has contributed extensively to a comprehensive understanding of the earth’s climate system, providing various data and projections on the future climate as well as on the effects and risks of anticipated global warming (IPCC 2014; CSSR 2017; NCA4 2018; and the multitude of references cited therein). During recent decades, climate change has also become a major political, economic, and environmental issue and a central theme in political and public debates.

One consequence of global warming is the increase of extreme weather events such as heat waves, droughts, floods, cyclones, and wildfires. Some severe heat waves occurring within the last few decades made heat waves a hot topic in climate change research, with “hot” having a dual meaning: high temperature and high scientific activity. “More intense, more frequent, and longer lasting heat waves in the twenty-first century” is the title of a highly cited paper published 2004 in Science (Meehl and Tebaldi 2004 ). This title summarizes in short what most climate researchers anticipate for the future. But what are heat waves (formerly also referred to as “heatwaves”)? In general, a heat wave is a period of excessively hot weather, which may be accompanied by high humidity. Since heat waves vary according to region, there is no universal definition, but only definitions relative to the usual weather in the area and relative to normal temperatures for the season. The World Meteorological Organization (WMO) defines a heat wave as 5 or more consecutive days of prolonged heat in which the daily maximum temperature is higher than the average maximum temperature by 5 °C (9 °F) or more ( https://www.britannica.com/science/heat-wave-meteorology ).

Europe, for example, has suffered from a series of intense heat waves since the beginning of the twenty-first century. According to the World Health Organization (WHO) and various national reports, the extreme 2003 heat wave caused about 70,000 excess deaths, primarily in France and Italy. The 2010 heat wave in Russia caused extensive crop loss, numerous wildfires, and about 55,000 excess deaths (many in the city of Moscow). Heat waves typically occur when high pressure systems become stationary and the winds on their rear side continuously pump hot and humid air northeastward, resulting in extreme weather conditions. The more intense and more frequently occurring heat waves cannot be explained solely by natural climate variations and without human-made climate change (IPCC 2014; CSSR 2017; NCA4 2018). Scientists discuss a weakening of the polar jet stream caused by global warming as a possible reason for an increasing probability for the occurrence of stationary weather, resulting in heavy rain falls or heat waves (Broennimann et al. 2009 ; Coumou et al. 2015 ; Mann 2019 ). This jet stream is one of the most important factors for the weather in the middle latitude regions of North America, Europe, and Asia.

Until the end of the twentieth century, heat waves were predominantly seen as a recurrent meteorological fact with major attention to drought, being almost independent from human activities and unpredictable like earthquakes. However, since about 1950, distinct changes in extreme climate and weather events have been increasingly observed. Meanwhile, climate change research has revealed that these changes are clearly linked to the human influence on the content of greenhouse gases in the earth’s atmosphere. Climate-related extremes, such as heat waves, droughts, floods, cyclones, and wildfires, reveal significant vulnerability to climate change as a result of global warming.

In recent years, research on heat waves has been established as an emerging research topic within the large field of current climate change research. Bibliometric analyses are very suitable in order to have a systematic and quantitative overview of the literature that can be assigned to an emerging topic such as research dealing with heat waves (e.g., Haunschild et al. 2016 ). No summarizing overview on the entire body of heat wave literature has been published until now. However, a bibliometric analysis of research on urban heat islands as a more specific topic in connection with heat waves has been performed (Huang and Lu 2018 ).

In this study, we analyzed the publications dealing with heat waves using appropriate bibliometric methods and tools. First, we determined the amount and time evolution of the scientific literature dealing with heat waves. The countries contributing the most papers are presented. Second, we analyzed the thematic content of the publications via keywords assigned by the WoS. Third, we identified the most important (influential) publications (and also the historical roots). We identified 104 citation classics, which include fundamental early works and more recent works with a stronger connection to climate change.

Heat waves as a research topic

The status of the current knowledge on climate change is summarized in the Synthesis Report of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) (IPCC 2014, https://www.ipcc.ch/report/ar5/syr/ ). This panel is the United Nations body for assessing the science related to climate change. The Synthesis Report is based on the reports of the three IPCC Working Groups , including relevant Special Reports . In its Summary for Policymakers , it provides an integrated view of climate change as the final part of the Fifth Assessment Report (IPCC 2014, https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf ).

In the chapter Extreme Events , it is stated that “changes in many extreme weather and climate events have been observed since about 1950. Some of these changes have been linked to human influences, including a decrease in cold temperature extremes, an increase in warm temperature extremes, an increase in extreme high sea levels and an increase in the number of heavy precipitation events in a number of regions … It is very likely that the number of cold days and nights has decreased and the number of warm days and nights has increased on the global scale. It is likely that the frequency of heat waves has increased in large parts of Europe, Asia and Australia. It is very likely that human influence has contributed to the observed global scale changes in the frequency and intensity of daily temperature extremes since the mid-twentieth century. It is likely that human influence has more than doubled the probability of occurrence of heat waves in some locations” (p. 7–8). Under Projected Changes , the document summarizes as follows: “Surface temperature is projected to rise over the twenty-first century under all assessed emission scenarios. It is very likely that heat waves will occur more often and last longer, and that extreme precipitation events will become more intense and frequent in many regions” (p. 10).

With regard to the USA, the Climate Science Special Report of the U.S. Global Change Research Program (CSSR 2017, https://science2017.globalchange.gov/ ) mentions quite similar observations and states unambiguously in its Fourth National Climate Assessment (Volume I) report ( https://science2017.globalchange.gov/downloads/CSSR2017_FullReport.pdf ) under Observed Changes in Extremes that “the frequency of cold waves has decreased since the early 1900s, and the frequency of heat waves has increased since the mid-1960s (very high confidence). The frequency and intensity of extreme heat and heavy precipitation events are increasing in most continental regions of the world (very high confidence). These trends are consistent with expected physical responses to a warming climate [p. 19]. Heavy precipitation events in most parts of the United States have increased in both intensity and frequency since 1901 (high confidence) [p. 20]. There are important regional differences in trends, with the largest increases occurring in the northeastern United States (high confidence). Recent droughts and associated heat waves have reached record intensity in some regions of the United States … (very high confidence) [p. 21]. Confidence in attribution findings of anthropogenic influence is greatest for extreme events that are related to an aspect of temperature” (p. 123).

Among the key findings in the chapter on temperature changes in the USA, the report states that “there have been marked changes in temperature extremes across the contiguous United States. The frequency of cold waves has decreased since the early 1900s, and the frequency of heat waves has increased since the mid-1960s (very high confidence). Extreme temperatures in the contiguous United States are projected to increase even more than average temperatures. The temperatures of extremely cold days and extremely warm days are both expected to increase. Cold waves are projected to become less intense while heat waves will become more intense (very high confidence) [p. 185]. Most of this methodology as applied to extreme weather and climate event attribution, has evolved since the European heat wave study of Stott et al.” (p. 128).

Heat waves are also discussed in the Fourth National Climate Assessment (Volume II) report (NCA4 2018, https://nca2018.globalchange.gov/ ). The Report-in-Brief ( https://nca2018.globalchange.gov/downloads/NCA4_Report-in-Brief.pdf ) for example states: “More frequent and severe heat waves and other extreme events in many parts of the United States are expected [p. 38]. Heat waves and heavy rainfalls are expected to increase in frequency and intensity [p. 93]. The season length of heat waves in many U.S. cities has increased by over 40 days since the 1960s [p. 30]. Cities across the Southeast are experiencing more and longer summer heat waves [p. 123]. Exposure to hotter temperatures and heat waves already leads to heat-associated deaths in Arizona and California. Mortality risk during a heat wave is amplified on days with high levels of ground-level ozone or particulate air pollution” (p. 150).

In summary, climate change research expects more frequent and more severe heat wave events as a consequence of global warming. It is likely that the more frequent and longer lasting heat waves will significantly increase excess mortality, particularly in urban regions with high air pollution. Therefore, research around heat waves will become increasingly important and is much more than a temporary research fashion.

Methodology

Dataset used.

This analysis is based on the relevant literature retrieved from the following databases accessible under the Web of Science (WoS) of Clarivate Analytics: Web of Science Core Collection: Citation Indexes, Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Arts & Humanities Citation Index (A&HCI), Conference Proceedings Citation Index—Science (CPCI-S), Conference Proceedings Citation Index—Social Science & Humanities (CPCI-SSH), Book Citation Index—Science (BKCI-S), Book Citation Index—Social Sciences & Humanities (BKCI-SSH), Emerging Sources Citation Index (ESCI).

We applied the search query given in Appendix 1 to cover the relevant literature as completely as possible and to exclude irrelevant literature. We practiced an iterative query optimization by identifying and excluding the WoS subject categories with most of the non-relevant papers. For example, heat waves are also mentioned in the field of materials science but have nothing to do with climate and weather phenomena. Unfortunately, WoS obviously assigned some heat wave papers related to climate to materials science-related subject categories. Therefore, these subject categories were not excluded. By excluding the other non-relevant subject categories, 597 out of 8,568 papers have been removed, resulting in a preliminary publication set of 7,971 papers (#2 of the search query). But this is no safe method, since the excluded categories may well include some relevant papers. Therefore, we have combined these 597 papers with search terms related to climate or weather and retrieved 62 relevant papers in addition, which we added to our preliminary paper subset, eventually receiving 8,033 publications (#3 to #5 of the search query).

Commonly, publication sets for bibliometric analyses are limited to articles, reviews, and conference proceedings as the most relevant document types and are restricted to complete publication years. In this study, however, we have included all relevant WoS document types for a better literature coverage of the research topic analyzed. For example, conference meetings and early access papers may well be interesting for the content analysis of the literature under study. Such literature often anticipates important results, which are published later as regular articles. Furthermore, we have included the literature until the date of search for considering the recent rapid growth of the field. Our search retrieved a final publication set of 8,011 papers indexed in WoS until the date of search (July 1, 2021) and dealing with heat waves (#6 of the search query). We have combined this publication set with climate change-related search terms from a well-proven search query (Haunschild et al. 2016 ) resulting in 4,588 papers dealing with heat waves in connection with climate change or global warming (# 11 of the search query). Also, we have selected a subset of 2,373 papers dealing with heat waves and mortality (#13 of the search query). The complete WoS search query is given in Appendix 1.

The final publication set of 8,011 papers dealing with heat waves still contains some non-relevant papers primarily published during the first half of the twentieth century, such as some Nature papers within the WoS category Multidisciplinary Sciences . Since these papers are assigned only to this broad subject category and have no abstracts and no keywords included, they cannot be excluded using the WoS search and refinement functions. We do not expect any bias through these papers, because their keywords do not appear in our maps. Also, they normally contain very few (if any) cited references, which could bias/impact our reference analysis.

We used the VOSviewer software (Van Eck and Waltman 2010 ) to map co-authorship with regard to the countries of authors (88 countries considered) of the papers dealing with heat waves ( www.vosviewer.com ). The map of the cooperating countries presented is based on the number of joint publications. The distance between two nodes is proportionate to the number of co-authored papers. Hence, largely cooperating countries are positioned closer to each other. The size of the nodes is proportionate to the number of papers published by authors of the specific countries.

The method that we used for revealing the thematic content of the publication set retrieved from the WoS is based on the analysis of keywords. For better standardization, we chose the keywords allocated by the database producer (keywords plus) rather than the author keywords. We also used the VOSviewer for mapping the thematic content of the 104 key papers selected by reference analysis. This map is also based on keywords plus.

The term maps (keywords plus) are based on co-occurrence for positioning the nodes on the maps. The distance between two nodes is proportionate to the co-occurrence of the terms. The size of the nodes is proportionate to the number of papers with a specific keyword. The nodes on the map are assigned by VOSviewer to clusters based on a specific cluster algorithm (the clusters are highlighted in different colors). These clusters identify closely related (frequently co-occurring) nodes, where each node is assigned to only one cluster.

