• Social Anxiety Disorder
  • Bipolar Disorder
  • Kids Mental Health
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Relationships in 2023
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving in cognitive psychology

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

problem solving in cognitive psychology

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Landscape Art and Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • Gender and Sexuality in Art
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Critical Care Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Study and Communication Skills in Life Sciences
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist and Conservationist Organizations (Environmental Science)
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Decision Theory
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2023 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Call to +1 844 889-9952

Problem-Solving in Cognitive Psychology

Introduction.

Cognitive skills that a person acquires throughout one’s life shape a personal background and allow interacting with other people through the experience of communication to overcome various barriers. Problem-solving is valuable attainment, and cognitive psychology is the industry that studies this phenomenon from the perspective of drivers and incentives to make decisions in favor of specific actions or ideas.

From a neurological perspective, problem-solving is characterized by the nature of the human desire to fill the space and identify the best methods to overcome specific barriers. At the same time, this skill may be applied to other areas where the experience gained is a crucial self-determining factor, for instance, differential or educational psychology. The problem-solving attainment is of high importance from the perspective of gaining individual adaptive and social habits. The abilities to analyze and make the right decision based on the proposed circumstances are the skills that distinguish the human species from most other living beings.

Neurological Foundations and Processes Related to Problem-Solving

Problem-solving is an active neurological process that occurs at the initiative of a person oneself and does not belong to the category of automatic and reflex properties. Any task requiring a solution is associated with the work of various cognitive skills that need to be applied to solve an individual problem (“Cognitive psychology,” 2020). This form of behavior is goal-directed and serves as a tool for performing specific actions but not as a ready-made set of behavioral reflexes (“Cognitive psychology,” 2020).

The abilities to find flexible solutions, adapt to the current conditions, divide tasks in accordance with the spectrum of their significance, assess specific actions or solutions adequately, and other attainments shape the neurological background of problem-solving. Brace (2014) lists various problem-solving strategies and notes that building a sequence of actions in a specific order to achieve the desired goal is evidence of cognitive development, which varies depending on complexity. Thus, the effectiveness of problem-solving may depend on the criteria of the complexity of a particular issue and the tools available to overcome it.

The ability to control cognitive functions to direct them towards solving a specific problem is a skill that is established from an early age. As one grows older and acquires new cognitive skills, the complexity of potentially solvable problems increases. A person learns to combine existing knowledge, for instance, in the context of problem-solving by analogy, which Brace (2014) describes as a process related to experience rather than knowledge. As Kolbert (2017) argues, collaborative groups, play a significant role in this process and stimulate solving different problems through the application of previously learned attainments. In this regard, one can conclude about the neurological connection between problem-solving and social adaptation.

Filling the space that has arisen due to the urgent need to overcome a specific obstacle does not carry unconditioned reflexes and is based on a conscious choice to search for optimal solutions. When a person analyzes, draws analogies, divides tasks into subtasks, and performs other actions related to problem-solving, cognitive skills are activated (“Cognitive psychology,” 2020). Unwillingness to deviate from the intended plan characterizes the innate ability to overcome barriers to achieve the desired goal. A baby who crawls towards one’s toy despite obstacles on the floor does this consciously. Thus, problem-solving may be characterized not only as a cognitive process that develops as people grow older and socialize but also as an integral and conscious personality trait.

Criticism of the Problem-Solving Theory

Despite the fact that problem-solving is the subject of cognitive psychology research and a recognized concept, certain aspects of this theory are questioned due to the similarity with other psychological models. In particular, Servant-Miklos (2019) argues that problem-solving and knowledge acquisition are processes that have much in common and are often discussed as related phenomena. As a result, contradictions between each of these theories arise. This context is based on the understanding of what knowledge is since the ability to use accumulated cognitive skills may be interpreted from the perspectives of both intelligence and a set of problem-solving attainments.

According to Servant-Miklos (2019), “both approaches are the product of the Cognitive Revolution in psychology,” but their differences presuppose the ability to use knowledge (p. 622). As a justification, the author draws attention to the generation of the late 20th century and notes that the emergence of computer technology has eliminated the urgent need to utilize knowledge for problem-solving (Servant-Miklos, 2019). Therefore, this interpretation of the theoretical foundations is the argument in favor of the approach in which problem-solving skills in cognitive psychology prevail over knowledge acquisition.

At the same time, despite conflicting positions regarding problem-solving and knowledge acquisition, evaluating these concepts from a critical perspective allows finding the relationship between them. Lieto et al. (2019) consider problem-solving through the prism of the goal-directed approach when the final task is the main one to achieve through overcoming appropriate obstacles. In this regard, the researchers consider this process “is based on the availability of novel, additional, knowledge that can be then used to select novel sub-goals or novel operations” (Lieto et al., 2019, p. 305).

In other words, an algorithm that involves searching for effective solutions and methods to overcome specific problems is inextricably linked with the acquisition of new knowledge that will subsequently be transformed into experience. According to Servant-Miklos (2019), the psychology of learning is built on the constant processing of information that comes through communication and personal drive to overcome barriers. The better the information studied, the higher the likelihood that the problem-solving process will be faster and more successful. Therefore, despite the criticism and differentiation of the concepts of problem-solving and knowledge acquisition, these two models are rather interrelated than separated.

Application of Problem-Solving to Other Fields

Problem-solving is a concept that finds its application not only in cognitive psychology but also in other fields. For instance, Xiong and Proctor (2018) state that this model fits into the area of educational psychology.

This is an approach that allows building the educational process based on the search for evidence and justification. In modern pedagogical practice, this technique is widely used because the trend to stimulate student activity through the development of critical thinking involves the ability to solve various problems on one’s own. Kovacs and Conway (2019), in turn, draw attention to differential psychology as the area in which problem-solving can be actively applied. In this field, the search for arguments for obtaining reasonable alternative conclusions shapes the basis of the cognitive process. As a result, the more successful an individual utilizes problem-solving skills, the higher the likelihood of the objective assessment of specific phenomena or challenges to overcome.

Problem-solving, as a methodological concept, is used not only in various branches of psychology but also in other areas where the assessment of cognitive processes is indirect. For instance, Kovacs and Conway (2019) analyze this approach for practical purposes and provide an example of recruiting tests used in hiring employees. Job applicants, as a rule, are asked to answer questions related to the assessment of individual situations, and the use of critical thinking skills to apply problem-solving attainments is a common approach.

Another area in which this concept is applied is computer technology. As Xiong and Proctor (2018) note, modern AI algorithms are built due to the methods that aim to train AI to overcome various problems through problem-solving. Advances in this area may prove that acquired information accumulated through knowledge is an objective and effective methodology to overcome barriers. Computers combine and synthesize different data, thereby transforming them into efficient problem-solving algorithms. Therefore, this concept finds its application in various fields as a necessary and relevant technique.

Problem-solving is a subject of study not only in cognitive psychology but also in other areas since this concept characterizes the individual from different perspectives and distinguishes people from other living beings. Applying critical thinking and combining experience with knowledge shape the basis of this model. Despite the existing criticism, the separation of problem-solving from knowledge acquisition is irrelevant because these theories are interrelated.

Utilizing appropriate skills in computer technology confirms that the collection and accumulation of valuable information is the core of the development of problem-solving skills. Therefore, further research on this topic can be devoted to a deeper analysis of such attainments in the technology industry, in particular, artificial intelligence, to identify basic algorithms and compare them with those in humans.

Brace, N. (2014). Thinking and problem-solving. In D. Groome (Ed.), An introduction to cognitive psychology: Processes and disorders (3 rd ed., pp. 241-271). Psychology Press.

Cognitive psychology and cognitive neuroscience/reasoning and decision making . (2020). WikiBooks. Web.

Kolbert, E. (2017). Why facts don’t change our minds . The New Yorker . Web.

Kovacs, K., & Conway, A. R. (2019). A unified cognitive/differential approach to human intelligence: Implications for IQ testing. Journal of Applied Research in Memory and Cognition , 8 (3), 255-272. Web.

Lieto, A., Perrone, F., Pozzato, G. L., & Chiodino, E. (2019). Beyond subgoaling: A dynamic knowledge generation framework for creative problem solving in cognitive architectures . Cognitive Systems Research , 58 , 305-316. Web.

Servant-Miklos, V. F. (2019). Problem solving skills versus knowledge acquisition: The historical dispute that split problem-based learning into two camps . Advances in Health Sciences Education , 24 (3), 619-635. Web.

Xiong, A., & Proctor, R. W. (2018). Information processing: The language and analytical tools for cognitive psychology in the information age. Frontiers in Psychology , 9 , 1270. Web.

