40+ Reasons Why Research Is Important in Education

Do you ever wonder why research is so essential in education? What impact does it really have on teaching and learning?

These are questions that plague many students and educators alike.

According to experts, here are the reasons why research is important in the field of education.

Joseph Marc Zagerman, Ed.D. 

Joseph Marc Zagerman

Assistant Professor of Project Management, Harrisburg University of Science and Technology 

Wisdom is knowledge rightly applied. Conducting research is all about gaining wisdom. It can be an exciting part of a college student’s educational journey — be it a simple research paper, thesis, or dissertation. 

Related: What Is the Difference Between Knowledge and Wisdom?

As we know, there is primary research and secondary research: 

  • Primary research is first-hand research where the primary investigator (PI) or researcher uses a quantitative, qualitative, or mixed-methodology approach in gaining original data. The process of conducting primary research is fascinating but beyond the scope of this article. 
  • In contrast, secondary research examines secondhand information by describing or summarizing the work of others. This article focuses on the benefits of conducting secondary research by immersing oneself in the literature.  

Research develops students into becoming more self-sufficient

There are many benefits for college students to engage in scholarly research. For example, the research process itself develops students into becoming more self-sufficient. 

In other words,  students enhance their ability to ferret out information  regarding a specific topic with a more functional deep dive into the subject matter under investigation. 

The educational journey of  conducting research allows students to see the current conversations  taking place regarding a specific topic. One can parse out the congruity and incongruity among scholars about a particular topic. 

Developing one’s  fundamental library skills  is a tremendous upside in becoming self-sufficient. And yet another benefit of conducting scholarly research is reviewing other writing styles, which often enhances one’s reading and writing skills.   

Conducting an annotated bibliography is often a critical first step in conducting scholarly research. Reviewing, evaluating, and synthesizing information from several sources further  develops a student’s critical thinking skills. 

Related: 9 Critical Thinking Examples

Furthermore, in becoming immersed in the literature, students can recognize associated gaps , problems , or opportunities for additional research. 

From a doctoral perspective, Boote & Beile (2005) underscore the importance of conducting a literature review as the foundation for sound research and acquiring the skills and knowledge in analyzing and synthesizing information.  

So, if conducting research is beneficial for college students, why do some college students have problems with the process or believe it doesn’t add value? 

First off, conducting research is hard work . It takes time. Not to make a sweeping generalization, but some college students embrace a  “fast-food”  expectation of academic assignments. 

For example, finish a quiz, complete a discussion board, or watch a YouTube video and check it off your academic to-do list right away. In contrast, conducting a literature review takes time. It’s hard work.

It requires discipline, focus, and effective time management strategies. 

Yet, good, bad, or indifferent, it remains that the process of conducting research is often perceived as a non-value-added activity for many college students. Why is this so? Is there a better way?   

From an educational standpoint, research assignments should not be a “one and done.” Instead, every course should provide opportunities for students to engage in research of some sort. 

If a student must complete a thesis or dissertation as part of their degree requirement, the process should begin early enough in the program. 

But perhaps the most important note for educators is to align the research process with real-world takeaways . That builds value . That is what wisdom is all about. 

Dr. John Clark, PMP 

John Clark

Corporate Faculty (Project Management), Harrisburg University of Science and Technology 

Research provides a path to progress and prosperity

The research integrates the known with the unknown. Research becomes the path to progress and prosperity. Extant knowledge, gathered through previous research, serves as the foundation to attaining new knowledge. 

The essence of research is a continuum.

Only through research is the attainment of new knowledge possible. New knowledge, formed through new research, is contributed back to the knowledge community. In the absence of research, the continuum of knowledge is severed. 

Reminiscent of the continuum of knowledge, the desire and understanding to conduct research must transcend into the next generation. This magnifies the relevance to convey the techniques and the desire to seek new knowledge to the younger generations. 

Humbly, it is argued that education possibly serves to facilitate the importance of research. The synergy between research and education perpetuates the continuum of knowledge. 

Through education, the younger generations are instilled with the inspiration to address the challenges of tomorrow. 

Related: Why Is Education Important in Our Life?

It plants the seeds for scientific inquiry into the next generation

Research, whether qualitative or quantitative , is grounded in scientific methods . Instructing our students in the fundamentals of empirically-based research effectively plants the seeds for scientific inquiry into the next generation. 

The application and pursuit of research catalyze critical thinking . Rather than guiding our students to apply pre-existing and rote answers to yesterday’s challenges, research inspires our students to examine phenomena through new and intriguing lenses. 

The globalized and highly competitive world of today effectively demands the younger generations to think  critically  and  creatively  to respond to the new challenges of the future. 

Consequently, through research and education, the younger generations are  inspired  and  prepared  to find new knowledge that advances our community. Ultimately, the synergy between research and education benefits society for generations to come. 

Professor John Hattie and Kyle Hattie

John Hattie and Kyle Hattie

Authors, “ 10 Steps to Develop Great Learners “

Research serves many purposes

Imagine your doctor or pilot disregarding research and relying on experience, anecdotes, and opinions. Imagine them being proud of not having read a research article since graduation. Imagine them depending on the tips and tricks of colleagues.

Research serves many great purposes, such as:

  • Keeping up to date with critical findings
  • Hearing the critiques of current methods of teaching and running schools
  • Standing on the shoulders of giants to see our world better

Given that so much educational research is now available, reading syntheses of the research, hearing others’ interpretation and implementation of the research, and seeing the research in action helps. 

What matters most is the interpretation of the research — your interpretation, the author’s interpretation, and your colleagues’ interpretation. It is finding research that improves our ways of thinking, our interpretations, and our impact on students. 

There is also much to be gained from reading about the methods of research, which provide ways for us to question our own impact, our own theories of teaching and learning, and help us critique our practice by standing on the shoulders of others. 

Research also helps to know what is exciting, topical, and important.

