Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

16k Accesses

16 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

collaborative problem solving can transform school discipline

Fostering twenty-first century skills among primary school students through math project-based learning

collaborative problem solving can transform school discipline

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

collaborative problem solving can transform school discipline

A guide to critical thinking: implications for dental education

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

collaborative problem solving can transform school discipline

Collaborative Problem Solving

  • First Online: 01 January 2010

Cite this chapter

collaborative problem solving can transform school discipline

  • Ross W. Greene 4  

4559 Accesses

7 Citations

1 Altmetric

Collaborative Problem Solving (CPS) is an evidence-based, cognitive-behavioral psychosocial treatment approach first described in the book The Explosive Child (Greene, 1998). The model blends many different lines of theory and research, including developmental theory, systems theory, social learning theory, and research in the neurosciences. CPS has been applied predominantly to youth with externalizing behavior problems, and has been implemented in a wide range of settings, including families, ­general and special education schools, inpatient psychiatry units, and residential and juvenile correction facilities. This chapter describes the most current rendition of the model, along with research findings to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

collaborative problem solving can transform school discipline

Collaborative & Proactive Solutions (CPS): A Review of Research Findings in Families, Schools, and Treatment Facilities

collaborative problem solving can transform school discipline

Cognitive Behavioral Therapy with Children and Adolescents

collaborative problem solving can transform school discipline

CPS as a Neurodevelopmentally Sensitive and Trauma-Informed Approach

H. Abikoff, R.G. Klein, Attention-deficit hyperactivity disorder and conduct disorder: Comorbidity and implications for treatment. Journal of Consulting and Clinical Psychology 60 , 881–892 (1992)

Article   PubMed   Google Scholar  

American Psychiatric Association, Diagnostic and statistical manual of mental disorders , 4th edn. (Author, Washington, DC, 1994)

Google Scholar  

A. Angold, E.J. Costello, Depressive comorbidity in children and adolescents: Empirical, theoretical, and methodological issues. American Journal of Psychiatry 150 , 1779–1791 (1993)

PubMed   Google Scholar  

L. Baker, D.P. Cantwell, A prospective psychiatric follow-up of with speech/language disorders. Journal of the American Academy of Child and Adolescent Psychiatry 26 , 546–553 (1987)

R.A. Barkley, Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin 121 (1), 65–94 (1997a)

R.A. Barkley, Defiant children: A clinician’s manual for assessment and parent training , 2nd edn. (Guilford Press, New York, 1997b)

J.H. Beitchman, J. Hood, A. Inglis, Psychiatric risk in children with speech and language disorders. Journal of Abnormal Child Psychology 18 , 283–296 (1990)

J.H. Beitchman, J. Hood, J. Rochon, M. Peterson, Empirical classification of speech/language impairment in. II. Behavioral characteristics. Journal of the American Academy of Child and Adolescent Psychiatry 28 , 118–123 (1989)

R. Bell, A reinterpretation of the direction of effects in socialization. Psychological Review 75 , 81–95 (1968)

J. Belsky, The determinants of parenting: A process model. Child Development 55 , 83–96 (1984)

P.A. Brennan, E.R. Grekin, S.A. Mednick, Prenatal and perinatal influences on conduct disorder and serious delinquency, in Causes of conduct disorder and juvenile delinquency , ed. by B.B. Lahey, T.E. Moffitt, A. Caspi (Guilford, New York, 2003), pp. 319–344

E.V. Brestan, S.M. Eyberg, Effective psychosocial treatment of conduct-disordered children and adolescents: 29 years, 82 studies, and 5, 272 kids. Journal of Clinical Child Psychology 27 (2), 180–189 (1998)

I. Bretherton, J. Fritz, C. Zahn-Waxler, D. Ridgeway, Learning to talk about emotions: A functionalist perspective. Child Development 57 , 529–548 (1986)

Article   Google Scholar  

C.L. Budman, R.D. Bruun, K.S. Park, M.E. Olson, Rage attacks in children and adolescents with Tourette’s disorder: A pilot study. Journal of Clinical Psychiatry 59 (11), 576–580 (1998)

P. Chamberlain, G.R. Patterson, Discipline and child compliance in parenting, in Handbook of parenting (Vol.4): Applied and practical parenting , ed. by M.H. Bornstein (Lawrence Erlbaum, Mahwah, NJ, 1995)