Cite this paper

Select style

  • Chicago (A-D)
  • Chicago (N-B)

PsychologyWriting. (2023, September 15). Problem-Solving in Cognitive Psychology. Retrieved from https://psychologywriting.com/problem-solving-in-cognitive-psychology/

PsychologyWriting. (2023, September 15). Problem-Solving in Cognitive Psychology. https://psychologywriting.com/problem-solving-in-cognitive-psychology/

"Problem-Solving in Cognitive Psychology." PsychologyWriting , 15 Sept. 2023, psychologywriting.com/problem-solving-in-cognitive-psychology/.

PsychologyWriting . (2023) 'Problem-Solving in Cognitive Psychology'. 15 September.

PsychologyWriting . 2023. "Problem-Solving in Cognitive Psychology." September 15, 2023. https://psychologywriting.com/problem-solving-in-cognitive-psychology/.

1. PsychologyWriting . "Problem-Solving in Cognitive Psychology." September 15, 2023. https://psychologywriting.com/problem-solving-in-cognitive-psychology/.

Bibliography

PsychologyWriting . "Problem-Solving in Cognitive Psychology." September 15, 2023. https://psychologywriting.com/problem-solving-in-cognitive-psychology/.

  • Self-Psychology in Modern Psychoanalytic Theory
  • “Switching Between Lift and Use Grasp Actions”: The Switch Costs
  • Social and Emotional Intelligence
  • Cognitive Psychology and Learning: The Stroop Test
  • Perception and Critical Thinking
  • Anxiety Disorders: Cognitive Behavioral Therapy
  • Grieving Process, Stages, and Wolterstorff’s Reflections
  • Alfred Bandura’s Self-Efficacy Theory
  • Why Is the Self Important in Understanding and Treating Social Phobia?
  • Thinking. “Blink” Book by Malcolm Gladwell

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

problem solving in cognitive psychology

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

problem solving in cognitive psychology

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List

Logo of jintell

Analysing Complex Problem-Solving Strategies from a Cognitive Perspective: The Role of Thinking Skills

1 MTA-SZTE Digital Learning Technologies Research Group, Center for Learning and Instruction, University of Szeged, 6722 Szeged, Hungary

Gyöngyvér Molnár

2 MTA-SZTE Digital Learning Technologies Research Group, Institute of Education, University of Szeged, 6722 Szeged, Hungary; uh.degezs-u.yspde@ranlomyg

Associated Data

The data used to support the findings cannot be shared at this time as it also forms part of an ongoing study.

Complex problem solving (CPS) is considered to be one of the most important skills for successful learning. In an effort to explore the nature of CPS, this study aims to investigate the role of inductive reasoning (IR) and combinatorial reasoning (CR) in the problem-solving process of students using statistically distinguishable exploration strategies in the CPS environment. The sample was drawn from a group of university students (N = 1343). The tests were delivered via the eDia online assessment platform. Latent class analyses were employed to seek students whose problem-solving strategies showed similar patterns. Four qualitatively different class profiles were identified: (1) 84.3% of the students were proficient strategy users, (2) 6.2% were rapid learners, (3) 3.1% were non-persistent explorers, and (4) 6.5% were non-performing explorers. Better exploration strategy users showed greater development in thinking skills, and the roles of IR and CR in the CPS process were varied for each type of strategy user. To sum up, the analysis identified students’ problem-solving behaviours in respect of exploration strategy in the CPS environment and detected a number of remarkable differences in terms of the use of thinking skills between students with different exploration strategies.

1. Introduction

Problem solving is part and parcel of our daily activities, for instance, in determining what to wear in the morning, how to use our new electronic devices, how to reach a restaurant by public transport, how to arrange our schedule to achieve the greatest work efficiency and how to communicate with people in a foreign country. In most cases, it is essential to solve the problems that recur in our study, work and daily lives. These situations require problem solving. Generally, problem solving is the thinking that occurs if we want “to overcome barriers between a given state and a desired goal state by means of behavioural and/or cognitive, multistep activities” ( Frensch and Funke 1995, p. 18 ). It has also been considered as one of the most important skills for successful learning in the 21st century. This study focuses on one specific kind of problem solving, complex problem solving (CPS). (Numerous other terms are also used ( Funke et al. 2018 ), such as interactive problem solving ( Greiff et al. 2013 ; Wu and Molnár 2018 ), and creative problem solving ( OECD 2010 ), etc.).

CPS is a transversal skill ( Greiff et al. 2014 ), operating several mental activities and thinking skills (see Molnár et al. 2013 ). In order to explore the nature of CPS, some studies have focused on detecting its component skills ( Wu and Molnár 2018 ), whereas others have analysed students’ behaviour during the problem-solving process ( Greiff et al. 2018 ; Wu and Molnár 2021 ). This study aims to link these two fields by investigating the role of thinking skills in learning by examining students’ use of statistically distinguishable exploration strategies in the CPS environment.

1.1. Complex Problem Solving: Definition, Assessment and Relations to Intelligence

According to a widely accepted definition proposed by Buchner ( 1995 ), CPS is “the successful interaction with task environments that are dynamic (i.e., change as a function of users’ intervention and/or as a function of time) and in which some, if not all, of the environment’s regularities can only be revealed by successful exploration and integration of the information gained in that process” ( Buchner 1995, p. 14 ). A CPS process is split into two phases, knowledge acquisition and knowledge application. In the knowledge acquisition (KAC) phase of CPS, the problem solver understands the problem itself and stores the acquired information ( Funke 2001 ; Novick and Bassok 2005 ). In the knowledge application (KAP) phase, the problem solver applies the acquired knowledge to bring about the transition from a given state to a goal state ( Novick and Bassok 2005 ).

Problem solving, especially CPS, has frequently been compared or linked to intelligence in previous studies (e.g., Beckmann and Guthke 1995 ; Stadler et al. 2015 ; Wenke et al. 2005 ). Lotz et al. ( 2017 ) observed that “intelligence and [CPS] are two strongly overlapping constructs” (p. 98). There are many similarities and commonalities that can be detected between CPS and intelligence. For instance, CPS and intelligence share some of the same key features, such as the integration of information ( Stadler et al. 2015 ). Furthermore, Wenke et al. ( 2005 ) stated that “the ability to solve problems has featured prominently in virtually every definition of human intelligence” (p. 9); meanwhile, from the opposite perspective, intelligence has also been considered as one of the most important predictors of the ability to solve problems ( Wenke et al. 2005 ). Moreover, the relation between CPS and intelligence has also been discussed from an empirical perspective. A meta-analysis conducted by Stadler et al. ( 2015 ) selected 47 empirical studies (total sample size N = 13,740) which focused on the correlation between CPS and intelligence. The results of their analysis confirmed that a correlation between CPS and intelligence exists with a moderate effect size of M(g) = 0.43.

Due to the strong link between CPS and intelligence, assessments of these two domains have been connected and have overlapped to a certain extent. For instance, Beckmann and Guthke ( 1995 ) observed that some of the intelligence tests “capture something akin to an individual’s general ability to solve problems (e.g., Sternberg 1982 )” (p. 184). Nowadays, some widely used CPS assessment methods are related to intelligence but still constitute a distinct construct ( Schweizer et al. 2013 ), such as the MicroDYN approach ( Greiff and Funke 2009 ; Greiff et al. 2012 ; Schweizer et al. 2013 ). This approach uses the minimal complex system to simulate simplistic, artificial but still complex problems following certain construction rules ( Greiff and Funke 2009 ; Greiff et al. 2012 ).

The MicroDYN approach has been widely employed to measure problem solving in a well-defined problem context (i.e., “problems have a clear set of means for reaching a precisely described goal state”, Dörner and Funke 2017, p. 1 ). To complete a task based on the MicroDYN approach, the problem solver engages in dynamic interaction with the task to acquire relevant knowledge. It is not possible to create this kind of test environment with the traditional paper-and-pencil-based method. Therefore, it is currently only possible to conduct a MicroDYN-based CPS assessment within the computer-based assessment framework. In the context of computer-based assessment, the problem-solvers’ operations were recorded and logged by the assessment platform. Thus, except for regular achievement-focused result data, logfile data are also available for analysis. This provides the option of exploring and monitoring problem solvers’ behaviour and thinking processes, specifically, their exploration strategies, during the problem-solving process (see, e.g., Chen et al. 2019 ; Greiff et al. 2015a ; Molnár and Csapó 2018 ; Molnár et al. 2022 ; Wu and Molnár 2021 ).