It enables us to hear other perspectives

Statements without research evidence are but opinions. Research is not only about what is published in journals or books, but what we discover in our own classes and schools, provided we ask,  “What evidence would I accept that I am wrong?” 

This is the defining question separating research from opinion. As humans, we are great at self-confirmation — there are always students who succeed in our class, we are great at finding evidence we were right, and we can use this evidence to justify our teaching. 

But what about those who did not succeed? We can’t be blind about them, and we should not ascribe their lack of improvement to them (poor homes, unmotivated, too far behind) but to us. 

We often need to hear other perspectives of the evidence we collect from our classes and hear more convincing explanations and interpretations about what worked best and what did not; who succeeded and who did not; and were the gains sufficient. 

When we do this with the aim of improving our impact on our students, then everyone is the winner.

It provides explanations and bigger picture interpretations

Research and evaluation on your class and school can be triangulated with research studies in the literature to provide alternative explanations, to help see the importance (or not) of the context of your school. And we can always write our experiences and add to the research.

For example, we have synthesized many studies of how best parents can influence their children to become great learners. Our fundamental interpretation of the large corpus of studies is that it matters more how parents think when engaged in parenting. 

For instance, the expectations, listening and responsive skills, how they react to error and struggle, and whether their feedback was heard, understood, and actionable. 

Research is more than summarizing ; it provides explanations and bigger picture interpretations, which we aimed at in our “10 steps for Parents” book.

Dr. Glenn Mitchell, MPH, CPE, FACEP

Glenn Mitchell

Vice Provost for Institutional Effectiveness , Harrisburg University of Science and Technology 

Research gives us better knowledge workers

There is a tremendous value for our society from student participation in scientific research. At all levels – undergraduate, master’s, and Ph.D. —students learn the scientific method that has driven progress since the Enlightenment over 300 years ago. 

  • They learn to observe carefully and organize collected data efficiently. 
  • They know how to test results for whether or not they should be believed or were just a chance finding. 
  • They learn to estimate the strength of the data they collect and see in other scientists’ published work. 

With its peer review and wide visibility, the publication process demands that the work be done properly , or it will be exposed as flawed or even falsified. 

So students don’t just learn how to do experiments, interviews, or surveys. They learn that the process demands rigor and ethical conduct to obtain valid and reliable results. 

Supporting and educating a new generation of science-minded citizens makes our population more likely to support proven facts and take unproven allegations with a grain of salt until they are rigorously evaluated and reviewed. 

Thus, educating our students about research and involving them with hands-on opportunities to participate in research projects gives us better knowledge workers to advance technology and produce better citizens.

Chris A. Sweigart, Ph.D.

Chris Sweigart

Board Certified Family Physician | Education Consultant, Limened

Research plays a critical role in education as a guide for effective practices, policies, and procedures in our schools. 

Evidence-based practice, which involves educators intentionally engaging in instructional practices and programs with strong evidence for positive outcomes from methodologically sound research, is essential to ensure the greatest probability of achieving desired student outcomes in schools.

It helps educators have greater confidence to help students achieve outcomes

There are extensive options for instructional practices and programs in our schools, many of which are promoted and sold by educational companies. In brief, some of these works benefit students, and others don’t, producing no results or even negatively impacting students.

Educators need ways to filter through the noise to find practices that are most likely to actually produce positive results with students. 

When a practice has been identified as evidence-based, that means an array of valid, carefully controlled research studies have been conducted that show significant, positive outcomes from engaging in the practice. 

By choosing to engage in these practices, educators can have greater confidence in their ability to help students achieve meaningful outcomes.

There are organizations focused on evaluating the research base for programs and practices to determine whether they are evidence-based. 

For example, some websites provide overviews of evidence-based practices in education while my website provides practical guides for teachers on interventions for academic and behavioral challenges with a research rating scale. 

Educators can use these resources to sift through the research, which can sometimes be challenging to access and translate, especially for busy teachers.

It supports vulnerable student populations

Schools may be especially concerned about the success of vulnerable student populations, such as students with disabilities , who are at far greater risk than their peers of poor short and long-term outcomes. 

In many cases, these students are already behind their peers one or more years academically and possibly facing other challenges.

With these vulnerable populations, it’s imperative that we engage in practices that benefit them and do so faster than typical practice—because these students need to catch up! 

That said, every minute and dollar we spend on a practice not supported by research is a gamble on students’ well-being and futures that may only make things worse. 

These populations of students need our best in education, which means choosing practices with sound evidence that are most likely to help.  

If I were going to a doctor for a serious illness, I would want them to engage in practice guided by the cutting edge of medical science to ensure my most significant chance of becoming healthy again. And I want the same for our students who struggle in school.

Will Shaw PhD, MSc

Will Shaw

Sport Scientist and Lecturer | Co-founder, Sport Science Insider

Research creates new knowledge and better ideas

At the foundation of learning is sharing knowledge, ideas, and concepts. However, few concepts are set in stone; instead, they are ever-evolving ideas that hopefully get closer to the truth . 

Research is the process that underpins this search for new and better-defined ideas. For this reason, it is crucial to have very close links between research and teaching. The further the gap, the less informed teaching will become. 

Research provides answers to complicated problems

Another key concept in education is sharing the reality that most problems are complicated — but these are often the most fun to try to solve. Such as, how does the brain control movement? Or how can we optimize skill development in elite athletes?

Here, research can be used to show how many studies can be pulled together to find answers to these challenging problems. But students should also understand that these answers aren’t perfect and should be challenged.

Again, this process creates a deeper learning experience and students who are better equipped for the world we live in.

Basic understanding of research aids students in making informed decisions

We’re already seeing the worlds of tech and data drive many facets of life in a positive direction — this will no doubt continue. However, a byproduct of this is that data and science are commonly misunderstood, misquoted, or, in the worst cases, deliberately misused to tell a false story. 