Reference Publication Year Spectroscopy

A bibliometric method called “Reference Publication Year Spectroscopy” (RPYS, Marx et al. 2014 ) in combination with the tool CRExplorer ( http://www.crexplorer.net , Thor et al. 2016a , b ) has proven useful for exploring the cited references within a specific publication set, in order to detect the most important publications of the relevant research field (and also the historical roots). In recent years, several studies have been published, in which the RPYS method was basically described and applied (Marx et al. 2014 ; Marx and Bornmann 2016 ; Comins and Hussey 2015 ). In previous studies, Marx et al. have analyzed the roots of research on global warming (Marx et al. 2017a ), the emergence of climate change research in combination with viticulture (Marx et al. 2017b ), and tea production (Marx et al. 2017c ) from a quantitative (bibliometric) perspective. In this study, we determined which references have been most frequently cited by the papers dealing with heat waves.

RPYS is based on the assumption that peers produce a useful database by their publications, in particular by the references cited therein. This database can be analyzed statistically with regard to the works most important for their specific research field. Whereas individual scientists judge their research field more or less subjectively, the overall community can deliver a more objective picture (based on the principle of “the wisdom of the crowds”). The peers effectively “vote” via their cited references on which works turned out to be most important for their research field (Bornmann and Marx 2013 ). RPYS implies a normalization of citation counts (here: reference counts) with regard to the research area and the time of publication, which both impact the probability to be cited frequently. Basically, the citing and cited papers analyzed were published in the same research field and the reference counts are compared with each other only within the same publication year.

RPYS relies on the following observation: the analysis of the publication years of the references cited by all the papers in a specific research topic shows that publication years are not equally represented. Some years occur particularly frequently among the cited references. Such years appear as distinct peaks in the distribution of the reference publication years (i.e., the RPYS spectrogram). The pronounced peaks are frequently based on a few references that are more frequently cited than other references published in the same year. The frequently cited references are—as a rule—of specific significance to the research topic in question (here: heat waves) and the earlier references among them represent its origins and intellectual roots (Marx et al. 2014 ).

The RPYS changes the perspective of citation analysis from a times cited to a cited reference analysis (Marx and Bornmann 2016 ). RPYS does not identify the most highly cited papers of the publication set being studied (as is usually done by bibliometric analyses in research evaluation). RPYS aims to mirror the knowledge base of research (here: on heat waves).

With time, the body of scientific literature of many research fields is growing rapidly, particularly in climate change research (Haunschild et al. 2016 ). The growth rate of highly dynamic research topics such as research related to heat waves is even larger. As a consequence, the number of potentially citable papers is growing substantially. Toward the present, the peaks of individual publications lie over a broad continuum of newer publications and are less numerous and less pronounced. Due to the many publications cited in the more recent years, the proportion of individual highly cited publications in specific reference publication years falls steadily. Therefore, the distinct peaks in an RPYS spectrogram reveal only the most highly cited papers, in particular the earlier references comprising the historical roots. Further inspection and establishing a more entire and representative list of highly cited works requires consulting the reference table provided by the CRExplorer. The most important references within a specific reference publication year can be identified by sorting the cited references according to the reference publication year (RPY) and subsequently according to the number of cited references (N_CR) in a particular publication year.

The selection of important references in RPYS requires the consideration of two opposing trends: (1) the strongly growing number of references per reference publication year and (2) the fall off near present due to the fact that the newest papers had not sufficient time to accumulate higher citation counts. Therefore, we decided to set different limits for the minimum number of cited references for different periods of reference publication years (1950–1999: N_CR ≥ 50, 2000–2014: N_CR ≥ 150, 2015–2020: N_CR ≥ 100). This is somewhat arbitrary, but is helpful in order to adapt and limit the number of cited references to be presented and discussed.

In order to apply RPYS, all cited references ( n  = 408,247) of 216,932 unique reference variants have been imported from the papers of our publication set on heat waves ( n  = 8,011). The cited reference publication years range from 1473 to 2021. We removed all references (297 different cited reference variants) with reference publication years prior to 1900. Due to the very low output of heat wave-related papers published before 1990, no relevant literature published already in the nineteenth century can be expected. Also, global warming was no issue before 1900 since the Little Ice Age (a medieval cold period) lasted until the nineteenth century. The references were sorted according to RPY and N_CR for further inspection.

The CRExplorer offers the possibility to cluster and merge variants of the same cited reference (Thor et al. 2016a , b ). We clustered and merged the associated reference variants in our dataset (which are mainly caused by misspelled references) using the corresponding CRExplorer module, clustering the reference variants via volume and page numbers and subsequently merging aggregated 374 cited references (for more information on using the CRExplorer see “guide and datasets” at www.crexplorer.net ).

After clustering and merging, we applied a further cutback: to focus the RPYS on the most pronounced peaks, we removed all references ( n  = 212,324) with reference counts below 10 (resulting in a final number of 3,937 cited references) for the detection of the most frequently cited works. A minimum reference count of 10 has proved to be reasonable, in particular for early references (Marx et al. 2014 ). The cited reference publication years now range from 1932 to 2020.

In this study, we have considered all relevant WoS document types for a preferably comprehensive coverage of the literature of the research topic analyzed. The vast majority of the papers of our publication set, however, have been assigned to the document types “article” ( n  = 6.738, 84.1%), “proceedings paper” ( n  = 485, 6.1%), and “review” ( n  = 395 papers, 4.9%). Note that some papers belong to more than one document type.

Time evolution of literature

In Fig.  1 , the time evolution between 1990 and 2020 of the publications dealing with heat waves is shown (there are only 109 pre-1990 publications dealing with heat waves and covered by the WoS).

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig1_HTML.jpg

Time evolution of the overall number of heat wave publications, of heat wave publications in connection with climate change, and of heat wave publications in connection with mortality, each between 1990 and 2020. For comparison, the overall number of publications (scaled down) in the field of climate change research and the total number of publications covered by the WoS database (scaled down, too) are included

According to Fig.  1 , research dealing with heat waves is a highly dynamic research topic, currently doubling within about 5 years. The number of papers published per year shows a strong increase: since around 2000, the publication output increased by a factor of more than thirty, whereas in the same period, the overall number of papers covered by the WoS increased only by a factor of around three. Also, the portion of heat wave papers dealing with climate change increased substantially: from 16.1 in the period 1990–1999 to 25.7% in 2000, reaching 66.9% in 2020. The distinct decrease of the overall number of papers covered by the WoS between 2019 and 2020 might be a result of the Covid-19 pandemic.

With regard to the various impacts of heat waves, excess mortality is one of the most frequently analyzed and discussed issues in the scientific literature (see below). Whereas the subject specific literature on heat waves increased from 2000 to 2020 by a factor of 33.6, literature on heat waves dealing with mortality increased from 2000 to 2020 by a factor of 51.5. The dynamics of the research topic dealing with heat waves is mirrored by the WoS Citation Report , which shows the time evolution of the overall citation impact of the papers of the publication set (not presented). The citation report curve shows no notable citation impact before 2005, corresponding to the increase of the publication rate since about 2003 as shown in Fig.  1 .

Countries of authors

In Table ​ Table1, 1 , the number of papers assigned to the countries of authors with more than 100 publications dealing with heat waves is presented, showing the national part of research activities on this research topic. For comparative purposes, the percentage of overall papers in WoS of each country is shown. As a comparison with the overall WoS, we only considered WoS papers published between 2000 and 2020, because the heat wave literature started to grow substantially around 2000.

Top countries of authors with more than 100 papers dealing with heat waves up to the date of the search

Country of authors#Papers%Papers heat waves%Papers overall in WoS
USA208126.027.4
Australia102612.83.1
Peoples Republic of China96512.012.1
England7609.56.7
Germany7379.26.3
France6388.04.3
Italy5366.73.9
Spain5066.33.1
Switzerland3614.51.6
Canada3564.44.0
India2362.93.3
Netherlands2272.82.2
South Korea2062.62.5
Sweden2062.61.4
Portugal2042.50.7
Belgium1762.21.2
Japan1682.15.2
Greece1632.00.7
Russia1491.92.1
Poland1411.81.4
Austria1371.70.9
Czech Republic1301.60.7
Denmark1191.50.9
South Africa1191.50.6
Brazil1161.42.1
Scotland1061.31.0

The country-specific percentages from Table ​ Table1 1 are visualized in Fig.  2 . Selected countries are labeled. Countries with a higher relative percentage of more than two percentage points in heat wave research than in WoS overall output are marked blue (blue circle). Countries with a relative percentage at least twice as high in heat wave research than in overall WoS output are marked green (green cross), whereas countries with a relative percentage at most half as much in heat wave research than in overall WoS output are marked with a yellow cross. Only Japan has a much lower output in heat wave research than in WoS overall output, as indicated by the red circle and yellow cross. Most countries are clustered around the bisecting line and are marked gray (gray circle). China and the USA are outside of the plot region. Both countries are rather close to the bisecting line. Some European countries show a much larger activity in heat wave research than in overall WoS output. Australia shows the largest difference and ratio in output percentages as shown by the blue circle and green cross.

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig2_HTML.jpg

Publication percentages of countries in Table ​ Table1. 1 . Countries with large deviations between heat wave output and overall WoS output are labeled. Countries with an absolute percentage of more than two percentage points higher (lower) in heat wave research than in overall WoS output are marked blue (red). Countries with a relative percentage at least twice as high (at most half as much) in heat wave research than in overall WoS output are marked green (yellow)

The results mainly follow the expectations of such bibliometric analyses, with one distinct exception: Australia increasingly suffers from extreme heat waves and is comparatively active in heat wave research—compared with its proportion of scientific papers in general. The growth factor of the Australian publication output since 2010 is 8.5, compared to 5.3 for the USA and 3.3 for Germany.

Figure  3 shows the co-authorship network with regard to the countries of authors of the papers dealing with heat waves using the VOSviewer software.

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig3_HTML.jpg

Co-authorship overlay map with regard to the countries of authors and their average publication years from the 8,011 papers dealing with heat waves. The minimum number of co-authored publications of a country is 5; papers with more than 25 contributing countries are neglected; of the 135 countries, 89 meet the threshold, and 88 out of 89 countries are connected and are considered (one country, Armenia, that is disconnected from the network has been removed). The co-authorship network of a single country can be depicted by clicking on the corresponding node in the interactive map. Readers interested in an in-depth analysis can use VOSviewer interactively and zoom into the map via the following URL: https://tinyurl.com/3ywkwv8t

According to Fig.  3 and in accordance with Table ​ Table1, 1 , the USA is most productive in heat wave research. This is not unexpected, because the US publication output is at the top for most research fields. However, this aside, the USA has been heavily affected by heat wave events and is leading with regard to the emergence of the topic. Australia appears as another major player and is strongly connected with the US publications within the co-authorship network and thus appears as a large node near the US node in the map. Next, the leading European countries England, France, Germany, Italy, and Spain appear.

The overlay version of the map includes the time evolution of the research activity in the form of coloring of the nodes. The map shows the mean publication year of the publications for each specific author country. As a consequence, the time span of the mean publication years ranges only from 2014 to 2018. Nevertheless, the early activity in France and the USA and the comparatively recent activity in Australia and China, with the European countries in between, become clearly visible.

Topics of the heat wave literature

Figure  4 shows the keywords (keywords plus) map for revealing the thematic content of our publication set using the VOSviewer software. This analysis is based on the complete publication set ( n  = 8,011). The minimum number of occurrences of keywords is 10; of the 10,964 keywords, 718 keywords met the threshold. For each of the 718 keywords, the total strength of the co-occurrence links with other keywords was calculated. The keywords with the greatest total link strength were selected for presentation in the map.