Problem solving, in the context of an ill-defined problem (i.e., “problems have no clear problem definition, their goal state is not defined clearly, and the means of moving towards the (diffusely described) goal state are not clear”, Dörner and Funke 2017, p. 1), involved a different cognitive process than that in the context of a well-defined problem ( Funke 2010 ; Schraw et al. 1995 ), and it cannot be measured with the MicroDYN approach. The nature of ill-defined problem solving has been explored and discussed in numerous studies (e.g., Dörner and Funke 2017 ; Hołda et al. 2020 ; Schraw et al. 1995 ; Welter et al. 2017 ). This will not be discussed here as this study focuses on well-defined problem solving.

1.2. Inductive and Combinatorial Reasoning as Component Skills of Complex Problem Solving

Frensch and Funke ( 1995 ) constructed a theoretical framework that summarizes the basic components of CPS and the interrelations among the components. The framework contains three separate components: problem solver, task and environment. The impact of the problem solver is mainly relevant to three main categories, which are memory contents, dynamic information processing and non-cognitive variables. Some thinking skills have been reported to play an important role in dynamic information processing. We can thus describe them as component skills of CPS. Inductive reasoning (IR) and combinatorial reasoning (CR) are the two thinking skills that have been most frequently discussed as component skills of CPS.

IR is the reasoning skill that has been covered most commonly in the literature. Currently, there is no universally accepted definition. Molnár et al. ( 2013 ) described it as the cognitive process of acquiring general regularities by generalizing single and specific observations and experiences, whereas Klauer ( 1990 ) defined it as the discovery of regularities that relies upon the detection of similarities and/or dissimilarities as concerns attributes of or relations to or between objects. Sandberg and McCullough ( 2010 ) provided a general conclusion of the definitions of IR: it is the process of moving from the specific to the general.

Csapó ( 1997 ) pointed out that IR is a basic component of thinking and that it forms a central aspect of intellectual functioning. Some studies have also discussed the role of IR in a problem-solving environment. For instance, Mayer ( 1998 ) stated that IR will be applied in information processing during the process of solving general problems. Gilhooly ( 1982 ) also pointed out that IR plays a key role in some activities in the problem-solving process, such as hypothesis generation and hypothesis testing. Moreover, the influence of IR on both KAC and KAP has been analysed and demonstrated in previous studies ( Molnár et al. 2013 ).

Empirical studies have also provided evidence that IR and CPS are related. Based on the results of a large-scale assessment (N = 2769), Molnár et al. ( 2013 ) showed that IR significantly correlated with 9–17-year-old students’ domain-general problem-solving achievement (r = 0.44–0.52). Greiff et al. ( 2015b ) conducted a large-scale assessment project (N = 2021) in Finland to explore the links between fluid reasoning skills and domain-general CPS. The study measured fluid reasoning as a two-dimensional model which consisted of deductive reasoning and scientific reasoning and included inductive thinking processes ( Greiff et al. 2015b ). The results drawing on structural equation modelling indicated that fluid reasoning which was partly based on IR had significant and strong predictive effects on both KAC (β = 0.51) and KAP (β = 0.55), the two phases of problem solving. Such studies have suggested that IR is one of the component skills of CPS.

According to Adey and Csapó ’s ( 2012 ) definition, CR is the process of creating complex constructions out of a set of given elements that satisfy the conditions explicitly given in or inferred from the situation. In this process, some cognitive operations, such as combinations, arrangements, permutations, notations and formulae, will be employed ( English 2005 ). CR is one of the basic components of formal thinking ( Batanero et al. 1997 ). The relationship between CR and CPS has frequently been discussed. English ( 2005 ) demonstrated that CR has an essential meaning in several types of problem situations, such as problems requiring the systematic testing of alternative solutions. Moreover, Newell ( 1993 ) pointed out that CR is applied in some key activities of problem-solving information processing, such as strategy generation and application. Its functions include, but are not limited to, helping problem solvers to discover relationships between certain elements and concepts, promoting their fluency of thinking when they are considering different strategies ( Csapó 1999 ) and identifying all possible alternatives ( OECD 2014 ). Moreover, Wu and Molnár ’s ( 2018 ) empirical study drew on a sample (N = 187) of 11–13-year-old primary school students in China. Their study built a structural equation model between CPS, IR and CR, and the result indicated that CR showed a strong and statistically significant predictive power for CPS (β = 0.55). Thus, the results of the empirical study also support the argument that CR is one of the component skills of CPS.

1.3. Behaviours and Strategies in a Complex Problem-Solving Environment

Wüstenberg et al. ( 2012 ) stated that the creation and implementation of strategic exploration are core actions of the problem-solving task. Exploring and generating effective information are key to successfully solving a problem. Wittmann and Hattrup ( 2004 ) illustrated that “riskier strategies [create] a learning environment with greater opportunities to discover and master the rules and boundaries [of a problem]” (p. 406). Thus, when gathering information about a complex problem, there may be differences between exploration strategies in terms of efficacy. The MicroDYN scenarios, a simplification and simulation of the real-world problem-solving context, will also be influenced by the adoption and implementation of exploration strategies.

The effectiveness of the isolated variation strategy (or “Vary-One-Thing-At-A-Time” strategy—VOTAT; Vollmeyer et al. 1996 ) in a CPS environment has been hotly debated ( Chen et al. 2019 ; Greiff et al. 2018 ; Molnár and Csapó 2018 ; Molnár et al. 2022 ; Wu and Molnár 2021 ; Wüstenberg et al. 2014 ). To use the VOTAT strategy, a problem solver “systematically varies only one input variable, whereas the others remain unchanged. This way, the effect of the variable that has just been changed can be observed directly by monitoring the changes in the output variables” ( Molnár and Csapó 2018, p. 2 ). Understanding and using VOTAT effectively is the foundation for developing more complex strategies for coordinating multiple variables and the basis for some phases of scientific thinking (i.e., inquiry, analysis, inference and argument; Kuhn 2010 ; Kuhn et al. 1995 ).

Some previous studies have indicated that students who are able to apply VOTAT are more likely to achieve higher performance in a CPS assessment ( Greiff et al. 2018 ), especially if the problem is a well-defined minimal complex system (such as MicroDYN) ( Fischer et al. 2012 ; Molnár and Csapó 2018 ; Wu and Molnár 2021 ). For instance, Molnár and Csapó ( 2018 ) conducted an empirical study to explore how students’ exploration strategies influence their performance in an interactive problem-solving environment. They measured a group (N = 4371) of 3rd- to 12th-grade (aged 9–18) Hungarian students’ problem-solving achievement and modelled students’ exploration strategies. This result confirmed that students’ exploration strategies influence their problem-solving performance. For example, conscious VOTAT strategy users proved to be the best problem-solvers. Furthermore, other empirical studies (e.g., Molnár et al. 2022 ; Wu and Molnár 2021 ) achieved similar results, thus confirming the importance of VOTAT in a MicroDYN-based CPS environment.

Lotz et al. ( 2017 ) illustrated that effective use of VOTAT is associated with higher levels of intelligence. Their study also pointed out that intelligence has the potential to facilitate successful exploration behaviour. Reasoning skills are an important component of general intelligence. Based on Lotz et al. ’s ( 2017 ) statements, the roles IR and CR play in the CPS process might vary due to students’ different strategy usage patterns. However, there is still a lack of empirical studies in this regard.

2. Research Aims and Questions

Numerous studies have explored the nature of CPS, some of them discussing and analysing it from behavioural or cognitive perspectives. However, there have barely been any that have merged these two perspectives. From the cognitive perspective, this study explores the role of thinking skills (including IR and CR) in the cognition process of CPS. From the behavioural perspective, the study focuses on students’ behaviour (i.e., their exploration strategy) in the CPS assessment process. More specifically, the research aims to fill this gap and examine students’ use of statistically distinguishable exploration strategies in CPS environments and to detect the connection between the level of students’ thinking skills and their behaviour strategies in the CPS environment. The following research questions were thus formed.

  • (RQ1) What exploration strategy profiles characterise the various problem-solvers at the university level?
  • (RQ2) Can developmental differences in CPS, IR and CR be detected among students with different exploration strategy profiles?
  • (RQ3) What are the similarities and differences in the roles IR and CR play in the CPS process as well as in the two phases of CPS (i.e., KAC and KAP) among students with different exploration strategy profiles?

3.1. Participants and Procedure

The sample was drawn from one of the largest universities in Hungary. Participation was voluntary, but students were able to earn one course credit for taking part in the assessment. The participants were students who had just started their studies there (N = 1671). 43.4% of the first-year students took part in the assessment. 50.9% of the participants were female, and 49.1% were male. We filtered the sample and excluded those who had more than 80% missing data on any of the tests. After the data were cleaned, data from 1343 students were available for analysis. The test was designed and delivered via the eDia online assessment system ( Csapó and Molnár 2019 ). The assessment was held in the university ICT room and divided into two sessions. The first session involved the CPS test, whereas the second session entailed the IR and CR tests. Each session lasted 45 min. The language of the tests was Hungarian, the mother tongue of the students.