If students have a basic understanding of research, they can make informed decisions based on reading the source and their own insight. 

This doesn’t mean they have to mean they disregard all headlines instead, they can decide to what extent the findings are trustworthy and dig deeper to find meaning. 

A recent example is this BBC News story  that did an excellent job of reporting a study looking at changes in brain structure as a result of mild COVID. The main finding of a 2% average loss in brain structure after mild COVID sounds alarming and is one of the findings from the study. 

However, if students have the ability to scan the full article  linked in the BBC article, they could learn that: 

  • The measure that decreased by 2% was a ‘proxy’ (estimate) for tissue damage 
  • Adults show 0.2 – 0.3% loss every year naturally
  • Some covid patients didn’t show any loss at all, but the average loss between the COVID and control group was 2%
  • We have no idea currently if these effects last more than a few weeks or months (more research is in progress)

This is an excellent research paper, and it is well-reported, but having the ability to go one step further makes so much more sense of the findings. This ability to understand the basics of research makes the modern world far easier to navigate.

Helen Crabtree

Helen Crabtree

Teacher and Owner, GCSE Masterclass

It enables people to discover different ideas 

Research is crucial to education. It enables people to discover different ideas, viewpoints, theories, and facts. From there, they will weigh up the validity of each theory for themselves. 

Finding these things out for oneself causes a student to think more deeply and come up with their personal perspectives, hypotheses, and even to question widely held facts. This is crucial for independent thought and personal development.

To distortion and manipulation — a frighteningly Orwellian future awaits us if research skills are lost. 

You only need to look at current world events and how freedom of the media and genuine journalistic investigation (or research) is distorting the understanding of the real world in the minds of many people in one of the most powerful countries in the world. 

Only those who are able to conduct research and evaluate the independence of facts can genuinely understand the world. 

Genuine research opens young people’s eyes to facts and opinions

Furthermore, learning how to conduct genuine research instead of merely a Wikipedia or Google search is a skill in itself, allowing students to search through archives and find material that is not widely known about and doesn’t appear at the top of search engines. 

Genuine research will open young people’s eyes to facts and opinions that may otherwise be hidden. This can be demonstrated when we look at social media and its algorithms.

Essentially, if you repeatedly read or “like” pieces with a specific worldview, the algorithm will send you more articles or videos that further back up that view. 

This, in turn, creates an echo chamber whereby your own opinion is repeatedly played back to you with no opposing ideas or facts, reinforcing your view in a one-sided way.

Conducting genuine research is the antidote.

Lastly, by conducting research, people discover how to write articles, dissertations, and conduct their own experiments to justify their ideas. A world without genuine, quality research is a world that is open.

Pritha Gopalan, Ph.D.

Pritha Gopalan

Director of Research and Learning, Newark Trust for Education

It allows us to understand progress and areas of development

Research is vital in education because it helps us be intentional about how we frame and document our practice. At The Trust , we aim to synthesize standards-based and stakeholder-driven frames to ensure that quality also means equity.

Research gives us a lens to look across time and space and concretely understand our progress and areas for improvement. We are  careful  to include all voices through representative and network sampling to include multiple perspectives from different sites.

Good research helps us capture variation in practice, document innovation, and share bright spots and persistent challenges with peers for mutual learning and growth. 

This is key to our work as educators and a city-based voice employing and seeking to amplify asset-based discourses in education.

Research represents stakeholders’ aspirations and needs

When done in  culturally sustaining  and  equitable ways , research powerfully represents stakeholder experiences, interests, aspirations, and needs. Thus, it is critical to informed philanthropy, advocacy, and the continuous improvement of practice. 

Our organization is constantly evolving in our own cultural competence . It embodies this pursuit in our research so that the voices of the educators, families, children, and partners that we work with are harmonized .

This is done to create the “big picture” of where we are and where we need to get together to ensure equitable and quality conditions for learning in Newark.

Jessica Robinson

Jessica Robinson

Educator | Human Resources and Marketing Manager, SpeakingNerd

Research makes the problem clearer

In the words of Stanley Arnold,  “Every problem contains within itself the seeds of its own solution.”  These words truly highlight the nature of problems and solutions. 

If you understand a problem thoroughly, you eventually approach closer to the solution for you begin to see what makes the problem arise. When the root of the problem is clear, the solution becomes obvious. 

For example, if you suffer from headaches frequently, your doctor will get specific tests done to understand the exact problem (which is research). Once the root cause of the headache becomes clear, your doctor will give you suitable medicines to help you heal. 

This implies that to reach a solution, it is crucial for us to understand the problem first. Research helps us with that. By making the problem clearer, it helps us pave closer to the solution. 

As the main aim of education is to produce talented individuals who can generate innovative solutions to the world’s problems, research is of utmost importance. 

Research boosts critical thinking skills

Critical thinking is defined as observing, understanding, analyzing, and interpreting information and arguments to form suitable conclusions. 

In today’s world, critical thinking skills are the most valued skills. Companies look for a candidate’s critical thinking skills before hiring him. This is because critical thinking skills promote innovation, and innovation is the need of the hour in almost every sector. 

Further, research is one of the most effective ways of developing critical thinking skills. When you conduct research, you eventually learn the art of observing, evaluating, analyzing, interpreting information, and deriving conclusions. So, this is another major reason why research is crucial in education. 

Research promotes curiosity

In the words of Albert Einstein ,  “Curiosity is more important than knowledge.”  Now, you may wonder why so? Basically, curiosity is a strong desire to learn or know things. It motivates you to pursue an everlasting journey of learning. 

Every curious individual observes things, experiments, and learns. It seems that knowledge follows curiosity, but the vice versa is not true. An individual may gain a lot of knowledge about multiple things despite not being curious. But, then, he might not use his knowledge to engage in innovation because of the lack of curiosity. 

Hence, his knowledge might become futile, or he may just remain a bookworm. So, curiosity is more important than knowledge, and research promotes curiosity. How? 