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig4_HTML.jpg

Co-occurrence network map of the keywords plus from the 8,011 papers dealing with heat waves for a rough analysis of the thematic content. The minimum number of occurrences of keywords is 10; of the 10,964 keywords, 718 meet the threshold. Readers interested in an in-depth analysis can use VOSviewer interactively and zoom into the map via the following URL: https://tinyurl.com/enrdbw

According to Fig.  4 , the major keywords are the following: climate change, temperature, mortality, impact, heat waves (searched), and variability. The colored clusters identify closely related (frequently co-occurring) nodes. The keywords marked red roughly originate from fundamental climate change research focused on the hydrological cycle (particularly on drought), the keywords of the green cluster are around heat waves and moisture or precipitation, the keywords marked blue result from research concerning impacts of heat waves on health, the keywords marked yellow are focused on the various other impacts of heat waves, and the keywords of the magenta cluster are around adaptation and vulnerability in connection with heat waves.

The clustering by the VOSviewer algorithm provides basic categorizations, but many related keywords also appear in different clusters. For example, severe heat wave events are marked in different colors. For a better overview of the thematic content of the publications dealing with heat waves, we have assigned the keywords of Fig.  4 (with a minimum number of occurrences of 50) to ten subject categories (each arranged in the order of occurrence):

  • Countries/regions: United-States, Europe, France, China, Pacific, Australia, London, England
  • Cities: cities, city, US cities, Chicago, communities
  • Events: 2003 heat-wave, 1995 heat-wave
  • Impacts: impact, impacts, air-pollution, drought, soil-moisture, exposure, heat-island, urban, islands, photosynthesis, pollution, heat-island, air-quality, environment, precipitation extremes, biodiversity, emissions
  • Politics: risk, responses, vulnerability, adaptation, management, mitigation, risk-factors, scenarios
  • Biology: vegetation, forest, diversity, stomatal conductance
  • Medicine: mortality, health, stress, deaths, morbidity, hospital admissions, public-health, thermal comfort, population, heat, sensitivity, human health, disease, excess mortality, heat-stress, heat-related mortality, comfort, behavior, death, stroke
  • Climate research: climate change, temperature, climate, model, simulation, energy, projections, simulations, cmip5, ozone, el-nino, parametrization, elevated CO 2 , models, climate variability, carbon, carbon-dioxide
  • Meteorology: heat waves, variability, precipitation, summer, heat-wave, weather, ambient-temperature, waves, extremes, wave, cold, water, rainfall, circulation, heat, air-temperature, extreme heat, climate extremes, heatwaves, temperature extremes, temperatures, temperature variability, high-temperature, ocean, extreme temperatures, atmospheric circulation, interannual variability, sea-surface temperature, oscillation, surface temperature, surface
  • Broader terms (multi-meaning): trends, events, patterns, growth, performance, time-series, indexes, system, dynamics, association, index, tolerance, productivity, ensemble, resilience, increase, quality, prediction, frequency, particulate matter, future, framework, 20 th -century, time, reanalysis, systems

Although allocated by the database provider, the keywords are not coherent. For example, the same keyword may appear as singular or plural, and complex keywords are written with and without hyphens.

In order to compare the thematic content of the complete publication set with the earlier literature on heat waves, we have analyzed the pre-2000 publications ( n  = 297) separately. Figure  5 shows the keywords (keywords plus) map for revealing the thematic content of the pre-2000 papers.

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig5_HTML.jpg

Co-occurrence network map of the keywords plus from the 297 pre-2000 papers dealing with heat waves for a rough analysis of the thematic content. The minimum number of occurrences of keywords is 1; of the 389 keywords, 277 keywords are connected, and all items are shown. Readers interested in an in-depth analysis can use VOSviewer interactively and zoom into the map via the following URL: https://tinyurl.com/u2zzr399

The major nodes in Fig.  5 are heat waves (searched), temperature, United States, and mortality, with climate change appearing only as a smaller node here. Obviously, the connection between heat waves and climate change was not yet pronounced, which can also be seen from Fig.  1 . Compared with Fig.  4 , the thematic content of the clusters is less clear and the clusters presented in Fig.  5 can hardly be assigned to specific research areas. For a better overview of the thematic content of the early publications dealing with heat waves, we have assigned the connected keywords of Fig.  5 to seven subject categories:

  • Countries/regions: United-States, Great-Plains
  • Cities: St-Louis, Athens, Chicago
  • Events: 1980 heat-wave, 1995 heat-wave
  • Impacts: impacts, responses, drought, precipitation, comfort, sultriness
  • Climate research: climate, climate change, model, temperature, variability
  • Medicine: cardiovascular deaths, mortality, air pollution
  • Meteorology: atmospheric flow, weather, heat, humidity index

Important publications

Figures  6 – 8 show the results of the RPYS analysis performed with the CRExplorer and present the distribution of the number of cited references across the reference publication years. Figure  6 shows the RPYS spectrogram of the full range of reference publication years since 1925. Figure  7 presents the spectrogram for the reference publication year period 1950–2000 for better resolving the historical roots. Figure  8 shows the spectrogram for the period 2000–2020, comprising the cited references from the bulk of the publication set analyzed.

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig6_HTML.jpg

Annual distribution of cited references throughout the time period 1925–2020, which have been cited in heat wave-related papers (published between 1964 and 2020). Only references with a minimum reference count of 10 are considered

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig7_HTML.jpg

Annual distribution of cited references throughout the time period 1950–2000, which have been cited in heat wave-related papers (published between 1972 and 2020). Only references with a minimum reference count of 10 are considered

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig8_HTML.jpg

Annual distribution of cited references throughout the time period 2000–2020, which have been cited in heat wave-related papers (published between 2000 and 2020). Only references with a minimum reference count of 10 are considered

The gray bars (Fig.  6 ) and red lines (Figs. ​ (Figs.7 7 – 8 ) in the graphs visualize the number of cited references per reference publication year. In order to identify those publication years with significantly more cited references than other years, the (absolute) deviation of the number of cited references in each year from the median of the number of cited references in the two previous, the current, and the two following years (t − 2; t − 1; t; t + 1; t + 2) is also visualized (blue lines). This deviation from the 5-year median provides a curve smoother than the one in terms of absolute numbers. We inspected both curves for the identification of the peak papers.

Which papers are most important for the scientific community performing research on heat waves? We use the number of cited references (N_CR) as a measure of the citation impact within the topic-specific literature of our publication set. N_CR should not be confused with the overall number of citations of the papers as given by the WoS citation counts (times cited). These citation counts are based on all citing papers covered by the complete database (rather than a topic-specific publication set) and are usually much higher.

Applying the selection criteria mentioned above (minimum number of cited references between 50 and 150 in three different periods), 104 references have been selected as key papers (important papers most frequently referenced within the research topic analyzed) and are presented in Table ​ Table2 2 in Appendix 2. The peak papers corresponding to reference publication years below about 2000 can be seen as the historical roots of the research topic analyzed. Since around 2000, the number of references with the same publication year becomes increasingly numerous, usually with more than one highly referenced (cited) paper at the top. Although there are comparatively fewer distinct peaks visible in the RPYS spectrogram of Fig.  8 , the most frequently referenced papers can easily be identified via the CRE reference listing. Depending on the specific skills and needs (i.e., the expert knowledge and the intended depth of the analysis), the number of top-referenced papers considered key papers can be defined individually.

Listing of the key papers ( n  = 104) revealed by RPYS via CRE ( RPY reference publication year, N_CR number of cited references, Title title of the cited reference, DOI allows easily to retrieve the full paper via WoS or Internet)