3.2. Instruments

3.2.1. complex problem solving (cps).

The CPS assessment instrument adopted the MicroDYN approach. It contains a total of twelve scenarios, and each scenario consisted of two items (one item in the KAC phase and one item in the KAP phase in each problem scenario). Twelve KAC items and twelve KAP items were therefore delivered on the CPS test for a total of twenty-four items. Each scenario has a fictional cover story. For instance, students found a sick cat in front of their house, and they were expected to feed the cat with two different kinds of cat food to help it recover.

Each item contains up to three input and three output variables. The relations between the input and output variables were formulated with linear structural equations ( Funke 2001 ). Figure 1 shows a MicroDYN sample structure containing three input variables (A, B and C), three output variables (X, Y and Z) and a number of possible relations between the variables. The complexity of the item was defined by the number of input and output variables, and the number of relations between the variables. The test began with the item with the lowest complexity. The complexity of each item gradually increased as the test progressed.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g001.jpg

A typical MicroDYN structure with three input variables and three output variables ( Greiff and Funke 2009 ).

The interface of each item displays the value of each variable in both numerical and figural forms (See Figure 2 ). Each of the input variables has a controller, which makes it possible to vary and set the value between +2 (+ +) and −2 (− −). To operate the system, students need to click the “+” or “−” button or use the slider directly to select the value they want to be added to or subtracted from the current value of the input variable. After clicking the “Apply” button in the interface, the input variables will add or subtract the selected value, and the output variables will show the corresponding changes. The history of the values for the input and output variables within the same problem scenario is displayed on screen. If students want to withdraw all the changes and set all the variables to their original status, they can click the “Reset” button.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g002.jpg

Screenshot of the MicroDYN item Cat—first phase (knowledge acquisition). (The items were administered in Hungarian.)

In the first phase of the problem-solving process, the KAC phase, students are asked to interact with the system by changing the value of the input variables and observing and analysing the corresponding changes in the output variables. They are then expected to determine the relationship between the input and output variables and draw it in the form of (an) arrow(s) on the concept map at the bottom of the interface. To avoid item dependence in the second phase of the problem-solving process, the students are provided with a concept map during the KAP phase (see Figure 3 ), which shows the correct connections between the input and output variables. The students are expected to interact with the system by manipulating the input variables to make the output variables reach the given target values in four steps or less. That is, they cannot click on the “Apply” button more than four times. The first phase had a 180 s time limit, whereas the second had a 90 s time limit.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g003.jpg

Screenshot of the MicroDYN item Cat—second phase (knowledge application). (The items were administered in Hungarian).

3.2.2. Inductive Reasoning (IR)

The IR instrument (see Figure 4 ) was originally designed and developed in Hungary ( Csapó 1997 ). In the last 25 years, the instrument has been further developed and scaled for a wide age range ( Molnár and Csapó 2011 ). In addition, figural items have been added, and the assessment method has evolved from paper-and-pencil to computer-based ( Pásztor 2016 ). Currently, the instrument is widely employed in a number of countries (see, e.g., Mousa and Molnár 2020 ; Pásztor et al. 2018 ; Wu et al. 2022 ; Wu and Molnár 2018 ). In the present study, four types of items were included after test adaptation: figural series, figural analogies, number analogies and number series. Students were expected to ascertain the correct relationship between the given figures and numbers and select a suitable figure or number as their answer. Students used the drag-and-drop operation to provide their answers. In total, 49 inductive reasoning items were delivered to the participating students.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g004.jpg

Sample items for the IR test. (The items were administered in Hungarian.).

3.2.3. Combinatorial Reasoning (CR)

The CR instrument (see Figure 5 ) was originally designed by Csapó ( 1988 ). The instrument was first developed in paper-and-pencil format and then modified for computer use ( Pásztor and Csapó 2014 ). Each item contained figural or verbal elements and a clear requirement for combing through the elements. Students were asked to list every single combination based on a given rule they could find. For the figural items, students provided their answers using the drag-and-drop operation; for the verbal items, they were asked to type their answers in a text box provided on screen. The test consisted of eight combinatorial reasoning items in total.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g005.jpg

Sample item for the CR test. (The items were administered in Hungarian).

3.3. Scoring

Students’ performance was automatically scored via the eDia platform. Items on the CPS and IR tests were scored dichotomously. In the first phase (KAC) of the CPS test, if a student drew all the correct relations on the concept map provided on screen within the given timeframe, his/her performance was assigned a score of 1 or otherwise a score of 0. In the second phase (KAP) of the CPS test, if the student successfully reached the given target values of the output variables by manipulating the level of the input variables within no more than four steps and the given timeframe, then his/her performance earned a score of 1 or otherwise a score of 0. On the IR test items, if a student selected the correct figure or number as his/her answer, then he or she received a score of 1; otherwise, the score was 0.

Students’ performance on the CR test items was scored according to a special J index, which was developed by Csapó ( 1988 ). The J index ranges from 0 to 1, where 1 means that the student provided all the correct combinations without any redundant combinations on the task. The formula for computing the J index is the following:

x stands for the number of correct combinations in the student’s answer,

T stands for the number of all possible correct combinations, and

y stands for the number of redundant combinations in the student’s answer.

Furthermore, according to Csapó ’s ( 1988 ) design, if y is higher than T, then the J index will be counted as 0.

3.4. Coding and Labelling the Logfile Data

Beyond concrete answer data, students’ interaction and manipulation behaviour were also logged in the assessment system. This made it possible to analyse students’ exploration behaviour in the first phase of the CPS process (KAC phase). Toward this aim, we adopted a labelling system developed by Molnár and Csapó ( 2018 ) to transfer the raw logfile data to structured data files for analysis. Based on the system, each trial (i.e., the sum of manipulations within the same problem scenario which was applied and tested by clicking the “Apply” button) was modelled as a single data entity. The sum of these trials within the same problem was defined as a strategy. In our study, we only consider the trials which were able to provide useful and new information for the problem-solvers, whereas the redundant or operations trials were excluded.

In this study, we analysed students’ trials to determine the extent to which they used the VOTAT strategy: fully, partially or not at all. This strategy is the most successful exploration strategy for such problems; it is the easiest to interpret and provides direct information about the given variable without any mediation effects ( Fischer et al. 2012 ; Greiff et al. 2018 ; Molnár and Csapó 2018 ; Wüstenberg et al. 2014 ; Wu and Molnár 2021 ). Based on the definition of VOTAT noted in Section 1.3 , we checked students’ trials to ascertain if they systematically varied one input variable while keeping the others unchanged, or applied a different, less successful strategy. We considered the following three types of trials:

  • “Only one single input variable was manipulated, whose relationship to the output variables was unknown (we considered a relationship unknown if its effect cannot be known from previous settings), while the other variables were set at a neutral value like zero […]
  • One single input variable was changed, whose relationship to the output variables was unknown. The others were not at zero, but at a setting used earlier. […]
  • One single input variable was changed, whose relationship to the output variables was unknown, and the others were not at zero; however, the effect of the other input variable(s) was known from earlier settings. Even so, this combination was not attempted earlier” ( Molnár and Csapó 2018, p. 8 )

We used the numbers 0, 1 and 2 to distinguish the level of students’ use of the most effective exploration strategy (i.e., VOTAT). If a student applied one or more of the above trials for every input variable within the same scenario, we considered that they had used the full VOTAT strategy and labelled this behaviour 2. If a student had only employed VOTAT on some but not all of the input variables, we concluded that they had used a partial VOTAT strategy for that problem scenario and labelled it 1. If a student had used none of the trials noted above in their problem exploration, then we determined that they had not used VOTAT at all and thus gave them a label of 0.