The answer is because research helps you plunge into things. You observe what is not visible to everyone. You explore the wonders of nature and other phenomena. The more you know, the more you understand that you don’t know, which ignites curiosity. 

Research boosts confidence and self-esteem

Developing confident individuals is one of the major goals of education. When students undertake the journey of research and come up with important conclusions or results, they develop immense confidence in their knowledge and skills. 

Related: Why is Self Confidence Important?

They feel as if they can do anything. This is another important reason why research is crucial in education. 

Research helps students evolve into independent learners

Most of the time, teachers guide students on the path of learning. But, research opportunities give students chances to pave their own learning path. 

It is like they pursue a journey of learning by themselves. They consult different resources that seem appropriate, use their own methods, and shape the journey on their own. 

This way, they evolve into independent learners, which is excellent as it sets the foundation for lifelong learning. 

Theresa Bertuzzi

Theresa Bertuzzi

Chief Program Development Officer and Co-founder, Tiny Hoppers

Research helps revamp the curriculum and include proven best techniques

Research is critical in education as our world is constantly evolving, so approaches and solutions need to be updated to  best suit  the current educational climate. 

With the influx of child development and psychology studies, educators and child product development experts are  honing  how certain activities, lessons, behavior management, etc., can impact a child’s development.

For example, child development research has led to the development of toy blocks, jigsaws, and shape sorters, which have proven to be linked to: 

  • Spatial thinking
  • Logical reasoning
  • Shape and color recognition

There is  no one-size-fits-all  when approaching educational practices; therefore, we can  revamp  the curriculum and include proven best techniques and methodologies by continuously researching past strategies and looking into new tactics. 

Effective teaching requires practical evidence approaches rather than making it a guessing game. 

The combination of work done by child educators of all ages, and research in child development psychology allow new developments in toys, activities, and practical resources for other educators, child care workers, and parents. Such ensures children can  reap  the benefits of child development research. 

It enables a better understanding of how to adapt methods of instruction

In addition, with all of the various learning styles, researching the diversity in these types will enable a better understanding of how to adapt methods of instruction to all learners’ needs. 

Child development research gives educators, child care workers, and parents the ability to guide the average child at specific age ranges, but  each child is unique in their own needs . 

It is important to note that while this is the average, it is up to the educator and childcare provider to  adapt accordingly  to each child based on their individual needs. 

Scott Winstead

Scott Winstead

Education Technology Expert | Founder, My eLearning World

It’s the most important tool for expanding our knowledge

Research is an integral part of education for teachers and students alike. It’s our most important tool for expanding our knowledge and understanding of different topics and ideas.

  • Educators need to be informed about the latest research to make good decisions and provide students with quality learning opportunities.
  • Research provides educators with valuable information about how students learn best so they can be more effective teachers. 
  • It also helps us develop new methods and techniques for teaching and allows educators to explore different topics and ideas in more detail.
  • For students, research allows them to explore new topics and develop critical thinking skills along with analytical and communication skills.

In short, research is vital in education because it helps us learn more about the world around us and improves the quality of education for everyone involved.

Connor Ondriska

Connor Ondriska

CEO, SpanishVIP

It creates better experiences and improves the quality of education

Research continues to be so important in education because we should constantly be improving as educators. If one of the goals of education is to continually work on making a better world, then the face of education a century ago shouldn’t look the same today. 

You can apply that same logic on a shorter scale, especially with the technological boom . So research is a way that educators can learn about what’s working, what isn’t, and what are the areas we need to focus on. 

For example, we focus purely on distance learning, which means we need to innovate in a field that doesn’t have a ton of research yet. If we’re being generous, we can say that distance education became viable in the 1990s, but people are just now accepting it as a valid way to learn. 

Since you can’t necessarily apply everything you know about traditional pedagogy to an online setting, It’s an entirely different context that requires its own study. 

As more research comes out about the effectiveness and understanding of this type of education, we can adapt as educators to help our students. Ultimately, that research will help us create better experiences and improve the quality of distance education. 

The key here is to make sure that research is available and that teachers actually respond to it. In that sense, ongoing research and continual teacher training can go hand-in-hand. 

It leads to more effective educational approaches

Research in the field of language learning is significant. We’re constantly changing our understanding of how languages are learned. Over just the last century, there have been dozens of new methodologies and approaches. 

Linguists/pedagogues have frequently re-interpreted the language-learning process, and all of this analytical research has revolutionized the way we understand language. 

We started with simple Grammar Translation (how you would learn Latin), and now research focuses on more holistic communication techniques. So we’ve definitely come a long way, but we should keep going. 

Now with distance education, we’re experiencing another shift in language learning. You don’t need to memorize textbook vocabulary. You don’t need to travel abroad to practice with native speakers. 

Thanks to ongoing research, we’ve developed our own method of learning Spanish that’s been shown to be 10x more efficient than traditional classroom experiences. 

So if we’ve been able to do so, then maybe someone will develop an even better methodology in the future. So research and innovation are only leading to more effective educational approaches that benefit the entire society.  

Research helps everyone in the education field to become better

This stands in both the public and private sectors. Even though we’re an education business, public schools should also be adapting to new ways to utilize distance learning. 

As more technology becomes readily available to students, teachers should capitalize on that to ensure everyone receives a better education.

Related: How Important Is Technology in Education  

There is now a vast body of research about technology in the language classroom, so why not take advantage of that research and create better lesson plans? 

So as new research appears, everyone in the education field will become a better teacher. And that statement will stand ten years from now. Education needs to adapt to the needs of society, but we need research to know how we can do that appropriately .  