S. Chess, A. Thomas, Origins and evolution of behavior disorders: From infancy to early adult life (Brunner/Mazel, New York, 1984)

D. Cicchetti, M. Lynch, Toward and ecological/transactional model of community violence and child maltreatment. Psychiatry 56 , 96–118 (1993)

D. Cicchetti, M. Lynch, Failures in the expectable environment and their impact on individual development: The case of child maltreatment, in Developmental psychopathology , ed. by D. Cicchetti, D.J. Cohen. Risk, disorder, and adaptation, vol. 2 (Wiley, New York, 1995), pp. 32–71

Coie, J. D., & Dodge, K. A. (1998). Aggression and anti-social behavior. In W. Damon (Ed.), Handbook of child psychology (5th ed.): Vol. 3. Social, emotional, and personality development (pp. 779–862). New York: Wiley

M.B. Denckla, A theory and model of executive function: A neuropsychological perspective, in Attention, memory, and executive function , ed. by G.R. Lyon, N.A. Krasnegor (Paul H. Brookes, Baltimore, MD, 1996), pp. 263–278

T.J. Dishion, G.R. Patterson, Age affects in parent training outcomes. Behavior Therapy 23 , 719–729 (1992)

Feindler, E. L. (1990). Adolescent anger control: Review and critique. In M. Hersen, R. M. Eisler, & P. M. Miller (Eds.), Progress in behavior modification (Vol. 26, 00. 11–59). Newbury Park, CA: Sage.

E.L. Feindler, Cognitive strategies in anger control interventions for children and adolescents, in Child and adolescent therapy: Cognitive-behavioral procedures , ed. by P.C. Kendall (Guilford Press, New York, 1991), pp. 66–97

E.L. Feindler, An ideal treatment package for children and adolescents with anger disorders, in Anger disorders: Definition, diagnosis, and treatment , ed. by H. Kassinove (Taylor & Francis, Washington, DC, 1995), pp. 173–195

E.J. Garland, M. Weiss, Case study: Obsessive difficult temperament and its response to serotonergic medication. Journal of the American Academy of Child and Adolescent Psychiatry 35 (7), 916–920 (1996)

B. Geller, J. Luby, Child and adolescent bipolar disorder: Review of the past 10 years. Journal of the American Academy of Child and Adolescent Psychiatry 36 (9), 1–9 (1997)

G. Gottlieb, Individual development and evolution: The genesis of novel behavior (Oxford University Press, New York, 1992)

J. Gottman, The world of coordinated play: Same and cross-sex friendship in children, in Conversations of friends: Speculations on affective development , ed. by J.M. Gottman, J.G. Parker (Cambridge University Press, Cambridge, England, 1986), pp. 139–191

R.W. Greene, Students with ADHD in school classrooms: Teacher factors related to compatibility, assessment, and intervention. School Psychology Review 24 (1), 81–93 (1995)

R.W. Greene, Students with ADHD and their teachers: Implications of a goodness-of-fit perspective, in Advances in clinical child psychology , ed. by T.H. Ollendick, R.J. Prinz (Plenum, New York, 1996), pp. 205–230

Chapter   Google Scholar  

R.W. Greene, The explosive child: Understanding and parenting easily frustrated, “Chronically Inflexible” children (HarperCollins, New York, 1998)

R.W. Greene, Lost at school: Why our kids with behavioral challenges are falling through the cracks and how we can help them (Scribner, New York, 2008)

Greene, R.W. (2010). Conduct disorder and oppositional defiant disorder. In J. Thomas & M. Hersen (Eds.), Handbook of Clinical Psychology Competencies . New York: Springer Publishing, 1329–1350

Greene, R.W. (2010). Collaborative problem solving: The model and its application across settings. New York: Guilford (in press)

R.W. Greene, R.R. Abidin, C. Kmetz, The index of teaching stress: A measure of student-teacher compatibility. Journal of School Psychology 35 (3), 239–259 (1997)

R.W. Greene, S.A. Ablon, A. Martin, Innovations: Child psychiatry: Use of collaborative problem solving to reduce seclusion and restraint in child and adolescent inpatient units. Psychiatric Services 57 (5), 610–616 (2006)