3.5. Data Analysis Plan

We used LCA (latent class analysis) to explore students’ exploration strategy profiles. LCA is a latent variable modelling approach that can be used to identify unmeasured (latent) classes of samples with similarly observed variables. LCA has been widely used in analysing logfile data for CPS assessment and in exploring students’ behaviour patterns (see, e.g., Gnaldi et al. 2020 ; Greiff et al. 2018 ; Molnár et al. 2022 ; Molnár and Csapó 2018 ; Mustafić et al. 2019 ; Wu and Molnár 2021 ). The scores for the use of VOTAT in the KAC phase (0, 1, 2; see Section 3.4 ) were used for the LCA analysis. We used Mplus ( Muthén and Muthén 2010 ) to run the LCA analysis. Several indices were used to measure the model fit: AIC (Akaike information criterion), BIC (Bayesian information criterion) and aBIC (adjusted Bayesian information criterion). With these three indicators, lower values indicate a better model fit. Entropy (ranging from 0 to 1, with values close to 1 indicating high certainty in the classification). The Lo–Mendell–Rubin adjusted likelihood ratio was used to compare the model containing n latent classes with the model containing n − 1 latent classes, and the p value was the indicator for whether a significant difference could be detected ( Lo et al. 2001 ). The results of the Lo–Mendell–Rubin adjusted likelihood ratio analysis were used to decide the correct number of latent classes in LCA models.

ANOVA was used to analyse the performance differences for CPS, IR and CR across the students from the different class profiles. The analysis was run using SPSS. A path analysis (PA) was employed in the structural equation modelling (SEM) framework to investigate the roles of CR and IR in CPS and the similarities and differences across the students from the different exploration strategy profiles. The PA models were carried out with Mplus. The Tucker–Lewis index (TLI), the comparative fit index (CFI) and the root-mean-square error of approximation (RMSEA) were used as indicators for the model fit. A TLI and CFI larger than 0.90 paired with a RMSEA less than 0.08 are commonly considered as an acceptable model fit ( van de Schoot et al. 2012 ).

4.1. Descriptive Results

All three tests showed good reliability (Cronbach’s α: CPS: 0.89; IR: 0.87; CR: 0.79). Furthermore, the two sub-dimensions of the CPS test, KAC and KAP, also showed satisfactory reliability (Cronbach’s α: KAC: 0.86; KAP: 0.78). The tests thus proved to be reliable. The means and standard deviations of students’ performance (in percentage) on each test are provided in Table 1 .

The means and standard deviations of students’ performance on each test.

4.2. Four Qualitatively Different Exploration Strategy Profiles Can Be Distinguished in CPS

Based on the labelled logfile data for CPS, we applied latent class analyses to identify the behaviour patterns of the students in the exploration phase of the problem-solving process. The model fits for the LCA analysis are listed in Table 2 . Compared with the 2 or 3 latent class models, the 4 latent class model has a lower AIC, BIC and aBIC, and the likelihood ratio statistical test (the Lo–Mendell–Rubin adjusted likelihood ratio test) confirmed it has a significantly better model fit. The 5 and 6 latent class models did not show a better model fit than the 4 latent class model. Therefore, based on the results, four qualitatively different exploration strategy profiles can be distinguished, which covered 96% of the students.

Fit indices for latent class analyses.

The patterns for the four qualitatively different exploration strategy profiles are shown in Figure 6 . In total, 84.3% of the students were proficient exploration strategy users, who were able to use VOTAT in each problem scenario independent of its difficulty level (represented by the red line in Figure 5 ). In total, 6.2% of the students were rapid learners. They were not able to apply VOTAT at the beginning of the test on the easiest problems but managed to learn quickly, and, after a rapid learning curve by the end of the test, they reached the level of proficient exploration strategy users, even though the problems became much more complex (represented by the blue line). In total, 3.1% of the students proved to be non-persistent explorers, and they employed VOTAT on the easiest problems but did not transfer this knowledge to the more complex problems. Finally, they were no longer able to apply VOTAT when the complexity of the problems increased (represented by the green line). In total, 6.5% of the students were non-performing explorers; they barely used any VOTAT strategy during the whole test (represented by the pink line) independent of problem complexity.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g006.jpg

Four qualitatively different exploration strategy profiles.

4.3. Better Exploration Strategy Users Showed Better Performance in Reasoning Skills

Students with different exploration strategy profiles showed different kinds of performance in each reasoning skill under investigation. Results (see Table 3 ) showed that more proficient strategy users tended to have higher achievement in all the domains assessed as well as in the two sub-dimensions in CPS (i.e., KAC and KAP; ANOVA: CPS: F(3, 1339) = 187.28, p < 0.001; KAC: F(3, 1339) = 237.15, p < 0.001; KAP: F(3, 1339) = 74.91, p < 0.001; IR: F(3, 1339) = 48.10, p < 0.001; CR: F(3, 1339) = 28.72, p < 0.001); specifically, students identified as “proficient exploration strategy users” achieved the highest level on the reasoning skills tests independent of the domains. On average, they were followed by rapid learners, non-persistent explorers and, finally, non-performing explorers. Tukey’s post hoc tests revealed more details on the performance differences of students with different exploration profiles in each of the domains being measured. Proficient strategy users proved to be significantly more skilled in each of the reasoning domains. They were followed by rapid learners, who outperformed non-persistent explorers and non-performing explorers in CPS. In the domains of IR and CR, there were no achievement differences between rapid learners and non-persistent explorers, who significantly outperformed non-performing strategy explorers.

Students’ performance on each test—grouped according to the different exploration strategy profiles.

4.4. The Roles of IR and CR in CPS and Its Processes Were Different for Each Type of Exploration Strategy User

Path analysis was used to explore the predictive power of IR and CR for CPS and its processes, knowledge acquisition and knowledge application, for each group of students with different exploration strategy profiles. That is, four path analysis models were built to indicate the predictive power of IR and CR for CPS (see Figure 7 ), and another four path analyses models were developed to monitor the predictive power of IR and CR for the two empirically distinguishable phases of CPS (i.e., KAC and KAP) (see Figure 8 ). All eight models had good model fits, the fit indices TLI and CFI were above 0.90, and RMSEA was less than 0.08.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g007.jpg

Path analysis models (with CPS, IR and CR) for each type of strategy user; * significant at 0.05 ( p   <  0.05); ** significant at 0.01 ( p   <  0.01); N.S.: no significant effect can be found.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g008.jpg

Path analysis models (with KAC, KAP, IR and CR) for each type of strategy user; * significant at 0.05 ( p  <  0.05); ** significant at 0.01 ( p  <  0.01); N.S.: no significant effect can be found.

Students’ level of IR significantly predicted their level of CPS in all four path analysis models independent of their exploration strategy profile ( Figure 7 ; proficient strategy users: β = 0.432, p < 0.01; rapid learners: β = 0.350, p < 0.01; non-persistent explorers: β = 0.309, p < 0.05; and non-performing explorers: β = 0.386, p < 0.01). This was not the case for CR, which only proved to have predictive power for CPS among proficient strategy users (β = 0.104, p < 0.01). IR and CR were significantly correlated in all four models.

After examining the roles of IR and CR in the CPS process, we went further to explore the roles of these two reasoning skills in the distinguishable phases of CPS. The path analysis models ( Figure 8 ) showed that the predictive power of IR and CR for KAC and KAP was varied in each group. Levels of IR and CR among non-persistent explorers and non-performing explorers failed to predict their achievement in the KAC phase of the CPS process. Moreover, rapid learners’ level of IR significantly predicted their achievement in the KAC phase (β = 0.327, p < 0.01), but their level of CR did not have the same predictive power. Furthermore, the proficient strategy users’ levels of both reasoning skills had significant predictive power for KAC (IR: β = 0.363, p < 0.01; CR: β = 0.132, p < 0.01). In addition, in the KAP phase of the CPS problems, IR played a significant role for all types of strategy users, although with different power (proficient strategy users: β = 0.408, p < 0.01; rapid learners: β = 0.339, p < 0.01; non-persistent explorers: β = 0.361, p < 0.01; and non-performing explorers: β = 0.447, p < 0.01); by contrast, CR did not have significant predictive power for the KAP phase in any of the models.

5. Discussion

The study aims to investigate the role of IR and CR in CPS and its phases among students using statistically distinguishable exploration strategies in different CPS environments. We examined 1343 Hungarian university students and assessed their CPS, IR and CR skills. Both achievement data and logfile data were used in the analysis. The traditional achievement indicators formed the foundation for analysing the students’ CPS, CR and IR performance, whereas process data extracted from logfile data were used to explore students’ exploration behaviour in various CPS environments.

Four qualitatively different exploration strategy profiles were distinguished: proficient strategy users, rapid learners, non-persistent explorers and non-performing explorers (RQ1). The four profiles were consistent with the result of another study conducted at university level (see Molnár et al. 2022 ), and the frequencies of these four profiles in these two studies were very similar. The two studies therefore corroborate and validate each other’s results. The majority of the participants were identified as proficient strategy users. More than 80% of the university students were able to employ effective exploration strategies in various CPS environments. Of the remaining students, some performed poorly in exploration strategy use in the early part of the test (rapid learners), some in the last part (non-persistent explorers) and some throughout the test (non-performing explorers). However, students with these three exploration strategy profiles only constituted small portions of the total sample (with proportions ranging from 3.1% to 6.5%). The university students therefore exhibited generally good performance in terms of exploration strategy use in a CPS environment, especially compared with previous results among younger students (e.g., primary school students, see Greiff et al. 2018 ; Wu and Molnár 2021 ; primary to secondary students, see Molnár and Csapó 2018 ).