194594Mann, H.BNonparametric tests against trendNot available
1968108Sen, P.KEstimates of regression coefficient based on Kendalls TauNot available
197272Schuman, S.HPatterns of urban heat-wave deaths and implications for prevention—Data from New York and St-Louis during July, 1966
197381*Oke, T.RCity size and urban heat island
1979110*Steadman, R.GThe assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science <0861:TAOSPI>2.0.CO;2
198062Berry, JPhotosynthetic response and adaptation to temperature in higher-plants
1982175Oke, T.RThe energetic basis of the urban heat island
1982107*Jones, T.SMorbidity and mortality associated with the July 1980 heat-wave in St.-Louis and Kansas-City, MO
198288Kilbourne, E.MRisk-factors for heat-stroke—A case–control study
1984112*Steadman, R.GA universal scale of apparent temperature <1674:AUSOAT>2.0.CO;2
198452Mearns, L.OExtreme high-temperature events—Changes in their probabilities with changes in mean temperature <1601:EHTECI>2.0.CO;2
198659Kalkstein, L.SAn evaluation of summer discomfort in the United-States using a relative climatological index <0842:AEOSDI>2.0.CO;2
198653Keatinge, W.RIncreased platelet and red-cell counts, blood-viscosity, and plasma-cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis
198771Mayer, HThermal comfort of man in different urban environments
198987*Kalkstein, L.SWeather and human mortality—An evaluation of demographic and interregional responses in the United-States
198965Dudhia, JNumerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model <3077:NSOCOD>2.0.CO;2
198953Joseph, D.DHeat waves
199285*Katz, R.WExtreme events in a changing climate—Variability is more important than averages
199374*Kunst, A.EOutdoor air temperature and mortality in the Netherlands: A time-series analysis
199352Katsouyanni, KEvidence for interaction between air-pollution and high-temperature in the causation of excess mortality
199552Sartor, FTemperature, ambient ozone levels, and mortality during summer, 1994, in Belgium
1996368*Semenza, J.CHeat-related deaths during the July 1995 heat wave in Chicago
1996327*Kalnay, EThe NCEP/NCAR 40-year reanalysis project <0437:TNYRP>2.0.CO;2
1996106*Changnon, S.AImpacts and responses to the 1995 heat wave: A call to action <1497:IARTTH>2.0.CO;2
199684Kunkel, K.EThe July 1995 heat wave in the midwest: A climatic perspective and critical weather factors <1507:TJHWIT>2.0.CO;2
199663Kalkstein, L.SThe Philadelphia hot weather-health watch warning system: Development and application, summer 1995 <1519:TPHWHW>2.0.CO;2
1997180*Whitman, SMortality in Chicago attributed to the July 1995 heat wave
1997116*Kalkstein, L.SAn evaluation of climate/mortality relationships in large US cities and the possible impacts of a climate change
1997105*Karl, T.RThe 1995 Chicago heat wave: How likely is a recurrence? <1107:TCHWHL>2.0.CO;2
199774Mlawer, E.JRadiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
199772Keatinge, W.RCold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of EuropeNot available
199753Easterling, D.RMaximum and minimum temperature trends for the globe
199753Mantua, N.JA Pacific interdecadal climate oscillation with impacts on salmon production <1069:APICOW>2.0.CO;2
199750Ballester, FMortality as a function of temperature. A study in Valencia, Spain, 1991–1993
1998105*Rooney, CExcess mortality in England and Wales, and in Greater London, during the 1995 heatwave
199881*Dematte, J.ENear-fatal heat stroke during the 1995 heat wave in Chicago
199855Smoyer, K.EA comparative analysis of heat waves and associated mortality in St. Louis, Missouri—1980 and 1995
199853Gaffen, D.JIncreased summertime heat stress in the US
1999200*Semenza, J.CExcess hospital admissions during the July 1995 heat wave in Chicago
199991Hoppe, PThe physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment
199956Matzarakis, AApplications of a universal thermal index: physiological equivalent temperature
199952*Kunkel, K.ETemporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review <1077:TFIWAC>2.0.CO;2
2000275*Easterling, D.RClimate extremes: observations, modelling, and impacts
2001277*Robinson, P.JOn the definition of a heat wave <0762:OTDOAH>2.0.CO;2
2001203*Hynen, M.M.T.EThe impact of heat waves and cold spells on mortality rates in the Dutch population
2002286*Basu, RRelation between elevated ambient temperature and mortality: A review of the epidemiologic evidence
2002279*Curriero, F.CTemperature and mortality in 11 cities of the eastern United States
2002233*Frich, PObserved coherent changes in climatic extremes during the second half of the twentieth century
2002156*Bouchama, AMedical progress—Heat stroke
20041099*Meehl, G.AMore intense, more frequent, and longer lasting heat waves in the twenty-first century
2004562*Schaer, CThe role of increasing temperature variability in European summer heatwaves
2004326*Stott, P.AHuman contribution to the European heatwave of 2003
2004232*Beniston, P.MThe 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations
2004209*Black, EFactors contributing to the summer 2003 European heatwave
2004180*Luterbacher, JEuropean seasonal and annual temperature variability, trends, and extremes since 1500
2004152Kovats, R.SContrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK
2005313*Ciais, PEurope-wide reduction in primary productivity caused by the heat and drought in 2003
2005161*Patz, J.AImpact of regional climate change on human health
2005157*Conti, SEpidemiologic study of mortality during the Summer 2003 heat wave in Italy
2006298*Fouillet, AExcess mortality related to the August 2003 heat wave in France
2006257*Alexander, L.VGlobal observed changes in daily climate extremes of temperature and precipitation
2006190*Seneviratne, S.ILand–atmosphere coupling and climate change in Europe
2006180*Vandentorren, SAugust 2003 heat wave in France: Risk factors for death of elderly people living at home
2006177*Hajat, SImpact of high temperatures on mortality—Is there an added heat wave effect?
2006153*Kovats, R.SHeatwaves and public health in Europe
2007238*Fischer, E.MSoil moisture—Atmosphere interactions during the 2003 European summer heat wave
2007156*Della-Marta, P.MDoubled length of western European summer heat waves since 1880
2008372*Robine, J.MDeath toll exceeded 70,000 in Europe during the summer of 2003
2008287*Kovats, R.SHeat stress and public health: A critical review
2008178*Baccini, MHeat effects on mortality in 15 European cities
2008175*Luber, GClimate change and extreme heat events
2008160*Fouillet, AHas the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave
2009339*Anderson, Brooke GWeather-related mortality: How heat, cold, and heat waves affect mortality in the United States
2009212*Basu, RHigh ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008
2009205*Knowlton, KThe 2006 California heat wave: Impacts on hospitalizations and emergency department visits
2010282*Fischer, E.MConsistent geographical patterns of changes in high-impact European heatwaves
2010208*D’Ippoliti, DThe impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project
2010208*Seneviratne, S.IInvestigating soil moisture-climate interactions in a changing climate: A review
2010196*Garcia-Herrera, RA review of the European summer heat wave of 2003
2011381*Dee, D.PThe ERA-Interim reanalysis: configuration and performance of the data assimilation system
2011355*Barriopedro, DThe hot summer of 2010: Redrawing the temperature record map of Europe
2011303*Anderson, G.BHeat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities
2011198*Dole, RWas there a basis for anticipating the 2010 Russian heat wave?
2011154*Gasparrini, AThe Impact of Heat Waves on Mortality
2012243Taylor, K.EAn overview of CMIP5 and the experiment design
2012236Perkins, S.EIncreasing frequency, intensity and duration of observed global heatwaves and warm spells
2012204Coumou, DA decade of weather extremes
2013289Perkins, S.EOn the measurement of heat waves
2013159Wernberg, TAn extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot
2014197Miralles, D.GMega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation
2014171Russo, SMagnitude of extreme heat waves in present climate and their projection in a warming world
2015182Gasparrini, AMortality risk attributable to high and low ambient temperature: A multicountry observational study
2015168Perkins, S.EA review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale
2015159Russo, STop ten European heatwaves since 1950 and their occurrence in the coming decades
2015131Bond, N.ACauses and impacts of the 2014 warm anomaly in the NE Pacific
2015111Christidis, NDramatically increasing chance of extremely hot summers since the 2003 European heatwave
2016197Hobday, A.JA hierarchical approach to defining marine heatwaves
2016121Wernberg, TClimate-driven regime shift of a temperate marine ecosystem
2016113Di Lorenzo, E.Multi-year persistence of the 2014/15 North Pacific marine heatwave
2017125Mora, CGlobal risk of deadly heat
2017112Hughes, T.PGlobal warming and recurrent mass bleaching of corals
2018209Oliver, E.C.JLonger and more frequent marine heatwaves over the past century
2018124Frolicher, T.LMarine heatwaves under global warming
2019126Smale, D.AMarine heatwaves threaten global biodiversity and the provision of ecosystem services

*N_TOP10 > 9; the N_TOP10 indicator is the number of reference publication years in which a focal cited reference belongs to the 10% most referenced publications.

Table ​ Table2 2 lists the first authors and titles of the 104 key papers selected, their number of cited references (N_CR), and the DOIs for easy access. Some N_CR values are marked by an asterisk, indicating a high value of the N_TOP10 indicator implemented in the CRExplorer. The N_TOP10 indicator value is the number of reference publication years in which a focal cited reference belongs to the 10% most referenced publications. In the case of about half of the cited references in Table ​ Table2 2 ( n  = 58), the N_TOP10 value exceeded a value of 9. The three highest values in our dataset are 24, 21, and 20.

Out of the 104 key papers from Table ​ Table2, 2 , 101 have a DOI of which we found 101 papers in the WoS. Three papers have no DOI but could be retrieved from WoS. The altogether 104 papers were exported and their keywords (keywords plus) were displayed in Fig.  9 for revealing the thematic content of the key papers from the RPYS analysis at a glance.

An external file that holds a picture, illustration, etc.
Object name is 704_2021_3758_Fig9_HTML.jpg

Co-occurrence network map of the keywords plus of the 104 key papers dealing with heat waves selected applying RPYS via CRE software and listed in Table ​ Table2. 2 . The minimum number of occurrences of keywords is 2; of the 310 keywords, 91 meet the threshold. Readers interested in an in-depth analysis can use VOSviewer interactively and zoom into the map via the following URL: https://tinyurl.com/4vwpc4t2

Overall, the keywords mapped in Fig.  9 are rather similar to the keywords presented in Fig.  4 . Besides climate change, temperature, weather, and air-pollution, the keywords deaths, health, mortality, and United-States appear as the most pronounced terms.

The key papers presented in Table ​ Table2 2 can be categorized as follows: (1) papers dealing with specific heat wave events, (2) the impact of heat waves on human health, (3) heat wave-related excess mortality and implications for prevention, (4) the interaction between air pollution and high temperature, (5) circulation pattern and the meteorological basis, (6) future perspectives and risks, and (7) climate models, indicators, and statistics.

Today, the hypothesis of a human-induced climate change is no longer abstract but has become a clear fact, at least for the vast majority of the scientific community (IPCC 2014; CSSR 2017; NCA4 2018; and the multitude of references cited therein). The consequences of a warmer climate are already obvious. The rapidly growing knowledge regarding the earth’s climate system has revealed the connection between global warming and extreme weather events. Heat waves impact people directly and tangibly and many people are pushing for political actions. Research on heat waves came up with the occurrence of some severe events in the second half of the twentieth century and was much stimulated by the more numerous, more intense, and longer lasting heat waves that have occurred since the beginning of the twenty-first century.

As already mentioned in Sect.  1 , the more intense and more frequently occurring heat waves cannot be explained solely by natural climate variations but only with human-made climate change. As a consequence, research on heat waves has become embedded into meteorology and climate change research and has aimed to understand the specific connection with global warming. Scientists discuss a weakening of the polar jet stream as a possible reason for an increasing probability for the occurrence of heat waves (e.g., Broennimann et al. 2009 ; Coumou et al. 2015 ; Mann 2019 ). Climate models are used for projections of temperature and rainfall variability in the future, based on various scenarios of greenhouse gas emissions. As a result, the corresponding keywords appear in the maps of Figs. ​ Figs.4 4 and ​ and9. 9 . Also, the application of statistics plays a major role in the papers of our publication set; some of the most highly referenced (early) papers in Table ​ Table2 2 primarily deal with statistical methods. These methods provide the basis for research on heat waves.

Our analysis shows that research on heat waves has become extremely important in the medical area, since severe heat waves have caused significant excess mortality (e.g., Kalkstein and Davis 1989 ; Fouillet et al. 2006 ; Anderson and Bell 2009 , 2011 ). The most alarming is that the limit for survivability may be reached at the end of the twenty-first century in many regions of the world due to the fatal combination of rising temperatures and humidity levels (e.g., Pal and Eltahir 2016 ; Im et al. 2017 ; Kang and Eltahir 2018 ). The combination of heat and humidity is measured as the “wet-bulb temperature” (WBT), which is the lowest temperature that can be reached under current ambient conditions by the evaporation of water. At 100% relative humidity, the wet-bulb temperature is equal to the air temperature and is different at lower humidity levels. For example, an ambient temperature of 46 °C and a relative humidity of 50% correspond to 35 °C WBT, which is the upper limit that can kill even healthy people within hours. By now, the limit of survivability has almost been reached in some places. However, if global warming is not seriously tackled, deadly heat waves are anticipated for many regions that have contributed little to climate change.

According to high-resolution climate change simulations, North China and South Asia are particularly at risk, because the annual monsoon brings hot and humid air to these regions (Im et al. 2017 ; Kang and Eltahir 2018 ). The fertile plain of North China has experienced vast expansion of irrigated agriculture, which enhances the intensity of heat waves. South Asia, a region inhabited by about one-fifth of the global human population, is likely to approach the critical threshold by the late twenty-first century, if greenhouse gas emissions are not lowered significantly. In particular, the densely populated agricultural regions of the Ganges and Indus river basins are likely to be affected by extreme future heat waves. Also, the Arabic-speaking desert countries of the Gulf Region in the Middle East and the French-speaking parts of Africa are expected to suffer from heat waves beyond the limit of human survival. But to date, only 12 papers have been published on heat waves in connection with wet-bulb temperature (#15 of the search query); no paper was published before 2016. Some papers report excess hospital admissions during heat wave events (e.g., Semenza et al. 1999 ; Knowlton et al. 2009 ), with the danger of a temporary capacity overload of local medical systems in the future. Presumably, this will be an increasingly important issue in the future, when more and larger urban areas are affected by heat waves beyond the limit of human survival indicated by wet-bulb temperatures above 35° C.

The importance of heat waves for the medical area is underlined by the large portion of papers discussing excess hospital admissions and excess mortality during intense heat wave events, particularly in urban areas with a high population density. As was the case during the boom phase of the Covid-19 pandemic, local medical health care systems may become overstressed by long-lasting heat wave events and thus adaptation strategies are presented and discussed. Finally, the analysis of the keywords in this study reveals the connection of heat wave events with air pollution in urban regions. There seems to be evidence of an interaction between air pollution and high temperatures in the causation of excess mortality (e.g., Katsouyanni et al. 1993 ). Two more recent papers discuss the global risk of deadly heat (Mora et al. 2017 ) and the dramatically increasing chance of extremely hot summers since the 2003 European heat wave (Christidis et al. 2015 ).

Another important topic of the heat wave papers is related to the consequences for agriculture and forestry. Reduced precipitation and soil moisture result in crop failure and put food supplies at risk. Unfortunately, large regions of the world that contribute least to the emission of greenhouse gases are affected most by drought, poor harvests, and hunger. Some more recent papers discuss the increasing probability of marine heat waves (Oliver et al. 2018 ) and the consequences for the marine ecosystem (Smale et al. 2019 ).