R.W. Greene, J.S. Ablon, M. Monuteaux, J. Goring, A. Henin, L. Raezer, G. Edwards, J. Markey, S. Rabbitt, Effectiveness of collaborative problem solving in affectively dysregulated youth with oppositional defiant disorder: Initial findings. Journal of Consulting and Clinical Psychology 72 , 1157–1164 (2004)

R.W. Greene, J. Biederman, S. Zerwas, M. Monuteaux, J.C. Goring, S.V. Faraone, Psychiatric comorbidity, family dysfunction, and social impairment in referred youth with oppositional defiant disorder. American Journal of Psychiatry 159 , 1214–1224 (2002)

R.W. Greene, A.E. Doyle, Toward a transactional conceptualization of oppositional defiant disorder: Implications for assessment and treatment. Clinical and Family Psychology Review 2 (3), 129–147 (1999)

R.W. Greene, T.H. Ollendick, Behavioral assessment of children, in Handbook of psychological assessment , ed. by G. Goldstein, M. Hersen, 3rd edn. (Elsevier Science (Pergamon), Oxford, 2000), pp. 453–470

J.D. Harnish, K.A. Dodge, E. Valente, Mother-child interaction quality as a partial ­mediator of the roles of maternal depressive symptomatology and socioeconomic status in the development of child conduct problems. Child Development 66 , 739–753 (1995)

S.C. Hayes, R.O. Nelson, B.B. Jerrett, The treatment utility of assessment: A functional approach to evaluating assessment quality. American Psychologist 42 , 963–974 (1987)

S.P. Hinshaw, B.B. Lahey, E.L. Hart, Issues of taxonomy and comorbidity in the development of conduct disorder. Development and Psychopathology 5 , 31–49 (1993)

A.E. Kazdin, Treatment of conduct disorder: Progress and directions in psychotherapy research. Development and Psychopathology 5 , 277–310 (1993)

A.E. Kazdin, Parent management training: Evidence, outcomes, and issues. Journal of the American Academy of Child and Adolescent Psychiatry 36 (10), 1349–1356 (1997)

A.E. Kazdin, K. Esveldt-Dawson, N.H. French, A.S. Unis, Problem-solving skills training and relationship therapy in the treatment of antisocial child behavior. Journal of Consulting and Clinical Psychology 55 , 76–85 (1987)

A.E. Kazdin, T.C. Siegel, D. Bass, Cognitive problem-solving skills training and parent management training in the treatment of antisocial behavior in children. Journal of Consulting and Clinical Psychology 60 (5), 733–747 (1992)

P.C. Kendall, Toward a cognitive-behavioral model of child psychopathology and a critique of related interventions. Journal of Abnormal Psychology 13 , 357–372 (1985)

P.C. Kendall, Guiding theory for therapy with children and adolescents, in Child and adolescent therapy: Cognitive-behavioral procedures , ed. by P.C. Kendall (Guilford Press, New York, 1991), pp. 3–22

P.C. Kendall, J.P. MacDonald, Cognition in the psychopathology of youth and implications for treatment, in Psychopathology and cognition , ed. by K.S. Dobson, P.C. Kendall (Academic Press, San Diego, CA, 1993), pp. 387–426

C.B. Kopp, Regulation of distress and negative emotions: A developmental view. Developmental Psychology 25 (3), 343–354 (1989)

B.B. Lahey, R. Loeber, Framework for a developmental model of oppositional defiant disorder and conduct disorder, in Disruptive behavior disorders in childhood , ed. by D.K. Routh (Plenum, New York, 1994)

J.E. Lochman, Cognitive-behavioral interventions with aggressive boys. Child Psychiatry and Human Development 16 , 45–56 (1992)

J.E. Lochman, P.R. Burch, J.F. Curry, L.B. Lampron, Treatment and generalization effects of cognitive-behavioral and goal-setting interventions with aggressive boys. Journal of Consulting and Clinical Psychology 52 , 915–916 (1984)

J.E. Lochman, L.B. Lampron, T.C. Gemmer, S.R. Harris, Anger coping intervention with aggressive children: A guide to implementation in school settings, in Innovations in clinical practice: A source book , ed. by P.A. Keller, S.R. Heyman, vol. 6 (Professional Resource Exchange, Sarasota, FL, 1987), pp. 339–356