James Bacon, MSEd

James Bacon

Director of Outreach and Operations, Edficiency

Research gives schools confidence to adopt different practices

Research in education is important to inform teachers, administrators, and even parents about what practices have been shown to impact different outcomes that can be important, like:

  • Student learning outcomes (often measured by test scores)
  • Graduation and/or attendance rates
  • Social-emotional skills 
  • College and/or job matriculation rates, among many others

Research can give insights into which programs, teaching methods, curricula, schedules, and other structures provide which benefits to which groups and thus give schools the confidence to adopt these different practices.

It measures the impact of innovations 

Research in education also enables us to measure different innovations that are tried in schools, which is also essential to push the field of education further. 

It also ensures that students learn individually and collectively more than those we’ve educated in the past, or at least in different ways, to respond to changes and help shape society’s future. 

Research can give us the  formal feedback  to know if innovations happening in classrooms, schools, and districts across the country (and the world) are having the  intended  impact and whether or not they should be continued, expanded, discontinued, or used only in specific contexts.

Without research, we might continue to innovate to the detriment of our students and education system without knowing it.

Loic Bellet

Loic Bellet

Business English Coach, Speak Proper English

It provides numerous advantages to explore profession

Developing a research-based approach to enhance your practice gives you the evidence you need to make changes in your classroom, school, and beyond. 

In the light of the ongoing discussion over what works and why, there are numerous advantages to exploring your profession, whether for immediate improvement via action research and, more broadly, for acquiring awareness and knowledge on topics of interest and significance. 

There are several advantages to incorporating research into your practice. This is why research is a part of teacher education from the beginning. 

Research can be used to:

  • Assist you in discovering solutions to specific issues that may arise in your school or classroom.
  • Support professional knowledge, competence, and understanding of learning
  • Connect you to information sources and expert support networks.
  • When implementing change, such as curriculum, pedagogy, or assessment, it’s important to spell out the goals, processes, and objectives.
  • Improve your organizational, local, and national grasp of your professional and policy environment, allowing you to educate and lead better strategically and effectively.
  • Inside your school and more broadly within the profession, develop your agency, impact, self-efficacy, and voice.
  • Each of these may entail an investigation based on evidence out of your environment and evidence from other sources.

Although research methodologies have progressed significantly, the importance of research alone has grown . 

We’ve seen online research gaining popularity, and the value of research is increasing by the day. As a result, companies are looking for online access researchers to work with them and carry out research for accurate data from the internet. 

Furthermore, research became a requirement for survival. We’ll have to do it nonetheless. We can’t make business judgments, launch businesses, or prove theories without extensive research. There has been a lot of effort to create research a base of info and advancement.

Saikiran Chandha

Saikiran Chandha

CEO and Founder, Typeset

It offers factual or evidence-based learning approach

It’s evident that research and education are intertwined! On a broader spectrum, education is something that you perceive as a fundamental part of your learning process (in your institutions, colleges, school, etc.). 

It improves your skills, knowledge, social and moral values. But on the other hand, research is something that you owe to as it provides you with the scientific and systemic solution to your educational hardships. 

For example: Research aids in implementing different teaching methods, identifying learning difficulties and addressing them, curriculum development, and more. 

Accordingly, research plays a significant role in offering a factual or evidence-based learning approach to academic challenges and concerns. 

And the two primary benefits of research in education are:

Research helps to improve the education system

Yes, the prime focus of research is to excavate, explore and discover a new, innovative, and creative approach to enhance the teaching and learning methods based on the latest educational needs and advancements. 

Research fuels your knowledge bank

Research is all about learning new things, data sourcing, analysis, and more. So, technically, research replenishes your knowledge bank with factual data. 

Thus, it helps educators or teachers develop their subject knowledge, aids in-depth harvest erudition, and increases overall classroom performance.

Chaye McIntosh, MS, LCADC

chaye mcintosh

Clinical Director,  ChoicePoint Health

It improves the learning curve

Research, I believe, is a fundamental part of education, be it by the student or the teacher. 

When you research a topic, you will not just learn and read about stuff related to the topic but also branch out and learn new and different things. This improves the learning curve, and you delve deeper into topics, develop interest and increase your knowledge. 

Academically and personally, I can grow every day and attain the confidence that the abundance of information brings me.

It builds up understanding and perspective

Research can help you build up understanding and perspective regarding the niche of choice; help you evaluate and analyze it with sound theories and a factual basis rather than just learning just for the sake of it.

Educationally, it can help you form informed opinions and sound logic that can be beneficial in school and routinely. Not only this,  when you do proper research on any educational topic and learn about the facts and figures, chances are you will score better than your classmates who only have textbook knowledge.  

So the research will give you an edge over your peers and help you perform better in exams and classroom discussions.

Matthew Carter

Matthew Carter

Attorney,  Inc and Go

Solid research is a skill you need in all careers

That goes double for careers like mine. You might think that attorneys learn all the answers in law school, but in fact, we know how to find the answers we need through research. 

Doctors and accountants will tell you the same thing. No one can ever hold all the knowledge they need. You have to be able to find the correct answer quickly. School is the perfect place to learn that.

Research enables you to weigh sources and find the best ones

How do you know the source you have found is reliable? If you are trained in research, you’ve learned how to weigh sources and find the best ones. 

Comparing ideas and using them to draw bigger conclusions helps you not only in your career but in your life. As we have seen politically in the last few years, it enables you to be a more informed citizen.

Research makes you more persuasive

Want to have more civil conversations with your family over the holidays? Being able to dig into a body of research and pull out answers that you actually understand makes you a more effective speaker. 

People are more likely to believe you when you have formed an opinion through research rather than parroting something you saw on the news. They may even appreciate your efforts to make the conversation more logical and civil.

As for me, I spend a lot of time researching business formation now, and I use that in my writing. 

George Tsagas

George Tsagas

Owner, eMathZone

Research helps build holistic knowledge

Your background will cause you to approach a topic with a preconceived notion. When you take the time to see the full context of a situation, your perspective changes. 

Researching one topic also expands your perspective of other topics. The information you uncover when studying a particular subject can inform other tangential subjects in the future as you build a greater knowledge of the world and how connected it is. 