The results of this study should be interpreted in terms of its limitations:

  • We tried to include in our bibliometric analyses all relevant heat wave papers covered by the database. Our long-standing experience in professional information retrieval has shown, however, that it is sheer impossible to get complete and clean results by search queries against the backdrop of the search functions provided by literature databases like WoS or others. Also, the transition from relevant to non-relevant literature is blurred and is a question of the specific needs. In this study, we used bibliometric methods that are relatively robust with regard to the completeness and precision of the publication sets analyzed. For example, it is an advantage of RPYS that a comparatively small portion of relevant publications (i.e., an incomplete publication set) contains a large amount of the relevant literature as cited references. The number of cited references is indeed lowered as a consequence of an incomplete publication set. However, this does not significantly affect the results, since the reference counts are only used as a relative measure within specific publication years.

Two other limitations of this study refer to the RPYS of the heat wave paper set:

  • There are numerous rather highly cited references retrieved by RPYS via CRExplorer but not considered in the listing of Table ​ Table2 2 due to the selection criteria applied. Many of these non-selected papers have N_CR values just below the limits that we have set. Therefore, papers not included in our listing are not per se qualified as much less important or even unimportant.
  • In the interpretation of cited references counts, one should have in mind that they rely on the “popularity” of a publication being cited in subsequent research. The counts measure impact but not scientific importance or accuracy (Tahamtan and Bornmann 2019 ). Note that there are many reasons why authors cite publications (Tahamtan and Bornmann 2018 ), thus introducing a lot of “noise” in the data (this is why RPYS focuses on the cited reference peaks).

Our suggestions for future empirical analysis refer to the impact of the scientific heat wave discourse on social networks and funding of basic research on heat waves around topics driven by political pressure. Whereas this paper focuses on the scientific discourse around heat waves, it would be interesting if future studies were to address the policy relevance of the heat waves research.

Appendix 1 1)

WoS search query (date of search: July 1, 2021)

# 15 #14 AND #6  =   = 
# 14 ("wet bulb temperature*" OR WBT)   =   = 
# 13 #6 AND TS = mortality  =   = 
# 12 #2 OR #4    ( ARTICLE OR MEETING ABSTRACT OR CORRECTION OR PROCEEDINGS PAPER OR LETTER OR REVIEW OR NEWS ITEM OR BOOK CHAPTER OR EARLY ACCESS OR EDITORIAL MATERIAL OR BOOK REVIEW) AND   ( 1984 OR 1967 OR 1983 OR 1966 OR 1982 OR 1965 OR 1999 OR 1981 OR 1964 OR 1998 OR 1980 OR 1963 OR 1997 OR 1979 OR 1962 OR 1996 OR 1978 OR 1961 OR 1995 OR 1977 OR 1959 OR 1994 OR 1976 OR 1954 OR 1993 OR 1975 OR 1949 OR 1992 OR 1974 OR 1940 OR 1991 OR 1973 OR 1938 OR 1990 OR 1972 OR 1930 OR 1989 OR 1971 OR 1926 OR 1988 OR 1970 OR 1914 OR 1987 OR 1969 OR 1912 OR 1986 OR 1968 OR 1906 OR 1985)  =   = 
# 11 #10 AND #6  =   = 
# 10 #9 OR #8 OR #7  =   = 
# 9  (climat* OR palaeoclimat* OR paleoclimat*)  =   = 
# 8  ("global temperature*" OR "global warm*" OR "greenhouse effect" OR "greenhouse gas*" OR "greenhouse warm*")  =   = 
# 7  ("climate chang*" OR "climatic chang*" OR "climate varia*" OR "climatic varia*" OR "climate warm*" OR "climatic warm*")  =   = 
# 6 #2 OR #4    ( ARTICLE OR MEETING ABSTRACT OR CORRECTION OR PROCEEDINGS PAPER OR LETTER OR REVIEW OR NEWS ITEM OR BOOK CHAPTER OR EARLY ACCESS OR EDITORIAL MATERIAL OR BOOK REVIEW)  =   = 
# 5 #2 OR #4  =   = 
# 4 #3 AND TS = (climat* OR greenhouse OR warming OR atmospher* OR tropospher* OR weather)  =   = 
# 3 #1 NOT #2  =   = 
# 2  ("heat wave" OR "heat waves" OR heatwave OR heatwaves OR "hot spell" OR "hot spells")  [excluding]   ( NANOSCIENCE NANOTECHNOLOGY OR ASTRONOMY ASTROPHYSICS OR NUCLEAR SCIENCE TECHNOLOGY OR PHYSICS APPLIED OR PHYSICS ATOMIC MOLECULAR CHEMICAL OR PHYSICS CONDENSED MATTER OR PHYSICS FLUIDS PLASMAS OR PHYSICS MATHEMATICAL OR PHYSICS MULTIDISCIPLINARY OR LITERARY REVIEWS OR MECHANICS)  =   = 
# 1  ("heat wave" OR "heat waves" OR heatwave OR heatwaves OR "hot spell" OR "hot spells")  =   = 

Table ​ Table2 2

Author contribution

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Werner Marx, Robin Haunschild, and Lutz Bornmann. The first draft of the manuscript was written by Werner Marx and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Open Access funding enabled and organized by Projekt DEAL.

Data availability

Code availability, declarations.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

The original version of this paper was updated to add the missing compact agreement Open Access funding note.

Contributor Information

Werner Marx, Email: [email protected] .

Robin Haunschild, Email: [email protected] .

Lutz Bornmann, Email: [email protected] , Email: ed.gpm.vg@nnamnrob .

  • Anderson BG, Bell ML (2009) Weather-related mortality how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20(2):205–213. 10.1097/EDE.0b013e318190ee08 [ PMC free article ] [ PubMed ]
  • Anderson GB, Bell ML. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Enviro Health Perspect. 2011; 119 (2):210–218. doi: 10.1289/ehp.1002313. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bornmann L, Marx W. The wisdom of citing scientists. J Am Soc Inf Sci. 2013; 65 (6):1288–1292. doi: 10.1002/asi.23100. [ CrossRef ] [ Google Scholar ]
  • Broennimann S, Stickler A, Griesser T, Ewen T, Grant AN, Fischer AM, Schraner M, Peter T, Rozanov E, Ross T (2009) Exceptional atmospheric circulation during the "Dust Bowl". Geophysical Research Letters 36: article number L08802. 10.1029/2009GL037612
  • Christidis N, Jones G, Stott P. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat Clim Chang. 2015; 5 :46–50. doi: 10.1038/nclimate2468. [ CrossRef ] [ Google Scholar ]
  • Comins JA, Hussey TW. Detecting seminal research contributions to the development and use of the global positioning system by Reference Publication Year Spectroscopy. Scientometrics. 2015; 104 :575–580. doi: 10.1007/s11192-015-1598-2. [ CrossRef ] [ Google Scholar ]
  • Coumou D, Lehmann J, Beckmann J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science. 2015; 348 :324–327. doi: 10.1126/science.1261768. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • CSSR 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470, 10.7930/J0J964J6, https://science2017.globalchange.gov/downloads/CSSR2017_FullReport.pdf
  • Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hemon D. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 2006; 80 (1):16–24. doi: 10.1007/s00420-006-0089-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Haunschild R, Bornmann L, Marx W. Climate change research in view of bibliometrics. PLoS ONE. 2016; 11 :e0160393. doi: 10.1371/journal.pone.0160393. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang QF, Lu YQ. Urban heat island research from 1991 to 2015: a bibliometric analysis. Theoret Appl Climatol. 2018; 131 (3–4):1055–1067. doi: 10.1007/s00704-016-2025-1. [ CrossRef ] [ Google Scholar ]
  • Im ES, Pal JS, Eltahir EAB (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Science Advances 3(8): article number e1603322. 10.1126/sciadv.1603322 [ PMC free article ] [ PubMed ]
  • IPCC 2014: Climate change, Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 https://www.ipcc.ch/report/ar5/syr/
  • IPCC 2014: Climate Change, Summary for Policymakers. In: IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf
  • Kalkstein LS, Davis RE. Weather and human mortality – an evaluation of demographic and interregional responses in the United-States. Ann Assoc Am Geogr. 1989; 79 (1):44–64. doi: 10.1111/j.1467-8306.1989.tb00249.x. [ CrossRef ] [ Google Scholar ]
  • Kang S, Eltahir EAB (2018) North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nature Communications 9: article number 2894. 10.1038/s41467-018-05252-y [ PMC free article ] [ PubMed ]
  • Katsouyanni K, Pantazopoulou A, Touloumi G, Tselepidaki I, Moustris K, Asimakopoulos D, Poulopoulou G, Trichopoulos D. Evidence for interaction between air-pollution and high-temperature in the causation of excess mortality. Arch Environ Health. 1993; 48 (4):235–242. doi: 10.1080/00039896.1993.9940365. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, Solomon G, Trent R, English P. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect. 2009; 117 (1):61–67. doi: 10.1289/ehp.11594. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mann ME. The weather amplifier: strange waves in the jet stream foretell a future full of heat waves and floods. Sci Am. 2019; 320 (3):43–49. [ Google Scholar ]
  • Marx W, Bornmann L, Barth A, Leydesdorff L. Detecting the historical roots of research fields by Reference Publication Year Spectroscopy (RPYS) J Am Soc Inf Sci. 2014; 65 :751–764. doi: 10.1002/asi.23089. [ CrossRef ] [ Google Scholar ]
  • Marx W, Bornmann L. On the causes of subject-specific citation rates in Web of Science. Scientometrics. 2015; 102 (2):1823–1827. doi: 10.1007/s11192-014-1499-9. [ CrossRef ] [ Google Scholar ]
  • Marx W, Bornmann L. Change of perspective: Bibliometrics from the point of view of cited references. A literature overview on approaches to the evaluation of cited references in bibliometrics. Scientometrics. 2016; 109 (2):1397–1415. doi: 10.1007/s11192-016-2111-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Marx W, Haunschild R, Thor A, Bornmann L (2017a) Which early works are cited most frequently in climate change research literature? A bibliometric approach based on reference publication year spectroscopy. Scientometrics 110(1):335–353. 10.1007/s11192-016-2177-x [ PMC free article ] [ PubMed ]
  • Marx W, Haunschild R, Bornmann L. Climate change and viticulture—a quantitative analysis of a highly dynamic research field. Vitis. 2017; 56 :35–43. doi: 10.5073/vitis.2017.56.35-43. [ CrossRef ] [ Google Scholar ]
  • Marx W, Haunschild R, Bornmann L (2017c) Global warming and tea production – the bibliometric view on a newly emerging research topic. Climate 5(3): article number 46. 10.3390/cli5030046
  • Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21 st century. Science. 2004; 305 :994–997. doi: 10.1126/science.1098704. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mora C, Dousset B, Caldwell I, et al. Global risk of deadly heat. Nat Clim Chang. 2017; 7 :501–506. doi: 10.1038/nclimate3322. [ CrossRef ] [ Google Scholar ]
  • NCA4 2018: Fourth National Climate Assessment, Volume II: impacts, risks, and adaptation in the United States. https://nca2018.globalchange.gov/ NCA 2018 Report-in-Brief: https://nca2018.globalchange.gov/downloads/NCA4_Report-in-Brief.pdf
  • Oliver ECJ, Donat MG, Burrows MT, et al. Longer and more frequent marine heatwaves over the past century. Nat Commun. 2018; 9 :1324. doi: 10.1038/s41467-018-03732-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pal JS, Eltahir EAB. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat Clim Chang. 2016; 6 (2):197–200. doi: 10.1038/NCLIMATE2833. [ CrossRef ] [ Google Scholar ]
  • Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR. Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med. 1999; 16 (4):269–277. doi: 10.1016/S0749-3797(99)00025-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smale DA, Wernberg T, Oliver ECJ, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat Clim Chang. 2019; 9 :306–312. doi: 10.1038/s41558-019-0412-1. [ CrossRef ] [ Google Scholar ]
  • Tahamtan I, Bornmann L. Core elements in the process of citing publications: Conceptual overview of the literature. J Informet. 2018; 12 :203–216. doi: 10.1016/j.joi.2018.01.002. [ CrossRef ] [ Google Scholar ]
  • Tahamtan I, Bornmann L. What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018. Scientometrics. 2019; 121 :1635–1684. doi: 10.1007/s11192-019-03243-4. [ CrossRef ] [ Google Scholar ]
  • Thor A, Marx W, Leydesdorff L, Bornmann L. Introducing CitedReferencesExplorer (CRExplorer): a program for Reference Publication Year Spectroscopy with cited references disambiguation. J Informet. 2016; 10 :503–515. doi: 10.1016/j.joi.2016.02.005. [ CrossRef ] [ Google Scholar ]
  • Thor A, Marx W, Leydesdorff L, Bornmann L. New features of CitedReferencesExplorer (CRExplorer) Scientometrics. 2016; 109 :2049–2051. doi: 10.1007/s11192-016-2082-3. [ CrossRef ] [ Google Scholar ]
  • Thor A, Bornmann L, Marx W, Mutz R. Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer. Scientometrics. 2018; 116 (1):591–608. doi: 10.1007/s11192-018-2733-7. [ CrossRef ] [ Google Scholar ]
  • Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84 (2):523–538. doi: 10.1007/s11192-009-0146-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions.