A. Martin, H. Krieg, F. Esposito, D. Stubbe, L. Cardona, Reduction of restraint and seclusion through Collaborative Problem Solving: A five-year, prospective inpatient study. Psychiatric Services 59 (12), 1406–1412 (2008)

R.J. McMahon, K.C. Wells, Conduct problems, in Treatment of childhood disorders , ed. by E.J. Mash, R.A. Barkley, 2nd edn. (Guilford, New York, 1998), pp. 111–210

B. Milner, Aspects of human frontal lobe function, in Epilepsy and the functional autonomy of the frontal lobe , ed. by H.H. Jasper, S. Riggio, P.S. Goldman-Rakic (Raven Press, New York, 1995), pp. 67–81

W. Mischel, Delay of gratification as process and as person variable in development, in Interactions in human development , ed. by D. Magnusson, V.P. Allen (Academic Press, New York, 1983), pp. 149–165

T.E. Moffitt, D. Lynam, The neuropsychology of conduct disorder and delinquency: Implications for understanding antisocial behavior, in Experimental personality and psychopathology research 1994 , ed. by D.C. Fowles, P. Sutker, S.H. Goodman (Springer, New York, 1994), pp. 233–262

G.R. Patterson, P. Chamberlain, A functional analysis of resistance during parent training therapy. Clinical Psychology: Science and Practice 1 (1), 53–70 (1994)

G.R. Patterson, M.E. Gullion, Living with children: New methods for parents and ­teachers (Research Press, Champaign, IL, 1968)

G.R. Patterson, J.B. Reid, T.J. Dishion, Antisocial boys (Castalia, Patterson, OR, 1992)

B.F. Pennington, S. Ozonoff, Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry 37 , 51–87 (1996)

R.J. Prinz, G.E. Miller, Family-based treatment for childhood antisocial behavior: Experimental influences on dropout and engagement. Journal of Consulting & Clinical Psychology 62 , 645–650 (1994)

A. Sameroff, Early influences on development: Fact or fancy? Merrill-Palmer Quarterly 21 , 263–294 (1975)

A. Sameroff, General systems theory and developmental psychopathology, in Developmental psychopathology (Vol. 1): Theory and methods , ed. by D. Cicchetti, D.J. Cohen (Wiley, New York, 1995), pp. 659–695

C.A. Stifter, T.L. Spinrad, J.M. Braungart-Rieker, Toward a developmental model of child compliance: The role of emotion regulation in infancy. Child Development 70 (1), 21–32 (1999)

T.K. Taylor, A. Biglan, Behavioral family interventions for improving child rearing: A review of the literature for clinicians and policy makers. Clinical Child and Family Psychology Review 1 (1), 41–60 (1998)

C. Webster-Stratton, Enhancing the effectiveness of self-administered videotape parent training for families with conduct-problem children. Journal of Abnormal Child Psychology 18 , 479–492 (1990)

D. Zillman, Cognition-excitation interdependencies in aggressive behavior. Aggressive Behavior 14 , 51–64 (1988)

Download references

Author information

Authors and affiliations.

Harvard Medical School, Newton, USA

Ross W. Greene

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Royal North Shore Hospital, Health Psychology Unit, University of Technology Sydney, St. Leonards, Sydney, 2065, New South Wales, Australia

Rachael C. Murrihy

Antony D. Kidman

Child Study Center, Department of Psychology, Virginia Tech, Blacksburg, 24060, Virginia, USA

Thomas H. Ollendick

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Greene, R.W. (2011). Collaborative Problem Solving. In: Murrihy, R., Kidman, A., Ollendick, T. (eds) Clinical Handbook of Assessing and Treating Conduct Problems in Youth. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6297-3_8

Download citation

DOI : https://doi.org/10.1007/978-1-4419-6297-3_8

Published : 17 August 2010

Publisher Name : Springer, New York, NY

Print ISBN : 978-1-4419-6295-9

Online ISBN : 978-1-4419-6297-3

eBook Packages : Behavioral Science Behavioral Science and Psychology (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

J. Stuart Ablon Ph.D.

School Discipline Is Trauma-Insensitive and Trauma-Uninformed

Why change is needed to meet the needs of students exposed to trauma.