As a result, any initial research you do will be a building block for future studies. You will begin each subsequent research process with more information. You will continue to broaden your perspective each time.

Research helps you become more empathic

Even if you don’t change your mind on a subject, researching that topic will expose you to other points of view and help you understand why people might feel differently about a situation. 

The more knowledge you gain about how others think, the more likely you are to humanize them and be more empathetic to diverse viewpoints and backgrounds in the future.

Research teaches you how to learn

Through the research process, you discover where you have information gaps and what questions to ask in order to solve them. It helps you approach a subject with curiosity and a willingness to learn rather than thinking you have the right answer from the beginning.

Georgi Georgiev

Georgi Georgiev

Owner, GIGA calculator

It helps us learn about the status quo of existing literature

The starting point of every scientific and non-scientific paper is in-depth literature research.

It helps to:

  • gather casual evidence about a specific research topic
  • answer a specific scientific question
  • learn about the status quo of existing literature
  • identify potential problems and raise new questions

Anyone writing a scientific paper needs evidence based on facts to back up theories, hypotheses, assumptions, and claims. However, since most authors can’t derive all the evidence on their own, they have to rely on the evidence provided by existing scientific (and peer-reviewed) literature. 

Subsequently, comprehensive literature research is inevitable. Only by delving deeply into a research topic will the authors gather the data and evidence necessary for a differentiated examination of the current status quo. 

This, in turn, will allow them to develop new ideas and raise new questions. 

Craig Miller

Craig Miller

Co-Founder,  Academia Labs LLC

Research supplements knowledge gaps

In the academe, research is critical. Our daily lives revolve around research, making research an integral part of education.

If you want to know which restaurant in your area serves the best steak, you’d have to research on the internet and read reviews. If you want to see the procedure for making an omelet, you’d have to research on the internet or ask your parents. Hence, research is part of our lives, whether we want it or not.

It is no secret that there are a lot of knowledge gaps in the knowledge pool. Research is the only thing that can supplement these gaps and answer the questions with no answers.

It will also provide the correct information to long-debated questions like the shape of the Earth and the evolution of man.

With every information readily available to us with just a click and a scroll on the internet, research is crucial in identifying which data are factual and which are just fake news . More than that, it helps transfer correct information from one person to another while combating the spread of false information.

Frequently Asked Questions

What is the importance of research.

Research plays a critical role in advancing our knowledge and understanding of the world around us. Here are some key reasons why research is so important:

• Generates new knowledge : Research is a process of discovering new information and insights. It allows us to explore questions that have not yet been answered, and to generate new ideas and theories that can help us make sense of the world.

• Improves existing knowledge : Research also allows us to build on existing knowledge, by testing and refining theories, and by uncovering new evidence that supports or challenges our understanding of a particular topic.

• Drives innovation : Many of the greatest innovations in history have been driven by research. Whether it’s developing new technologies, discovering new medical treatments, or exploring new frontiers in science, research is essential for pushing the boundaries of what is possible.

• Informs decision-making : Research provides the evidence and data needed to make informed decisions. Whether it’s in business, government, or any other field, research helps us understand the pros and cons of different options, and to choose the course of action that is most likely to achieve our goals.

• Promotes critical thinking : Conducting research requires us to think critically, analyze data, and evaluate evidence. These skills are not only valuable in research, but also in many other areas of life, such as problem-solving, decision-making, and communication.

What is the ultimate goal of a research?

The ultimate goal of research is to uncover new knowledge, insights, and understanding about a particular topic or phenomenon. Through careful investigation, analysis, and interpretation of data, researchers aim to make meaningful contributions to their field of study and advance our collective understanding of the world around us.

There are many different types of research, each with its own specific goals and objectives. Some research seeks to test hypotheses or theories, while others aim to explore and describe a particular phenomenon. Still, others may be focused on developing new technologies or methods for solving practical problems.

Regardless of the specific goals of a given research project, all research shares a common aim: to generate new knowledge and insights that can help us better understand and navigate the complex world we live in.

Of course, conducting research is not always easy or straightforward.

Researchers must contend with a wide variety of challenges, including finding funding, recruiting participants, collecting and analyzing data, and interpreting their results. But despite these obstacles, the pursuit of knowledge and understanding remains a fundamental driving force behind all scientific inquiry.

How can research improve the quality of life?

Research can improve the quality of life in a variety of ways, from advancing medical treatments to informing social policies that promote equality and justice. Here are some specific examples:

• Medical research : Research in medicine and healthcare can lead to the development of new treatments, therapies, and technologies that improve health outcomes and save lives.

For example, research on vaccines and antibiotics has helped to prevent and treat infectious diseases, while research on cancer has led to new treatments and improved survival rates.

• Environmental research : Research on environmental issues can help us to understand the impact of human activities on the planet and develop strategies to mitigate and adapt to climate change.

For example, research on renewable energy sources can help to reduce greenhouse gas emissions and protect the environment for future generations.

• Social research : Research on social issues can help us to understand and address social problems such as poverty, inequality, and discrimination.

For example, research on the effects of poverty on child development can inform policies and programs that support families and promote child well-being.

• Technological research : Research on technology can lead to the development of new products and services that improve quality of life, such as assistive technologies for people with disabilities or smart home systems that promote safety and convenience.

How useful was this post?

Click on a star to rate it!

As you found this post useful...

Share it on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

Photo of author

The Editors

A male and female student work at a desk while a teacher helps other students in the classroom.

How educational research could play a greater role in K-12 school improvement

importance of research in education as a student

Clinical Professor of Applied Human Development, Boston University

Disclosure statement

Detris Honora Adelabu does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Boston University provides funding as a founding partner of The Conversation US.

View all partners

For the past 20 years, I have taught research methods in education to students here in the U.S. and in other countries. While the purpose of the course is to show students how to do effective research, the ultimate goal of the research is to get better academic results for the nation’s K-12 students and schools.