The results have indicated that better exploration strategy users achieved higher CPS performance and had better development levels of IR and CR (RQ2). First, the results have confirmed the importance of VOTAT in a CPS environment. This finding is consistent with previous studies (e.g., Greiff et al. 2015a ; Molnár and Csapó 2018 ; Mustafić et al. 2019 ; Wu and Molnár 2021 ). Second, the results have confirmed that effective use of VOTAT is strongly tied to the level of IR and CR development. Reasoning forms an important component of human intelligence, and the level of development in reasoning was an indicator of the level of intelligence ( Klauer et al. 2002 ; Sternberg and Kaufman 2011 ). Therefore, this finding has supplemented empirical evidence for the argument that effective use of VOTAT is associated with levels of intelligence to a certain extent.

The roles of IR and CR proved to be varied for each type of exploration strategy user (RQ3). For instance, the level of CPS among the best exploration strategy users (i.e., the proficient strategy users) was predicted by both the levels of IR and CR, but this was not the case for students with other profiles. In addition, the results have indicated that IR played important roles in both the KAC and KAP phases for the students with relatively good exploration strategy profiles (i.e., proficient strategy users and rapid learners) but only in the KAP phase for the rest of the students (non-persistent explorers and non-performing explorers); moreover, the predictive power of CR can only be detected in the KAC phase of the proficient strategy users. To sum up, the results suggest a general trend of IR and CR playing more important roles in the CPS process among better exploration strategy users.

Combining the answers to RQ2 and RQ3, we can gain further insights into students’ exploration strategy use in a CPS environment. Our results have confirmed that the use of VOTAT is associated with the level of IR and CR development and that the importance of IR and CR increases with proficiency in exploration strategy use. Based on these findings, we can make a reasonable argument that IR and CR are essential skills for using VOTAT and that underdeveloped IR and CR will prevent students from using effective strategies in a CPS environment. Therefore, if we want to encourage students to become better exploration strategy users, it is important to first enhance their IR and CR skills. Previous studies have suggested that establishing explicit training in using effective strategies in a CPS environment is important for students’ CPS development ( Molnár et al. 2022 ). Our findings have identified the importance of IR and CR in exploration strategy use, which has important implications for designing training programmes.

The results have also provided a basis for further studies. Future studies have been suggested to further link the behavioural and cognitive perspectives in CPS research. For instance, IR and CR were considered as component skills of CPS (see Section 1.2 ). The results of the study have indicated the possibility of not only discussing the roles of IR and CR in the cognitive process of CPS, but also exploration behaviour in a CPS environment. The results have thus provided a new perspective for exploring the component skills of CPS.

6. Limitations

There are some limitations in the study. All the tests were low stake; therefore, students might not be sufficiently motivated to do their best. This feature might have produced the missing values detected in the sample. In addition, some students’ exploration behaviour shown in this study might theoretically be below their true level. However, considering that data cleaning was adopted in this study (see Section 3.1 ), we believe this phenomenon will not have a remarkable influence on the results. Moreover, the CPS test in this study was based on the MicroDYN approach, which is a well-established and widely used artificial model with a limited number of variables and relations. However, it does not have the power to cover all kinds of complex and dynamic problems in real life. For instance, the MicroDYN approach cannot measure ill-defined problem solving. Thus, this study can only demonstrate the influence of IR and CR on problem solving in well-defined MicroDYN-simulated problems. Furthermore, VOTAT is helpful with minimally complex problems under well-defined laboratory conditions, but it may not be that helpful with real-world, ill-defined complex problems ( Dörner and Funke 2017 ; Funke 2021 ). Therefore, the generalizability of the findings is limited.

7. Conclusions

In general, the results have shed new light on students’ problem-solving behaviours in respect of exploration strategy in a CPS environment and explored differences in terms of the use of thinking skills between students with different exploration strategies. Most studies discuss students’ problem-solving strategies from a behavioural perspective. By contrast, this paper discusses them from both behavioural and cognitive perspectives, thus expanding our understanding in this area. As for educational implications, the study contributes to designing and revising training methods for CPS by identifying the importance of IR and CR in exploration behaviour in a CPS environment. To sum up, the study has investigated the nature of CPS from a fresh angle and provided a sound basis for future studies.

Funding Statement

This study has been conducted with support provided by the National Research, Development and Innovation Fund of Hungary, financed under the OTKA K135727 funding scheme and supported by the Research Programme for Public Education Development, Hungarian Academy of Sciences (KOZOKT2021-16).

Author Contributions

Conceptualization, H.W. and G.M.; methodology, H.W. and G.M.; formal analysis, H.W.; writing—original draft preparation, H.W.; writing—review and editing, G.M.; project administration, G.M.; funding acquisition, G.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Ethical approval was not required for this study in accordance with the national and institutional guidelines. The assessments which provided data for this study were integrated parts of the educational processes of the participating university. The participation was voluntary.

Informed Consent Statement

All of the students in the assessment turned 18, that is, it was not required or possible to request and obtain written informed parental consent from the participants.

Data Availability Statement

Conflicts of interest.

Authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Adey Philip, Csapó Benő. Developing and Assessing Scientific Reasoning. In: Csapó Benő, Szabó Gábor., editors. Framework for Diagnostic Assessment of Science. Nemzeti Tankönyvkiadó; Budapest: 2012. pp. 17–53. [ Google Scholar ]
  • Batanero Carmen, Navarro-Pelayo Virginia, Godino Juan D. Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics. 1997; 32 :181–99. doi: 10.1023/A:1002954428327. [ CrossRef ] [ Google Scholar ]
  • Beckmann Jens F., Guthke Jürgen. Complex problem solving, intelligence, and learning ability. In: Frensch Peter A., Funke Joachim., editors. Complex Problem Solving: The European Perspective. Erlbaum; Hillsdale: 1995. pp. 177–200. [ Google Scholar ]
  • Buchner Axel. Basic topics and approaches to the study of complex problem solving. In: Frensch Peter A., Funke Joachim., editors. Complex Problem Solving: The European Perspective. Erlbaum; Hillsdale: 1995. pp. 27–63. [ Google Scholar ]
  • Chen Yunxiao, Li Xiaoou, Liu Jincheng, Ying Zhiliang. Statistical analysis of complex problem-solving process data: An event history analysis approach. Frontiers in Psychology. 2019; 10 :486. doi: 10.3389/fpsyg.2019.00486. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Csapó Benő. A kombinatív képesség struktúrája és fejlődése. Akadémiai Kiadó; Budapest: 1988. [ Google Scholar ]
  • Csapó Benő. The development of inductive reasoning: Cross-sectional assessments in an educational context. International Journal of Behavioral Development. 1997; 20 :609–26. doi: 10.1080/016502597385081. [ CrossRef ] [ Google Scholar ]
  • Csapó Benő. Teaching and Learning Thinking Skills. Swets & Zeitlinger; Lisse: 1999. Improving thinking through the content of teaching; pp. 37–62. [ Google Scholar ]
  • Csapó Benő, Molnár Gyöngyvér. Online diagnostic assessment in support of personalized teaching and learning: The eDia System. Frontiers in Psychology. 2019; 10 :1522. doi: 10.3389/fpsyg.2019.01522. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dörner Dietrich, Funke Joachim. Complex problem solving: What it is and what it is not. Frontiers in Psychology. 2017; 8 :1153. doi: 10.3389/fpsyg.2017.01153. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • English Lyn D. Combinatorics and the development of children’s combinatorial reasoning. In: Jones Graham A., editor. Exploring Probability in School: Challenges for Teaching and Learning. Springer; New York: 2005. pp. 121–41. [ Google Scholar ]
  • Fischer Andreas, Greiff Samuel, Funke Joachim. The process of solving complex problems. Journal of Problem Solving. 2012; 4 :19–42. doi: 10.7771/1932-6246.1118. [ CrossRef ] [ Google Scholar ]
  • Frensch Peter A., Funke Joachim. Complex Problem Solving: The European Perspective. Psychology Press; New York: 1995. [ Google Scholar ]
  • Funke Joachim. Dynamic systems as tools for analysing human judgement. Thinking and Reasoning. 2001; 7 :69–89. doi: 10.1080/13546780042000046. [ CrossRef ] [ Google Scholar ]
  • Funke Joachim. Complex problem solving: A case for complex cognition? Cognitive Processing. 2010; 11 :133–42. doi: 10.1007/s10339-009-0345-0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke Joachim. It Requires More Than Intelligence to Solve Consequential World Problems. Journal of Intelligence. 2021; 9 :38. doi: 10.3390/jintelligence9030038. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke Joachim, Fischer Andreas, Holt Daniel V. Competencies for complexity: Problem solving in the twenty-first century. In: Care Esther, Griffin Patrick, Wilson Mark., editors. Assessment and Teaching of 21st Century Skills. Springer; Dordrecht: 2018. pp. 41–53. [ Google Scholar ]
  • Gilhooly Kenneth J. Thinking: Directed, Undirected and Creative. Academic Press; London: 1982. [ Google Scholar ]
  • Gnaldi Michela, Bacci Silvia, Kunze Thiemo, Greiff Samuel. Students’ complex problem solving profiles. Psychometrika. 2020; 85 :469–501. doi: 10.1007/s11336-020-09709-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Funke Joachim. Measuring complex problem solving-the MicroDYN approach. In: Scheuermann Friedrich, Björnsson Julius., editors. The Transition to Computer-Based Assessment. Office for Official Publications of the European Communities; Luxembourg: 2009. pp. 157–63. [ Google Scholar ]
  • Greiff Samuel, Holt Daniel V., Funke Joachim. Perspectives on problem solving in educational assessment: Analytical, interactive, and collaborative problem solving. Journal of Problem Solving. 2013; 5 :71–91. doi: 10.7771/1932-6246.1153. [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Molnár Gyöngyvér, Martina Romain, Zimmermann Johannes, Csapó Benő. Students’ exploration strategies in computer-simulated complex problem environments: A latent class approach. Computers & Education. 2018; 126 :248–63. [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Avvisati Francesco. Computer-generated log-file analyses as a window into students’ minds? A showcase study based on the PISA 2012 assessment of problem solving. Computers & Education. 2015a; 91 :92–105. [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Funke Joachim. Dynamic problem solving: A new measurement perspective. Applied Psychological Measurement. 2012; 36 :189–213. doi: 10.1177/0146621612439620. [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Csapó Benő, Demetriou Andreas, Hautamäki Jarkko, Graesser Arthur C., Martin Romain. Domain-general problem solving skills and education in the 21st century. Educational Research Review. 2014; 13 :74–83. doi: 10.1016/j.edurev.2014.10.002. [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Goetz Thomas, Vainikainen Mari-Pauliina, Hautamäki Jarkko, Bornstein Marc H. A longitudinal study of higher-order thinking skills: Working memory and fluid reasoning in childhood enhance complex problem solving in adolescence. Frontiers in Psychology. 2015b; 6 :1060. doi: 10.3389/fpsyg.2015.01060. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hołda Małgorzata, Głodek Anna, Dankiewicz-Berger Malwina, Skrzypińska Dagna, Szmigielska Barbara. Ill-defined problem solving does not benefit from daytime napping. Frontiers in Psychology. 2020; 11 :559. doi: 10.3389/fpsyg.2020.00559. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Klauer Karl Josef. Paradigmatic teaching of inductive thinking. Learning and Instruction. 1990; 2 :23–45. [ Google Scholar ]
  • Klauer Karl Josef, Willmes Klaus, Phye Gary D. Inducing inductive reasoning: Does it transfer to fluid intelligence? Contemporary Educational Psychology. 2002; 27 :1–25. doi: 10.1006/ceps.2001.1079. [ CrossRef ] [ Google Scholar ]
  • Kuhn Deanna. What is scientific thinking and how does it develop? In: Goswami Usha., editor. The Wiley-Blackwell Handbook of Childhood Cognitive Development. Wiley-Blackwell; Oxford: 2010. pp. 371–93. [ Google Scholar ]
  • Kuhn Deanna, Garcia-Mila Merce, Zohar Anat, Andersen Christopher, Sheldon H. White, Klahr David, Carver Sharon M. Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development. 1995; 60 :1–157. doi: 10.2307/1166059. [ CrossRef ] [ Google Scholar ]
  • Lo Yungtai, Mendell Nancy R., Rubin Donald B. Testing the number of components in a normal mixture. Biometrika. 2001; 88 :767–78. doi: 10.1093/biomet/88.3.767. [ CrossRef ] [ Google Scholar ]
  • Lotz Christin, Scherer Ronny, Greiff Samuel, Sparfeldt Jörn R. Intelligence in action—Effective strategic behaviors while solving complex problems. Intelligence. 2017; 64 :98–112. doi: 10.1016/j.intell.2017.08.002. [ CrossRef ] [ Google Scholar ]
  • Mayer Richard E. Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science. 1998; 26 :49–63. doi: 10.1023/A:1003088013286. [ CrossRef ] [ Google Scholar ]
  • Molnár Gyöngyvér, Csapó Benő. Az 1–11 évfolyamot átfogó induktív gondolkodás kompetenciaskála készítése a valószínűségi tesztelmélet alkalmazásával. Magyar Pedagógia. 2011; 111 :127–40. [ Google Scholar ]
  • Molnár Gyöngyvér, Csapó Benő. The efficacy and development of students’ problem-solving strategies during compulsory schooling: Logfile analyses. Frontiers in Psychology. 2018; 9 :302. doi: 10.3389/fpsyg.2018.00302. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Molnár Gyöngyvér, Alrababah Saleh Ahmad, Greiff Samuel. How we explore, interpret, and solve complex problems: A cross-national study of problem-solving processes. Heliyon. 2022; 8 :e08775. doi: 10.1016/j.heliyon.2022.e08775. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Molnár Gyöngyvér, Greiff Samuel, Csapó Benő. Inductive reasoning, domain specific and complex problem solving: Relations and development. Thinking Skills and Creativity. 2013; 9 :35–45. doi: 10.1016/j.tsc.2013.03.002. [ CrossRef ] [ Google Scholar ]
  • Mousa Mojahed, Molnár Gyöngyvér. Computer-based training in math improves inductive reasoning of 9- to 11-year-old children. Thinking Skills and Creativity. 2020; 37 :100687. doi: 10.1016/j.tsc.2020.100687. [ CrossRef ] [ Google Scholar ]
  • Mustafić Maida, Yu Jing, Stadler Matthias, Vainikainen Mari-Pauliina, Bornstein Marc H., Putnick Diane L., Greiff Samuel. Complex problem solving: Profiles and developmental paths revealed via latent transition analysis. Developmental Psychology. 2019; 55 :2090–101. doi: 10.1037/dev0000764. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Muthén Linda K., Muthén Bengt O. Mplus User’s Guide. Muthén & Muthén; Los Angeles: 2010. [ Google Scholar ]
  • Newell Allen. Reasoning, Problem Solving, and Decision Processes: The Problem Space as a Fundamental Category. MIT Press; Boston: 1993. [ Google Scholar ]
  • Novick Laura R., Bassok Miriam. Problem solving. In: Holyoak Keith James, Morrison Robert G., editors. The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press; New York: 2005. pp. 321–49. [ Google Scholar ]
  • OECD . PISA 2012 Field Trial Problem Solving Framework. OECD Publishing; Paris: 2010. [ Google Scholar ]
  • OECD . Results: Creative Problem Solving—Students’ Skills in Tackling Real-Life Problems (Volume V) OECD Publishing; Paris: 2014. [ Google Scholar ]
  • Pásztor Attila. Ph.D. thesis. Doctoral School of Education, University of Szeged; Szeged, Hungary: 2016. Technology-Based Assessment and Development of Inductive Reasoning. [ Google Scholar ]
  • Pásztor Attila, Csapó Benő. Improving Combinatorial Reasoning through Inquiry-Based Science Learning; Paper presented at the Science and Mathematics Education Conference; Dublin, Ireland. June 24–25; 2014. [ Google Scholar ]
  • Pásztor Attila, Kupiainen Sirkku, Hotulainen Risto, Molnár Gyöngyvér, Csapó Benő. Comparing Finnish and Hungarian Fourth Grade Students’ Inductive Reasoning Skills; Paper presented at the EARLI SIG 1 Conference; Helsinki, Finland. August 29–31; 2018. [ Google Scholar ]
  • Sandberg Elisabeth Hollister, McCullough Mary Beth. The development of reasoning skills. In: Sandberg Elisabeth Hollister, Spritz Becky L., editors. A Clinician’s Guide to Normal Cognitive Development in Childhood. Routledge; New York: 2010. pp. 179–89. [ Google Scholar ]
  • Schraw Gregory, Dunkle Michael E., Bendixen Lisa D. Cognitive processes in well-defined and ill-defined problem solving. Applied Cognitive Psychology. 1995; 9 :523–38. doi: 10.1002/acp.2350090605. [ CrossRef ] [ Google Scholar ]
  • Schweizer Fabian, Wüstenberg Sascha, Greiff Samuel. Validity of the MicroDYN approach: Complex problem solving predicts school grades beyond working memory capacity. Learning and Individual Differences. 2013; 24 :42–52. doi: 10.1016/j.lindif.2012.12.011. [ CrossRef ] [ Google Scholar ]
  • Stadler Matthias, Becker Nicolas, Gödker Markus, Leutner Detlev, Greiff Samuel. Complex problem solving and intelligence: A meta-analysis. Intelligence. 2015; 53 :92–101. doi: 10.1016/j.intell.2015.09.005. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. Handbook of Human Intelligence. Cambridge University Press; New York: 1982. [ Google Scholar ]
  • Sternberg Robert J., Kaufman Scott Barry. The Cambridge Handbook of Intelligence. Cambridge University Press; New York: 2011. [ Google Scholar ]
  • van de Schoot Rens, Lugtig Peter, Hox Joop. A checklist for testing measurement invariance. European Journal of Developmental Psychology. 2012; 9 :486–92. doi: 10.1080/17405629.2012.686740. [ CrossRef ] [ Google Scholar ]
  • Vollmeyer Regina, Burns Bruce D., Holyoak Keith J. The impact of goal specificity on strategy use and the acquisition of problem structure. Cognitive Science. 1996; 20 :75–100. doi: 10.1207/s15516709cog2001_3. [ CrossRef ] [ Google Scholar ]
  • Welter Marisete Maria, Jaarsveld Saskia, Lachmann Thomas. Problem space matters: The development of creativity and intelligence in primary school children. Creativity Research Journal. 2017; 29 :125–32. doi: 10.1080/10400419.2017.1302769. [ CrossRef ] [ Google Scholar ]
  • Wenke Dorit, Frensch Peter A., Funke Joachim. Complex Problem Solving and intelligence: Empirical relation and causal direction. In: Sternberg Robert J., Pretz Jean E., editors. Cognition and Intelligence: Identifying the Mechanisms of the Mind. Cambridge University Press; New York: 2005. pp. 160–87. [ Google Scholar ]
  • Wittmann Werner W., Hattrup Keith. The relationship between performance in dynamic systems and intelligence. Systems Research and Behavioral Science. 2004; 21 :393–409. doi: 10.1002/sres.653. [ CrossRef ] [ Google Scholar ]
  • Wu Hao, Molnár Gyöngyvér. Interactive problem solving: Assessment and relations to combinatorial and inductive reasoning. Journal of Psychological and Educational Research. 2018; 26 :90–105. [ Google Scholar ]
  • Wu Hao, Molnár Gyöngyvér. Logfile analyses of successful and unsuccessful strategy use in complex problem-solving: A cross-national comparison study. European Journal of Psychology of Education. 2021; 36 :1009–32. doi: 10.1007/s10212-020-00516-y. [ CrossRef ] [ Google Scholar ]
  • Wu Hao, Saleh Andi Rahmat, Molnár Gyöngyvér. Inductive and combinatorial reasoning in international educational context: Assessment, measurement invariance, and latent mean differences. Asia Pacific Education Review. 2022; 23 :297–310. doi: 10.1007/s12564-022-09750-z. [ CrossRef ] [ Google Scholar ]
  • Wüstenberg Sascha, Greiff Samuel, Funke Joachim. Complex problem solving—More than reasoning? Intelligence. 2012; 40 :1–14. doi: 10.1016/j.intell.2011.11.003. [ CrossRef ] [ Google Scholar ]
  • Wüstenberg Sascha, Greiff Samuel, Molnár Gyöngyvér, Funke Joachim. Cross-national gender differences in complex problem solving and their determinants. Learning and Individual Differences. 2014; 29 :18–29. doi: 10.1016/j.lindif.2013.10.006. [ CrossRef ] [ Google Scholar ]