Posted January 9, 2020 | Reviewed by Matt Huston

  • What Is Trauma?
  • Find a therapist to heal from trauma

I was asked to write a blog post about a recent trend in education for K-12 Talk that I find either exciting or concerning. I decided to write about a topic that is both exciting and concerning: the impact of trauma on learning and behavior. I've re-created that blog post below.

First the exciting part:

These days, many educators are being trained to understand the impact of chronic stress and trauma on students’ development, behavior, and learning. Schools everywhere are devoting significant professional development time to this topic and prioritizing being “trauma-informed” or “trauma-sensitive.” Thankfully, as a result, educators have far more empathy for how chronic stress and trauma can derail learning and be a primary cause of disruptive behavior in the classroom.

Now the concerning part:

These same schools often still rely heavily on punitive school disciplinary strategies. I recall visiting a school recently where the leadership proudly described their trauma-informed training and then proceeded to show me examples of the behavior contracts they use with their students. These traditional disciplinary strategies (including sticker-charts, time-outs, demerits, detention, suspension, and expulsion) aren’t very successful for the students to whom they are most often applied. Research has clearly shown that such disciplinary actions actually increase the likelihood of further disciplinary measures and are related to higher drop-out rates, as well as lower academic achievement and even eventual juvenile justice involvement (APA, 2008). And to whom are they most often applied? Sadly, to the most at-risk, misunderstood, and marginalized students, including those with histories of trauma and exposure to chronic stress. Students who exhibit challenging behavior are often the students with trauma histories because being exposed to chronic stress or trauma delays brain development, causing lags in skill development which in turn result in challenging behaviors. As a direct result of their trauma, many of these students struggle with skills like flexibility, frustration tolerance, and problem-solving. They don’t lack the will to behave well; they lack the skills to behave well. No wonder traditional school discipline doesn’t work with traumatized students: motivational strategies don’t teach students the neurocognitive skills they lack.

Even more concerning:

Not only do punitive interventions not work with traumatized students, they can do developmental damage and make matters worse. Nowhere in the trauma-informed practice literature have I seen anyone advocate for the use of power and control to manipulate a traumatized student’s behavior. Using behavior charts and rewards and consequences is doing just that. It is leveraging a power differential to increase compliance. Put more simply, traditional school discipline revolves around rewarding students when they do what we want and revoking privileges when they don’t: a toxic dynamic that many traumatized kids are already all too familiar with in their past relationships with adults. In other words, traditional school disciplinary strategies are about as trauma-uninformed and trauma-insensitive as it gets!

There are additional side-effects of this vicious cycle of chronic stress and punitive discipline (Ablon & Pollastri, 2018). When punitive discipline is ineffective, it adds more stress, which further delays skill development, which results in escalating behavior, which is then often met by raising the stakes with even more punitive discipline. Systems of escalating consequences are sometimes called “progressive discipline.” But this is a misnomer: when it comes to curbing challenging behavior, those systems are anything but progressive. In fact, I like to refer to them as “progressive dysregulation,” since both students and educators become increasingly dysregulated, with dire consequences for everyone, including the teachers. Dealing with challenging behavior in the classroom is one of the biggest sources of stress for educators; it drives talented, young teachers out of the profession just when we need them most.

Thankfully there is still good news.

We have the power to interrupt this cycle of chronic stress and trauma. We don’t have to respond to challenging behavior with punitive discipline. Proven alternatives exist. Instead of adding stress that further delays skills and escalates behavior, we can buffer stress, build skills, and reduce challenging behavior in a truly trauma-informed and trauma-sensitive way (Perry & Ablon, 2019). Effective alternatives, such as Collaborative Problem Solving and restorative practices, are relational forms of discipline that do not revolve around the use of power and control.

Schools represent a remarkable opportunity to help our most vulnerable, traumatized kids. Students spend the majority of their waking hours—the majority of their youth—surrounded by trained professionals who are experts in helping kids build skills. So, let’s harness that opportunity and turn trauma-informed principles into concrete, actionable strategies that transform school discipline.

Ablon, J.S., & Pollastri, A.R, The School Discipline Fix. (2018). Norton: New York, NY

American Psychological Association Zero Tolerance Task Force. (2008). Are zero tolerance policies effective in the schools? An evidentiary review and recommendations. The American Psychologist, 63(9), 852.