As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth.

Industry and Transport

Causes of Climate Change

Generating power

Generating electricity and heat by burning fossil fuels causes a large chunk of global emissions. Most electricity is still generated by burning coal, oil, or gas, which produces carbon dioxide and nitrous oxide – powerful greenhouse gases that blanket the Earth and trap the sun’s heat. Globally, a bit more than a quarter of electricity comes from wind, solar and other renewable sources which, as opposed to fossil fuels, emit little to no greenhouse gases or pollutants into the air.

Manufacturing goods

Manufacturing and industry produce emissions, mostly from burning fossil fuels to produce energy for making things like cement, iron, steel, electronics, plastics, clothes, and other goods. Mining and other industrial processes also release gases, as does the construction industry. Machines used in the manufacturing process often run on coal, oil, or gas; and some materials, like plastics, are made from chemicals sourced from fossil fuels. The manufacturing industry is one of the largest contributors to greenhouse gas emissions worldwide.

Cutting down forests

Cutting down forests to create farms or pastures, or for other reasons, causes emissions, since trees, when they are cut, release the carbon they have been storing. Each year approximately 12 million hectares of forest are destroyed. Since forests absorb carbon dioxide, destroying them also limits nature’s ability to keep emissions out of the atmosphere. Deforestation, together with agriculture and other land use changes, is responsible for roughly a quarter of global greenhouse gas emissions.

Using transportation

Most cars, trucks, ships, and planes run on fossil fuels. That makes transportation a major contributor of greenhouse gases, especially carbon-dioxide emissions. Road vehicles account for the largest part, due to the combustion of petroleum-based products, like gasoline, in internal combustion engines. But emissions from ships and planes continue to grow. Transport accounts for nearly one quarter of global energy-related carbon-dioxide emissions. And trends point to a significant increase in energy use for transport over the coming years.

Producing food

Producing food causes emissions of carbon dioxide, methane, and other greenhouse gases in various ways, including through deforestation and clearing of land for agriculture and grazing, digestion by cows and sheep, the production and use of fertilizers and manure for growing crops, and the use of energy to run farm equipment or fishing boats, usually with fossil fuels. All this makes food production a major contributor to climate change. And greenhouse gas emissions also come from packaging and distributing food.

Powering buildings

Globally, residential and commercial buildings consume over half of all electricity. As they continue to draw on coal, oil, and natural gas for heating and cooling, they emit significant quantities of greenhouse gas emissions. Growing energy demand for heating and cooling, with rising air-conditioner ownership, as well as increased electricity consumption for lighting, appliances, and connected devices, has contributed to a rise in energy-related carbon-dioxide emissions from buildings in recent years.

Consuming too much

Your home and use of power, how you move around, what you eat and how much you throw away all contribute to greenhouse gas emissions. So does the consumption of goods such as clothing, electronics, and plastics. A large chunk of global greenhouse gas emissions are linked to private households. Our lifestyles have a profound impact on our planet. The wealthiest bear the greatest responsibility: the richest 1 per cent of the global population combined account for more greenhouse gas emissions than the poorest 50 per cent.

Based on various UN sources

Industry and Transport

Effects of Climate Change

Hotter temperatures

As greenhouse gas concentrations rise, so does the global surface temperature. The last decade, 2011-2020, is the warmest on record. Since the 1980s, each decade has been warmer than the previous one. Nearly all land areas are seeing more hot days and heat waves. Higher temperatures increase heat-related illnesses and make working outdoors more difficult. Wildfires start more easily and spread more rapidly when conditions are hotter. Temperatures in the Arctic have warmed at least twice as fast as the global average.

More severe storms

Destructive storms have become more intense and more frequent in many regions. As temperatures rise, more moisture evaporates, which exacerbates extreme rainfall and flooding, causing more destructive storms. The frequency and extent of tropical storms is also affected by the warming ocean. Cyclones, hurricanes, and typhoons feed on warm waters at the ocean surface. Such storms often destroy homes and communities, causing deaths and huge economic losses.

Increased drought

Climate change is changing water availability, making it scarcer in more regions. Global warming exacerbates water shortages in already water-stressed regions and is leading to an increased risk of agricultural droughts affecting crops, and ecological droughts increasing the vulnerability of ecosystems. Droughts can also stir destructive sand and dust storms that can move billions of tons of sand across continents. Deserts are expanding, reducing land for growing food. Many people now face the threat of not having enough water on a regular basis.

A warming, rising ocean

The ocean soaks up most of the heat from global warming. The rate at which the ocean is warming strongly increased over the past two decades, across all depths of the ocean. As the ocean warms, its volume increases since water expands as it gets warmer. Melting ice sheets also cause sea levels to rise, threatening coastal and island communities. In addition, the ocean absorbs carbon dioxide, keeping it from the atmosphere. But more carbon dioxide makes the ocean more acidic, which endangers marine life and coral reefs.

Loss of species

Climate change poses risks to the survival of species on land and in the ocean. These risks increase as temperatures climb. Exacerbated by climate change, the world is losing species at a rate 1,000 times greater than at any other time in recorded human history. One million species are at risk of becoming extinct within the next few decades. Forest fires, extreme weather, and invasive pests and diseases are among many threats related to climate change. Some species will be able to relocate and survive, but others will not.

Not enough food

Changes in the climate and increases in extreme weather events are among the reasons behind a global rise in hunger and poor nutrition. Fisheries, crops, and livestock may be destroyed or become less productive. With the ocean becoming more acidic, marine resources that feed billions of people are at risk. Changes in snow and ice cover in many Arctic regions have disrupted food supplies from herding, hunting, and fishing. Heat stress can diminish water and grasslands for grazing, causing declining crop yields and affecting livestock.

More health risks

Climate change is the single biggest health threat facing humanity. Climate impacts are already harming health, through air pollution, disease, extreme weather events, forced displacement, pressures on mental health, and increased hunger and poor nutrition in places where people cannot grow or find sufficient food. Every year, environmental factors take the lives of around 13 million people. Changing weather patterns are expanding diseases, and extreme weather events increase deaths and make it difficult for health care systems to keep up.

Poverty and displacement

Climate change increases the factors that put and keep people in poverty. Floods may sweep away urban slums, destroying homes and livelihoods. Heat can make it difficult to work in outdoor jobs. Water scarcity may affect crops. Over the past decade (2010–2019), weather-related events displaced an estimated 23.1 million people on average each year, leaving many more vulnerable to poverty. Most refugees come from countries that are most vulnerable and least ready to adapt to the impacts of climate change.

Learn more about...

Photocomposition: illustration of the Earth on fire

  • What is climate change?

Our climate 101 offers a quick take on the how and why of climate change.

Illustration of a plane turbine turning into a windmill

What is “net zero”, why is it important, and is the world on track to reach it?

Photocomposition: illustration with watering can pouring water into a plant

Initiatives for action

Read about global initiatives aimed at speeding up the pace of climate action.

Facts and figures

  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips
  • Skip to main content
  • Keyboard shortcuts for audio player

FAQ: 5 things to know about weather forecasts and climate change

Rebecca Hersher at NPR headquarters in Washington, D.C., July 25, 2018. (photo by Allison Shelley) (Square)

Rebecca Hersher

Weather Service FAQ

Hurricane Ian passes over western Cuba in 2022, as captured by a U.S. weather satellite. Climate change is causing more extreme weather, and creates new challenges for weather forecasters.

Hurricane Ian passes over western Cuba in 2022, as captured by a U.S. weather satellite. Climate change is causing more extreme weather, and creates new challenges for weather forecasters. AP/NOAA hide caption

Climate change is causing the weather to get more erratic across the U.S. Rain storms that used to happen once in a lifetime now occur every few years. Heat waves are hotter, and last longer. Hurricanes come ashore with more powerful winds and storm surge.

Federal weather forecasters are on the front lines. Virtually everyone in the United States relies on forecasts from the National Weather Service, which inform everything from the weather you see on the nightly news to the weather app on your phone. And, when extreme weather is headed your way, it is the weather service that issues warnings.

“Climate change is increasing the frequency of these big events, and increasing the intensity of these events,” says Ken Graham, the director of the National Weather Service. “It’s tricky.”

Here are five things to know about how climate change is affecting weather forecasts, and what you can do to protect yourself from extreme weather.

1. Climate change makes it trickier to forecast the weather

Climate change makes it more difficult to predict the weather, because as the Earth heats up, it causes weather patterns to change and get more extreme.

Traditionally, weather forecasters relied on their understanding of past weather patterns – basically what “normal” weather looks like for a given place – to predict future weather conditions. But the future no longer looks like the past, Graham says.

“It’s interesting, you start looking at the data [and] 7 out of the last 10 Atlantic hurricane seasons were above normal,” says Graham, who previously ran the National Hurricane Center, which is one of multiple specialized forecast offices within the National Weather Service. Abnormally hot ocean water in the Atlantic and Caribbean has helped drive relentless hurricane activity in the last decade.

Heat Exhaustion and Heat Stroke

A similar pattern is playing out with floods, which are often caused by intense rainfall that’s getting more common as the Earth’s atmosphere warms and holds more moisture. The weather service sees this in real time, Graham says. “In 1985 we had about 30 flash flood events a month,” he says. “In 2020 we had 82 [flash floods], and we project 2025 to have 90 flash flood events. So if you think about it, it’s tripled since 1985.”

2. Weather forecasting technology has gotten a lot better in the last decade

The good news, weather forecasters say, is that the technology for predicting the weather has gotten a lot better in recent decades. That’s helping the weather service adapt, and keep up with the deluge of dangerous weather.

“It's difficult to describe how much better [the technology] has gotten,” says Bill Bunting, the deputy director of the Storm Prediction Center in Norman, Okla. October will mark Bunting’s 39th year with the weather service. He says in that time, as the climate has changed, the tools for understanding the weather have also transformed.

“Doppler radar, satellites with updates every 30 to 60 seconds,” and computer models that allow forecasters to see into the future more accurately have made forecasts more accurate even as conditions have become more uncertain, he says.