Vast resources are already being spent on this goal. Between 2019 and 2022, the Institute of Educational Sciences , the research and evaluation arm of the U.S. Education Department, distributed US$473 million in 255 grants to improve educational outcomes.

In 2021, colleges and universities spent approximately $1.6 billion on educational research .

The research is not hard to find. The Educational Research Information Center, a federally run repository, houses 1.6 million educational research sources in over 1,000 scholarly journals.

And there are plenty of opportunities for educational researchers to network and collaborate. Each year, for instance, more than 15,000 educators and researchers gather to present or discuss educational research findings at the annual meeting of the American Educational Research Association .

Yet, for all the time, money and effort that have been spent on producing research in the field of education, the nation seems to have little to show for it in terms of improvements in academic achievement.

Growing gaps

Even prior to the COVID-19 pandemic, test scores were beginning to decline. Results from the 2019 National Assessment of Educational Progress, , or NAEP – the most representative assessment of what elementary and middle school students know across specific subjects – show a widening gap between the highest and lowest achievement levels on the NAEP for fourth grade mathematics and eighth grade reading between 2017-19. During the same period, NAEP outcomes show stagnated growth in reading achievement among fourth graders. By eighth grade, there is a greater gap in reading achievement between the highest- and lowest-achieving students.

Some education experts have even suggested that the chances for progress get dimmer for students as they get older. For instance, in a 2019-2020 report to Congress , Mark Schneider, the Institute of Educational Sciences director, wrote: “for science and math, the longer students stay in school, the more likely they are to fail to meet even NAEP’s basic performance level.”

Scores on the International Assessment of Adult Competencies , a measure of literacy, numeracy and problem-solving skills, suggest a similar pattern of achievement. Achievement levels on the assessment show a slight decline in literacy and numeracy between 2012-14 and 2017. Fewer Americans are scoring at the highest levels of proficiency in literacy and numeracy.

As an educational researcher who focuses on academic outcomes for low-income students and students of color , I believe these troubling results raise serious questions about whether educational research is being put to use.

Are school leaders and policymakers actually reading any of the vast amount of educational research that exists? Or does it go largely unnoticed in voluminous virtual vaults? What, if anything, can be done to make sure that educational research findings and recommendations are actually being tried?

Here are four things I believe can be done in order to make sure that educational research is actually being applied.

1. Build better relationships with school leaders

A man in a blue suit accompanies an elementary school-aged boy as they walk down a school hallway.

Educational researchers can reach out to school leaders before doing their research in order to design research based on the needs of schools and schoolchildren. If school leaders can see how educational research can specifically benefit their school community, they may be more likely to implement findings and recommendations from the research.

2. Make policy and practice part of the research process

By implementing new policies and practices based on research findings, researchers can work with school leaders to do further research to see if the new policies and practices actually work.

For example, The Investing in Innovation (i3) Fund was established by the American Recovery and Reinvestment Act of 2009 to fund the implementation and evaluation of education interventions with a record of improving student achievement. Through the fund, $679 million was distributed through 67 grants – and 12 of those 67 funded projects improved student outcomes. The key to success? Having a “tight implementation” plan, which was shown to produce at least one positive student outcome.

3. Rethink how research impact is measured

As part of the national rankings for colleges of education – that is, the schools that prepare schoolteachers for their careers – engagement with public schools could be made a factor in the rankings. The rankings could also include measurable educational impact.

4. Rethink and redefine how research is distributed

Evidence-based instruction can improve student outcomes . However, public school teachers often can’t afford to access the evidence or the time to make sense of it. Research findings written in everyday language could be distributed at conferences frequented by public school teachers and in the periodicals that they read.

If research findings are to make a difference, I believe there has to be a stronger focus on using research to bring about real-world change in public schools.

  • Academic research
  • Education research
  • Academic results
  • Proficiency Level
  • K-12 education
  • Student test scores
  • Higher ed attainment
  • Federal role in K-12 education
  • K-12 schools

importance of research in education as a student

Content Coordinator

importance of research in education as a student

Lecturer / Senior Lecturer - Marketing

importance of research in education as a student

Assistant Editor - 1 year cadetship

importance of research in education as a student

Executive Dean, Faculty of Health

importance of research in education as a student

Lecturer/Senior Lecturer, Earth System Science (School of Science)

importance of research in education as a student

  • Students & Faculty
  • Health Center
  • College of Chiropractic
  • College of Health Sciences
  • Degrees & Certifications
  • Continuing Education
  • University Catalogs
  • Academic Calendar
  • Internships & Clinical Experience
  • Admission Requirements
  • Tuition & Costs
  • Financial Aid & Scholarships
  • Open House Schedule
  • Visit Campus
  • How to Apply
  • Request Information
  • Admissions Team
  • For Parents
  • For Advisors & Counselors
  • Application for Admission
  • Student Organizations
  • About Kansas City
  • Campus Safety
  • Academic Support and Access Services
  • Registrar’s Office
  • Maps & Directions
  • The Cleveland Story
  • CUKC at a Glance
  • Board of Trustees
  • Administration
  • Accreditation
  • Consumer Information
  • University Policies
  • Contact CUKC

Research important to Cleveland University-Kansas City (CUKC)

The Importance of Research to Students

Tags: cleveland university-kansas city , Communications Staff , health sciences , research

When exploring the impact of research, consider what it would be like if the automotive industry ceased all investigative efforts. The cars we drive would likely never improve in safety, comfort, or efficiency, and we would never know the benefits of the advancements we often take for granted. The same is true for the health sciences. Without research, advancements that have improved some lives and saved others may not have come to pass.

For universities, the research component allows for a broader educational experience whereby students are able to explore the effects of applying new thought processes through study and testing. Students are able to use that experience to see the practical application of their classroom experience represented in research projects. Cleveland University-Kansas City (CUKC), for example, offers a challenging curriculum, but also the opportunity to participate in various research studies on campus. ( Learn more about chiropractic here .)