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Thinking and Intelligence

Problem Solving

OpenStaxCollege

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

PROBLEM-SOLVING STRATEGIES

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( [link] ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link] ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle ( [link] ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below ( [link] ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

PITFALLS TO PROBLEM SOLVING

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

problem solving in cognitive psychology

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in [link] .

Please visit this site to see a clever music video that a high school teacher made to explain these and other cognitive biases to his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in [link] ? You need nine. Were you able to solve the problems in [link] and [link] ? Here are the answers ( [link] ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1:  blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

Review Questions

A specific formula for solving a problem is called ________.

  • an algorithm
  • a heuristic
  • a mental set
  • trial and error

A mental shortcut in the form of a general problem-solving framework is called ________.

Which type of bias involves becoming fixated on a single trait of a problem?

  • anchoring bias
  • confirmation bias
  • representative bias
  • availability bias

Which type of bias involves relying on a false stereotype to make a decision?

Critical Thinking Questions

What is functional fixedness and how can overcoming it help you solve problems?

Functional fixedness occurs when you cannot see a use for an object other than the use for which it was intended. For example, if you need something to hold up a tarp in the rain, but only have a pitchfork, you must overcome your expectation that a pitchfork can only be used for garden chores before you realize that you could stick it in the ground and drape the tarp on top of it to hold it up.

How does an algorithm save you time and energy when solving a problem?

An algorithm is a proven formula for achieving a desired outcome. It saves time because if you follow it exactly, you will solve the problem without having to figure out how to solve the problem. It is a bit like not reinventing the wheel.

Personal Application Question

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

Problem Solving Copyright © 2014 by OpenStaxCollege is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

IMAGES

  1. Cognitive Psychology

    problem solving in cognitive psychology

  2. PPT

    problem solving in cognitive psychology

  3. 🎉 Psychology problem solving strategies. Strategies of problem solving

    problem solving in cognitive psychology

  4. Problem solving in cognitive psychology by Garrett Nicole

    problem solving in cognitive psychology

  5. PPT

    problem solving in cognitive psychology

  6. Cognitive Psychology: Different Problem-solving Strategies

    problem solving in cognitive psychology

VIDEO

  1. The Psychological Problem

  2. Positive Psychology Theory #shorts

  3. Want deeper connections at work #motivation #youtubeshorts

  4. IQ Test

  5. Cognitive theory:

  6. fun psychological games #facts #shorts #games

COMMENTS

  1. The Role of Cognitive Tests in Diagnosis and Treatment Planning

    Cognitive tests play a crucial role in the field of psychology and medicine. They are designed to assess an individual’s cognitive abilities, including memory, attention, problem-solving skills, and language proficiency.

  2. Enhance Your Problem-Solving Skills with Free Daily Crossword Puzzles

    Are you looking for a fun and engaging way to boost your problem-solving skills? Look no further than free daily crossword puzzles. These puzzles not only provide hours of entertainment but also offer numerous cognitive benefits.

  3. What Are Examples of Cognitive Skills?

    Common examples of cognitive skills include retrieving information from memory, using logic to solve problems, communicating through language, mentally visualizing a concept and focusing attention when distractions are present.

  4. Problem-Solving Strategies and Obstacles

    What Is Problem-Solving? ... A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not

  5. Problem Solving

    Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists

  6. Problem-Solving in Cognitive Psychology

    Problem-solving is valuable attainment, and cognitive psychology is the industry that studies this phenomenon from the perspective of drivers and incentives to

  7. 7.3 Problem-Solving

    Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving

  8. Analysing Complex Problem-Solving Strategies from a Cognitive

    Generally, problem solving is the thinking that occurs if we want “to overcome barriers between a given state and a desired goal state by means

  9. Problem Solving Fundamentals of Cognitive Psychology

    Cognition. Van Selst (Kellogg Chapter 9). Insight problem solving in monkeys: Kohler (1927). Monkeys showed “insight” during problem-solving. • Demonstrated

  10. Problem Solving

    A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ([link]). For

  11. On the cognitive process of human problem solving

    Problem solving is a cognitive process of the brain that searches a solution for a given problem or finds a path to reach a given goal. When a problem object is

  12. The Psychology of Problem Solving

    Research on problem solving has identified several variables that influence problem-solving performance. Among these are knowledge, cognitive processes and

  13. Problem solving.

    Citation. Mayer, R. E. (2013). · Abstract. Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially

  14. Chapter 11: Problem Solving and Creativity

    Perhaps the main skill that is attributed to cognition is problem-solving: we apply a process of thought to achieving a desired outcome or avoiding an