3. The more local, the better, when it comes to warning people about extreme weather

Protecting people from more extreme weather means warning them when that weather is headed their way, and that requires hyper-local, specific weather forecasts, Bunting says.

“Throughout my career we’ve gotten steadily better at not just issuing warnings for counties or parishes or large cities, but being increasingly specific in space and time,” Bunting says.

Tornado forecasts are a good example, he says. While the connection between climate change and tornado frequency is still a topic of active research, what is clear is that there are more people than ever living in tornado-prone parts of the U.S. Protecting those populations from tornados requires forecasters to pinpoint exactly where tornadoes are forming, and then warn people as early as possible that their specific neighborhood is in the crosshairs.

Rain, surge and wind: How to understand your hurricane risk

Rain, Surge And Wind: How To Understand Your Hurricane Risk

The same is true for hurricane and flash-flood forecasts.

Weather service offices are local for this reason, says Graham. There are more than 100 offices spread out all over the country.

4. The National Weather Service has changed how it presents extreme weather forecasts in response to climate change

Changes in extreme weather have led the weather service to change some of the most basic tools it uses to communicate with the public.

In recent years, the National Hurricane Center has overhauled the maps and other graphics it uses to warn people about the hazards from hurricanes. Now, there are new storm surge warnings , new language about how quickly storms can intensify before hitting land and a new hurricane track forecast map that will roll out later this summer and will include warnings about flooding and other hazards.

In 2017, the weather service had to add new colors to its rainfall map for Hurricane Harvey, which dumped an unprecedented amount of rain in Texas. And a new color-coded heat warning system was introduced this spring to better warn people about dangerously hot weather.

Graham says the goal is to make it clear to the public that weather norms are changing, and they need to prepare for weather they might not have experienced in the past.

“I hear this all the time across the country: It’s never happened here before!” Graham says. “But that doesn’t count anymore.”

5. Warnings are only useful if people heed them

As climate change supercharges the number of extreme weather events that hit the U.S. each year, one of the biggest challenges is to avoid a “crying wolf” phenomenon, where Americans begin to tune out what feel like constant weather warnings. “We call it warning fatigue,” Graham says.

Making warnings as local as possible is one solution. Rather than sending out a warning for an entire region, the weather service is working to narrow down who is most at risk from a given flood, hurricane, heat wave or other dangerous weather event, so they can target their warnings to the narrowest group possible.

But it’s impossible to narrow down such warnings completely: for any given disaster, there will always be people who were rightly warned of the danger, but luckily weren’t personally affected, Graham says.

The key, he says, is not to let such situations lull the public into complacency. “There really aren’t these false alarms that are perceived,” he says. “If you get a tornado warning and it happens 20 miles away, you may not see a lot.” But that doesn’t mean you weren’t at risk, or that the next tornado in your area won’t affect you, he stresses.

  • climate change
  • hurricane season

The Solar System May Have Passed through Dense Interstellar Cloud 2 Million Years Ago, Altering Earth’s Climate

In a new bu-led paper, astrophysicists calculate the likelihood that earth was exposed to cold, harsh interstellar clouds, a phenomenon not previously considered in geologic climate models.

Photo: A picture of Earth surrounded by many stars with a magnified version of the same image in a circle at the bottom right

For a brief period of time millions of years ago, Earth may have been plunged out of the sun’s protective plasma shield, called the heliosphere, which is depicted here as the dark gray bubble over the backdrop of interstellar space. According to new research, this could have exposed Earth to high levels of radiation and influenced the climate. Photo courtesy of Opher, et al., Nature Astronomy

Jessica Colarossi

Around two million years ago, Earth was a very different place, with our early human ancestors living alongside saber-toothed tigers, mastodons, and enormous rodents . And they may have been cold: Earth had fallen into a deep freeze , with multiple ice ages coming and going until about 12,000 years ago. Scientists theorize that ice ages occur for a number of reasons , including the planet’s tilt and rotation, shifting plate tectonics, volcanic eruptions, and carbon dioxide levels in the atmosphere. But what if drastic changes like these are not only a result of Earth’s environment, but also the sun’s location in the galaxy?

In a new paper published in Nature Astronomy , BU-led researchers find evidence that some two million years ago, the solar system encountered an interstellar cloud so dense that it could have interfered with the sun’s solar wind. They believe it shows that the sun’s location in space might shape Earth’s history more than previously considered. 

Our whole solar system is swathed in a protective plasma shield that emanates from the sun, known as the heliosphere. It’s made from a constant flow of charged particles, called solar wind, that stretch well past Pluto, wrapping the planets in what NASA calls a “a giant bubble.” It protects us from radiation and galactic rays that could alter DNA, and scientists believe it’s part of the reason life evolved on Earth as it did. According to the latest paper, the cold cloud compressed the heliosphere in such a way that it briefly placed Earth and the other planets in the solar system outside of its influence. 

“This paper is the first to quantitatively show there was an encounter between the sun and something outside of the solar system that would have affected Earth’s climate,” says BU space physicist Merav Opher , an expert on the heliosphere and lead author of the paper.

Her models have quite literally shaped our scientific understanding of the heliosphere, and how the bubble is structured by the solar wind pushing up against the interstellar medium— the space in our galaxy between stars and beyond the heliosphere. Her theory is that the heliosphere is shaped like a puffy croissant , an idea that shook the space physics community. Now, she’s shedding new light on how the heliosphere, and where the sun moves through space, could affect Earth’s atmospheric chemistry. 

“Stars move, and now this paper is showing not only that they move, but they encounter drastic changes,” says Opher, a BU College of Arts & Sciences professor of astronomy and member of the University’s Center for Space Physics. She worked on the study during a yearlong Harvard Radcliffe Institute fellowship. 

Opher and her collaborators essentially looked back in time, using sophisticated computer models to visualize where the sun was positioned two million years in the past—and, with it, the heliosphere and the rest of the solar system. They also mapped the path of the Local Ribbon of Cold Clouds system, a string of large, dense, very cold clouds mostly made of hydrogen atoms. Their simulations showed that one of the clouds close to the end of that ribbon, named the Local Lynx of Cold Cloud, could have collided with the heliosphere. 

If that had happened, says Opher, Earth would have been fully exposed to the interstellar medium, where gas and dust mix with the leftover atomic elements of exploded stars, including iron and plutonium. Normally, the heliosphere filters out most of these radioactive particles. But without protection, they can easily reach Earth. According to the paper, this aligns with geological evidence that shows increased 60Fe (iron 60) and 244Pu (plutonium 244) isotopes in the ocean, Antarctic snow, and ice cores—and on the moon—from the same time period. The timing also matches with temperature records that indicate a cooling period.

“Only rarely does our cosmic neighborhood beyond the solar system affect life on Earth,” says Avi Loeb , director of Harvard University’s Institute for Theory and Computation and coauthor on the paper. “It is exciting to discover that our passage through dense clouds a few million years ago could have exposed the Earth to a much larger flux of cosmic rays and hydrogen atoms. Our results open a new window into the relationship between the evolution of life on Earth and our cosmic neighborhood.”

The outside pressure from the Local Lynx of Cold Cloud could have continually blocked out the heliosphere for a couple of hundred years to a million years, Opher says—depending on the size of the cloud. “But as soon as the Earth was away from the cold cloud, the heliosphere engulfed all the planets, including Earth,” she says. And that’s how it is today. 

It’s impossible to know the exact effect the cold cloud had on Earth—like if it could have spurred an ice age. But there are a couple of other cold clouds in the interstellar medium that the sun has likely encountered in the billions of years since it was born, Opher says. And it will probably stumble across more in another million years or so.

Opher and her collaborators are now working to trace where the sun was seven million years ago, and even further back. Pinpointing the location of the sun millions of years in the past, as well as the cold cloud system, is possible with data collected by the European Space Agency’s Gaia mission , which is building the largest 3D map of the galaxy and giving an unprecedented look at the speed stars move. 

“This cloud was indeed in our past, and if we crossed something that massive, we were exposed to the interstellar medium,” Opher says. The effect of crossing paths with so much hydrogen and radioactive material is unclear, so Opher and her team at BU’s NASA-funded SHIELD (Solar wind with Hydrogen Ion Exchange and Large-scale Dynamics) DRIVE Science Center are now exploring the effect it could have had on Earth’s radiation, as well as the atmosphere and climate. 

“This is only the beginning,” Opher says. She hopes that this paper will open the door to much more exploration of how the solar system was influenced by outside forces in the deep past. 

This research was supported by NASA.

Explore Related Topics:

  • Data Sciences
  • Share this story
  • 1 Comments Add

Science Writer Twitter Profile

Photo of Jessica Colarossi. A white woman with long, straight brown hair and wearing a black and green paisley blouse smiles and poses in front of a dark grey background.

Jessica Colarossi is a science writer for The Brink . She graduated with a BS in journalism from Emerson College in 2016, with focuses on environmental studies and publishing. While a student, she interned at ThinkProgress in Washington, D.C., where she wrote over 30 stories, most of them relating to climate change, coral reefs, and women’s health. Profile

Comments & Discussion

Boston University moderates comments to facilitate an informed, substantive, civil conversation. Abusive, profane, self-promotional, misleading, incoherent or off-topic comments will be rejected. Moderators are staffed during regular business hours (EST) and can only accept comments written in English. Statistics or facts must include a citation or a link to the citation.

There is 1 comment on The Solar System May Have Passed through Dense Interstellar Cloud 2 Million Years Ago, Altering Earth’s Climate

Hi Jessica, this paper was extremely incredible with lots of sense. I always love to explore space and very convinced that life somewhere outside of our solar system exists. I know that the nearest solar system is 4 light years away from us. All the time I think that how we can make it possible to get there within our lifetime span. I know it is impossible but we can still keep thinking about it.

Post a comment. Cancel reply

Your email address will not be published. Required fields are marked *

Latest from The Brink

Being open about lgbtq+ identities in the classroom creates positive learning environments, should schools struggling with classroom management clamp down with more suspensions or turn to restorative justice, getting police officers to trust implicit bias training, air quality sensors could be coming to a bicycle near you, airplane noise may be bad for your health, bu researcher named a 2024 hertz fellow; award honors “innovators with the greatest potential”, is ai biased against some groups and spreading misinformation and extreme views, 3d printing robot uses ai machine learning for us army research, permanent birth control—vasectomies and tubal ligations—up following supreme court abortion ruling, explain this how do planets form, bu’s innovator of the year has pioneered devices to advance astronomy, microscopy, eye exams, bu study shows a correlation between social media use and desire for cosmetic procedures, covid-19 photo contest winners capture moments of joy, sorrow, meaning in crisis, how high-level lawsuits are disrupting climate change policies, the h5n1 bird flu is a growing threat for farm animals and humans—how serious is it, why is a bu researcher so fascinated with the diets of dung beetles, we are underestimating the health harms of climate disasters, three bu researchers elected aaas fellows, should people be fined for sleeping outside.

share this!

June 19, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Ohio train derailment caused chemical pollution falling to Earth's surface across the US and beyond, study reveals

by IOP Publishing

New findings: East Palestine train derailment caused chemical pollution falling to the earth surface across the US and beyond

A new study published in the journal Environmental Research Letters reveals that the environmental impact of the February 3, 2023, Norfolk Southern train accident in East Palestine, Ohio covered a very large geographical area. Inorganic pollutants released due to the accident were found in wet weather downfall (wet deposition) from the Midwest through the Northeast, reaching as far as southern Canada and North Carolina.

The findings are significant as many inorganic pollutants in rain and snow have chemical effects on aquatic flora and fauna. According to the paper, these pollutants spread over at least portions of 16 states and an area of 1.4 million square kilometers.