Perry BD, Ablon JS. (2019) CPS as a Neurodevelopmentally Sensitive and Trauma-Informed Approach. In: Pollastri A., Ablon J., Hone M. (eds) Collaborative Problem Solving. Current Clinical Psychiatry. Springer, Cham

J. Stuart Ablon Ph.D.

J. Stuart Ablon, Ph.D. , the Thomas G. Stemberg Endowed Chair in Child and Adolescent Psychiatry at Harvard Medical School, is the Director of Think:Kids in the Department of Psychiatry at Massachusetts General.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. Collaborative Problem-Solving Process

    collaborative problem solving can transform school discipline

  2. دانلود کتاب The School Discipline Fix: Changing Behavior Using the

    collaborative problem solving can transform school discipline

  3. Maine Township High School District 207

    collaborative problem solving can transform school discipline

  4. Resolving Problems Using Collaborative & Proactive Solutions

    collaborative problem solving can transform school discipline

  5. Collaborative Problem Solving And Assessment Approach

    collaborative problem solving can transform school discipline

  6. Think:Kids : Collaborative Problem Solving in Schools

    collaborative problem solving can transform school discipline

VIDEO

  1. Collaborative problem-solving, globally

  2. Higher Ed Trend 1: Institutions Turn to Interdisciplinary Collaboration

  3. How to Develop Learners’ Collaborative Problem Solving Skills

  4. The Village Network: Residential Implementation of Collaborative Problem Solving

  5. Online Classes

  6. The #1 Secret to Grow Your Leadership and Negotiation Skills

COMMENTS

  1. Collaborative Problem Solving can Transform School Discipline

    ROSS W. GREENE ( [email protected]) is an associate clinical professor in the Department of Psychiatry, Harvard Medical School, Boston, Mass., on the professional staff at Cambridge Health Alliance, Cambridge, Mass., senior lecturer in the school psychology program in the Department of Education, Tufts University, Medford, Mass., and ...

  2. Collaborative Problem Solving Can Transform School Discipline

    Collaborative Problem Solving Can Transform School Discipline. Greene, Ross W. ... When school discipline programs focus on teaching lagging skills and solving problems collaboratively, they rely a lot less on incentive-based interventions and punitive procedures such as detention, suspension, and expulsion. ...

  3. Collaborative Problem Solving can Transform School Discipline

    The utilization of collaborative problem solving by a school team has been shown to be an effective approach for bringing about positive changes in classroom discipline (Greene, 2011). PSCs need ...

  4. Think:Kids : Collaborative Problem Solving in Schools

    The Results. Our research has shown that the Collaborative Problem Solving approach helps kids and adults build crucial social-emotional skills and leads to dramatic decreases in behavior problems across various settings. Results in schools include remarkable reductions in time spent out of class, detentions, suspensions, injuries, teacher ...

  5. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  6. Collaborative Problem Solving can Transform School Discipline

    (DOI: 10.1177/003172171109300206) Adults, students, and schools benefit when behavioral challenges are viewed through accurate lenses and students participate in resolving them.

  7. Collaborative Problem Solving can Transform School Discipline

    Adults, students, and schools benefit when behavioral challenges are viewed through accurate lenses and students participate in resolving them. View on SAGE Save to Library Save

  8. PDF solving power and control to collaboration and problem Transforming

    Transforming School Discipline: Shifting from power and control to collaboration and problem solving Ross W. Greene To cite this article: Ross W. Greene (2018) Transforming School Discipline: Shifting from power and control to collaboration and problem solving, Childhood Education, 94:4, 22-27, DOI: 10.1080/00094056.2018.1494430

  9. The school discipline fix: Changing behavior using the collaborative

    Traditional school discipline is ineffective and often damaging, relying heavily on punishments and motivational procedures aimed at giving students the incentive to behave better. There is a better way. The authors have been working with schools throughout the world to refine the Collaborative Problem-Solving (CPS) approach, creating a step-by-step program for educators based on the ...

  10. PDF >L À>Ì ÛiÊ*À L i Ê- Û } can transform school discipline

    School discipline programs can focus on teaching lagging skills and solving problems rather than on incentive-based interventions and punitive procedures such as detention, suspension, and expulsion. And, perhaps, we wouldn't now be saying that public school disci-pline rates have never been higher. COLLABORATIVE PROBLEM SOLVING

  11. PDF Framework for Effective School Discipline

    school-wide and classroom discipline practices; additional topics, based on the needs of the school, could include: i. ways to mitigate bias in discipline practices; and ii. awareness and knowledge of privilege, racism, and implicit bias and their impact on school discipline. FRAMEWORK FOR EFFECTIVE SCHOOL DISCIPLINE 5 The use of a ...

  12. Think:Kids : Traditional School Discipline Doesn't Work

    The Collaborative Problem Solving ® (CPS) approach is an equitable and effective form of discipline that reduces concerning behavior and teacher stress while building skills and relationships between educators and students. CPS can be integrated into Multi-Tiered Systems of Support and provides actionable strategies for trauma-sensitive education.

  13. Transforming School Discipline: Shifting from power and control to

    DOI: 10.1080/00094056.2018.1494430 Corpus ID: 158816362; Transforming School Discipline: Shifting from power and control to collaboration and problem solving @article{Greene2018TransformingSD, title={Transforming School Discipline: Shifting from power and control to collaboration and problem solving}, author={Ross W Greene}, journal={Childhood Education}, year={2018}, volume={94}, pages={22 ...

  14. Transforming School Culture Through Restorative Practices

    Transforming School Culture Through Restorative Practices. Every person has the inherent right to be treated as fully human and to refuse any less-than-human treatment. Restorative practices hold this idea at the core and emphasize relationships, collaborative problem solving, and collective responsibility.

  15. Collaborative Problem Solving

    Introduction. Collaborative Problem Solving (CPS) is an evidence-based, cognitive-behavioral psychosocial treatment approach first described in the book The Explosive Child (Greene, 1998 ). The model blends many different lines of theory and research, including developmental theory, systems theory, social learning theory, and research in the ...

  16. PDF Discussion Guide

    Collaborative Problem Solving in your school, visit www.thinkkids.org. SCHOOLS ORDERING in BULK (10 or more copies) get 45% off: Email [email protected] or call 1-855-277-6770 for a price quote. The School Discipline Fix: Changing Behavior Using the Collaborative Problem Solving Approach 1 21 . Ab ollastri. lisher, W. W. eserved. CHAPTER 1 ...

  17. Collaborative Problem Solving can Transform School Discipline

    Adults, students, and schools benefit when behavioral challenges are viewed through accurate lenses and students participate in resolving them. Collaborative Problem Solving can Transform School Discipline - Ross W. Greene, 2011

  18. The School Discipline Fix

    A complete guide to a paradigm-shifting model of school discipline. Disruptive students need problem-solving skills, not punishment., The School Discipline Fix, Changing Behavior Using the Collaborative Problem Solving Approach, Alisha R Pollastri, J. Stuart Ablon, 9780393712308

  19. PDF A Toolkit for Educators

    countywide school improvement efforts in the past few years. As districts across the country deliberately move away from ineffective zero-tolerance discipline policies, a considerable shift has been made to strengthen safe and supportive schools, improve school climate, address conflict, and create positive school culture.

  20. Think:Kids : Collaborative Problem Solving®

    Collaborative Problem Solving® (CPS) At Think:Kids, we recognize that kids with challenging behavior don't lack the will to behave well. They lack the skills to behave well. Our Collaborative Problem Solving (CPS) approach is proven to reduce challenging behavior, teach kids the skills they lack, and build relationships with the adults in ...

  21. Book Review: Greene, R. W., & Ablon, J. S. (2006). Treating Explosive

    VIEW DISCIPLINE HUBS. Information for. Authors ; Editors ; Librarians ... & Ablon, J. S. (2006). Treating Explosive Kids: The Collaborative Problem-Solving Approach. New York: Guilford Press. xi, 244 pp. (Hardcover) Alida S. Westman View all ... Collaborative Problem Solving can Transform School Discipline. Show details Hide details. Ross W ...

  22. School Discipline Is Trauma-Insensitive and Trauma-Uninformed

    Effective alternatives, such as Collaborative Problem Solving and restorative practices, are relational forms of discipline that do not revolve around the use of power and control.