Researchers from the Wisconsin State Laboratory of Hygiene (WSLH) at the University of Wisconsin-Madison were able to estimate the spatial extent and chemical elements deposited resulting from the incident by using precipitation chemistry measurements routinely collected by the National Atmospheric Deposition Programs (NADP) National Trends Network (NTN), which makes routine wet weather measurements at 260 sites across North America.

The train accident and the subsequent fire resulted in the release of many different pollutants into the atmosphere over several days, which the NADP researchers were able to track in precipitation.

David Gay, lead researcher and coordinator of the National Atmospheric Deposition Program (NADP), which has been monitoring pollution deposited across North America in precipitation for over 40 years, says, "Our measurements not only show the expected high chloride concentrations, but also the vast geographical area they covered.

"However, even more surprising are the unexpectedly high pH levels (more basic) and exceptionally elevated alkali and alkaline earth metals, exceeding the 99th percentiles of the last ten years of measurements. All of these pollutants are important in the environment because their accumulation has an impact on the Earth's aquatic and terrestrial environments in many ways."

"This study demonstrates the important role of a nationwide network for routine precipitation monitoring," says Dr. Gay. "Our observations allowed us to determine the regional atmospheric impact from the accident and subsequent response activities."

While the current NADP networks do not quantify organic compounds that might be more specific tracers of the train cargo, the documented widespread impacts on precipitation suggest a significant amount of chemical pollution falling to Earth's surface as a result of the accident.

Journal information: Environmental Research Letters

Provided by IOP Publishing

Explore further

Feedback to editors

research paper topics weather

The design of a photonic alloy with topological properties

35 minutes ago

research paper topics weather

Much of the Nord Stream gas remained in the sea after 2022 explosion, finds study

3 hours ago

research paper topics weather

A railroad of cells: Computer simulations explain cell movement

research paper topics weather

Ultrasound beam triggers 'nanodroplets' to deliver drugs at exactly the right spot

8 hours ago

research paper topics weather

Look to women for sustainable livestock farming bordering the Amazon rainforest, says study

15 hours ago

research paper topics weather

New study finds at least 1 in 4 US residential yards exceeds new EPA lead soil level guideline

research paper topics weather

Biologists take closer look at stress response in cells

17 hours ago

research paper topics weather

City sprawl is now large enough to sway global warming over land

research paper topics weather

New theory broadens phase transition exploration

research paper topics weather

Physicists combine multiple Higgs boson pair studies and discover clues about the stability of the universe

19 hours ago

Relevant PhysicsForums posts

Should we be planting more trees, the secrets of prof. verschure's rosetta stones.

Jun 13, 2024

Earthquake precursors associated with the Turkey earthquakes

Is it possible to transform an electric thunderstorm into an emp storm.

Jun 4, 2024

Jacchia Atmospheric Model

Jun 3, 2024

Iceland warming up again - quakes swarming

More from Earth Sciences

Related Stories

research paper topics weather

Researchers use remote sensing to estimate nitrogen deposition in North China

Jan 6, 2020

research paper topics weather

Airborne observations of Asian monsoon sees ozone-depleting substances lofting into the stratosphere

Apr 24, 2024

research paper topics weather

Cleaner air, less soil pollution: Unintended but beneficial side effect of Clean Air Act

Mar 2, 2021

research paper topics weather

Northeast China faces high levels of nitrogen pollution, study finds

Dec 15, 2023

research paper topics weather

Researchers reveal relationship between air oxidation and air pollution

Feb 19, 2024

research paper topics weather

Anthropogenic-source nitrogen dominates in precipitation nitrate

May 20, 2021

Recommended for you

research paper topics weather

Study reveals huge increase in global economic cost of invasive mosquitoes and diseases they transmit

research paper topics weather

The year 1740 was the coldest in Central Europe in 600 years: Study seeks to answer why

Jun 18, 2024

research paper topics weather

Large wildfires create weather that favors more fire

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Weather and its Effects

    research paper topics weather

  2. Predicting the Weather: Forecasting Free Essay Example

    research paper topics weather

  3. PPT

    research paper topics weather

  4. 🌈 Easy paper topics. 162 Intriguing Science Research Paper Topics for

    research paper topics weather

  5. Weather Forecasting Essay Example

    research paper topics weather

  6. Climate Change Essay.docx

    research paper topics weather

COMMENTS

  1. Reflections on weather and climate research

    Atmospheric CO 2 levels now exceed 400 ppm — a value that the Earth has not experienced in 3 million years — and most of this rise occurred in the last 60 years. As a palaeoclimatologist, this ...

  2. How climate change affects extreme weather events

    24 Jun 2016. Vol 352, Issue 6293. pp. 1517 - 1518. DOI: 10.1126/science.aaf7271. References. eLetters (0) Human-induced climate change has led to an increase in the frequency and intensity of daily temperature extremes and has contributed to a widespread intensification of daily precipitation extremes ( 1, 2 ).

  3. Weather and Forecasting

    Scope. Weather and Forecasting ( WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the ...

  4. Five priorities for weather and climate research

    Again, priority topics, such as the water cycle and urban development, could provide a starting point. ... Catalysing Innovation in Weather Science: the World Weather Research Programme ...

  5. Heat waves: a hot topic in climate change research

    Research on heat waves (periods of excessively hot weather, which may be accompanied by high humidity) is a newly emerging research topic within the field of climate change research with high relevance for the whole of society. In this study, we analyzed the rapidly growing scientific literature dealing with heat waves. No summarizing overview has been published on this literature hitherto. We ...

  6. Research articles

    Here research shows that multi-decadal projections help farmers better identify future climate risks through reducing complexity and psychological distance, although this may be impeded by lack of ...

  7. Journals and Monographs

    Since 1919, AMS has been publishing some of the top research in the atmospheric, oceanic, and hydrologic sciences. Today, we publish more than 37,000 pages per year across 12 scientific journals and a series of monographs. Peer reviewed and highly respected, our journals are consistently ranked near the top of their fields in impact factor (IF).

  8. 1556 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on WEATHER MODIFICATION. Find methods information, sources, references or conduct a literature review on ...

  9. 10000 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on WEATHER FORECASTING. Find methods information, sources, references or conduct a literature review on ...

  10. Big Data Analytics in Weather Forecasting: A Systematic Review

    This section demonstrates a road map for a systematic review of the research relevant to big data analytic mechanisms in weather forecasting. There is a difference between a systematic review and a common traditional one: A systematic literature review (SLR) increases transparency and uses precise and replicable steps [57,58,59,60,61,62].SLRs depend on clear and appraised review protocols to ...

  11. Machine Learning in Weather Prediction and Climate Analyses ...

    In this paper, we performed an analysis of the 500 most relevant scientific articles published since 2018, concerning machine learning methods in the field of climate and numerical weather prediction using the Google Scholar search engine. The most common topics of interest in the abstracts were identified, and some of them examined in detail: in numerical weather prediction research ...

  12. Weather and Forecasting

    The Weather and Forecasting Section aims to provides an advanced platform for sharing and highlighting high-quality research related to all aspects of weather forecasting. We are soliciting research papers; new and innovative research proposals as well as ideas are particularly welcome. We also invite authors to submit well written review articles.

  13. Deep Learning-Based Weather Prediction: A Survey

    In this paper, we survey the state-of-the-art studies of deep learning-based weather forecasting, in the aspects of the design of neural network (NN) architectures, spatial and temporal scales, as well as the datasets and benchmarks. ... Section 7 summarizes the paper and discusses the potential future research topics of DLWP. 2. Weather ...

  14. Weather, climate, and climate change research to protect human health

    Background. Healthy populations are a prerequisite to facilitate the transitions needed to achieve a resilient and sustainable development. Weather, climate, and climate change are affecting human health, with the scientific evidence increasing substantially over the past decades [Citation 1].Measures to protect human health are critical to reducing poverty and inequality at all scales.

  15. Research Topics

    Research Topics. NASA's Global Precipitation Measurement mission ( GPM) develops and deploys advanced space-borne sensors to gain physical insights into precipitation processes and to enable improved monitoring and forecasting of climate, weather and precipitation-related natural hazards. The GPM mission's Core Observatory satellite launched ...

  16. Weather Forecast Prediction: An Integrated Approach for ...

    Abstract and Figures. Weather forecasting is the use of science and technology to predict the condition of the weather for a given area. It is one of the most difficult issues the world over. This ...

  17. 337 Climate Change Research Topics & Essay Samples

    337 Climate Change Research Topics & Examples. Updated: Mar 2nd, 2024. 27 min. You will notice that there are many climate change research topics you can discuss. Our team has prepared this compilation of 185 ideas that you can use in your work. Table of Contents.

  18. Front Matter

    Critical Issues in Weather Modification Research. Washington, DC: The National Academies Press. doi: 10.17226/10829. Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book.

  19. Research at NSSL

    Research at NSSL. Severe weather has touched every state in the United States. Hurricanes, tornadoes, blizzards, wildfires, floods and droughts are very real threats to our property and our lives. NSSL researchers work to observe, understand and predict severe weather in ways that will help our partners save lives and reduce property damage.

  20. Climate Change Research Topics

    Understanding climate change is a broad climate change research topic. With this, you can introduce different research methods for tracking climate change and showing a focused effect on specific areas, such as the impact on water availability in certain geographic areas. 6. Carbon Emissions Impact of Climate Change.

  21. The link between extreme weather and climate change has never been more

    For example, researchers determined that Hurricane Harvey, which struck Houston in 2017, contained 19 percent more rainfall than would have occurred without climate change, Wehner noted in a paper ...

  22. ≡Essays on Climate & Weather. Free Examples of Research Paper Topics

    The majority of weather essays will contain an introduction with a thesis, 3-5 body paragraphs with statistical data and interesting facts, and a conclusion that sums things up. If you are unsure about what weather essay topics to choose, explore our examples and consider writing about what the weather means to you.

  23. Research articles

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Climate change has led to increased fire activity in parts of the globe due to observed increases in fire ...

  24. Heat waves: a hot topic in climate change research

    Abstract. Research on heat waves (periods of excessively hot weather, which may be accompanied by high humidity) is a newly emerging research topic within the field of climate change research with high relevance for the whole of society. In this study, we analyzed the rapidly growing scientific literature dealing with heat waves.

  25. When the Rain Stops Falling: Effects of Droughts on the Tunisian Labor

    Abstract: This paper investigates the effects of severe drought shocks on Tunisia's agriculture sector during 2000-19. Using labor force surveys aligned with granular weather data, it calculates the Standardized Potential Evapotranspiration Index to detect moderate-to-severe drought shocks at the governorate level and frames the analysis in a staggered difference-in-differences setting.

  26. Causes and Effects of Climate Change

    Over the past decade (2010-2019), weather-related events displaced an estimated 23.1 million people on average each year, leaving many more vulnerable to poverty.

  27. Climate change and weather forecasts : NPR

    While the connection between climate change and tornado frequency is still a topic of active research, what is clear is that there are more people than ever living in tornado-prone parts of the U ...

  28. Understanding the Green Sahara's collapse

    Abrupt shifts within complex systems such as the Earth's climate system are extremely hard to predict. Researchers have now succeeded in developing a new method to anticipate such tipping points ...

  29. The Solar System May Have Passed through Dense Interstellar Cloud 2

    "This is only the beginning," Opher says. She hopes that this paper will open the door to much more exploration of how the solar system was influenced by outside forces in the deep past. This research was supported by NASA. Explore Related Topics: Astronomy Data Sciences Evolution NASA Share this story 0 Comments Add

  30. Ohio train derailment caused chemical pollution falling to Earth's

    A new study published in the journal Environmental Research Letters reveals that the environmental impact of the February 3, 2023, Norfolk Southern train accident in East Palestine, Ohio covered a ...