Dr. Mark Pfefer, director of research at CUKC, collaborates with students on various projects. He said students have the opportunity to take an active role in research projects while at the same time learning about proper investigative techniques.

“We’ve had numerous students participate as co-authors on recent publications and presentations,” Pfefer said. “Students are taught strategies to search for information and assess the quality of the information found. Students learn good critical appraisal skills; all information is not the same, some information is good, and some is not.”

Research by Students in College

Pfefer said that students interested in research are mentored by faculty and assist in various ways, including literature searching, data collection, data entry, and manuscript development. The collective work between students and administrators has proven to be a successful combination, and he looks forward to the continuation of these efforts in future studies.

Your financial aid eBook is here

While time in the classroom is invaluable, having access to an on-site research department means that students are able to grow and challenge the boundaries that were established by their predecessors in the field. They are encouraged to open their minds and be open to the possibilities that research can reveal. Ultimately, they can become better health care professionals by engaging in work outside the classroom that challenges them in a similar fashion.

This will also have an impact on their future in their chosen profession by putting them in the position to attach their name to efforts that may have reshaped the parameters that were once the norm. Research can light the fire of curiosity that will continue throughout a professional career, and there is no end to what can be learned.

At Cleveland University-Kansas City (CUKC) , those are the exhilarating breakthroughs that research can deliver. It educates our students personally by opening their eyes to new possibilities. It rewards them professionally by getting their name out into the research community before they’ve even graduated.

Get to Know Cleveland University-Kansas City (CUKC )

CUKC is a private, nonprofit chiropractic and health sciences university in Overland Park, Kansas, a major suburb of the Kansas City metropolitan area. In addition to our 100-year legacy of offering the Doctor of Chiropractic (D.C.) degree, CUKC offers two-year degrees Radiologic Technology, and Biological Sciences. CUKC also offers the B.S. in Human Biology, B.S. in Exercise Science, the M.S. in Exercise Physiology and Sports Performance, and a 12-credit-hour Certificate in Sports Performance (CSP).

Explore our academic degrees/certifications here .

Research is a powerful part of the educational experience at CUKC and one we are proud to share with our students. As an example of the topics and issues explored, check out this research blog and our website for evidence-based research on chiropractic issues and topics .

CUKC is a student-focused, high academic quality University. Sound interesting to you? Get more information about CUKC here, and download a free guide to help you plot your college plan: Your Guide to Navigating College Financial Aid .

Research-finanacial aid: eBook to learn more

Get Email Alerts!

  • Full Name * First Last
  • Email Address *
  • Doctor of Chiropractic
  • Concurrent DC/BS Program
  • Master of Science in Health Education and Promotion
  • Master of Science is Exercise Physiology and Sports Performance
  • Bachelor of Science in Human Biology
  • Bachelor of Science in Exercise Science
  • Associate of Arts in Biological Sciences
  • Associate of Applied Science in Radiologic Technology
  • Workplace Health Promotion Certificate
  • Certificate in Sports Performance
  • Comments This field is for validation purposes and should be left unchanged.

Shape the Future of Healthcare

The School Code for Cleveland University-Kansas City is  014438 .

Empowering students to develop research skills

February 8, 2021

This post is republished from   Into Practice ,  a biweekly communication of Harvard’s  Office of the Vice Provost for Advances in Learning

Terence Capellini standing next to a human skeleton

Terence D. Capellini, Richard B Wolf Associate Professor of Human Evolutionary Biology, empowers students to grow as researchers in his Building the Human Body course through a comprehensive, course-long collaborative project that works to understand the changes in the genome that make the human skeleton unique. For instance, of the many types of projects, some focus on the genetic basis of why human beings walk on two legs. This integrative “Evo-Devo” project demands high levels of understanding of biology and genetics that students gain in the first half of class, which is then applied hands-on in the second half of class. Students work in teams of 2-3 to collect their own morphology data by measuring skeletons at the Harvard Museum of Natural History and leverage statistics to understand patterns in their data. They then collect and analyze DNA sequences from humans and other animals to identify the DNA changes that may encode morphology. Throughout this course, students go from sometimes having “limited experience in genetics and/or morphology” to conducting their own independent research. This project culminates in a team presentation and a final research paper.

The benefits: Students develop the methodological skills required to collect and analyze morphological data. Using the UCSC Genome browser  and other tools, students sharpen their analytical skills to visualize genomics data and pinpoint meaningful genetic changes. Conducting this work in teams means students develop collaborative skills that model academic biology labs outside class, and some student projects have contributed to published papers in the field. “Every year, I have one student, if not two, join my lab to work on projects developed from class to try to get them published.”

“The beauty of this class is that the students are asking a question that’s never been asked before and they’re actually collecting data to get at an answer.”

The challenges:  Capellini observes that the most common challenge faced by students in the course is when “they have a really terrific question they want to explore, but the necessary background information is simply lacking. It is simply amazing how little we do know about human development, despite its hundreds of years of study.” Sometimes, for instance, students want to learn about the evolution, development, and genetics of a certain body part, but it is still somewhat a mystery to the field. In these cases, the teaching team (including co-instructor Dr. Neil Roach) tries to find datasets that are maximally relevant to the questions the students want to explore. Capellini also notes that the work in his class is demanding and hard, just by the nature of the work, but students “always step up and perform” and the teaching team does their best to “make it fun” and ensure they nurture students’ curiosities and questions.

Takeaways and best practices

  • Incorporate previous students’ work into the course. Capellini intentionally discusses findings from previous student groups in lectures. “They’re developing real findings and we share that when we explain the project for the next groups.” Capellini also invites students to share their own progress and findings as part of class discussion, which helps them participate as independent researchers and receive feedback from their peers.
  • Assign groups intentionally.  Maintaining flexibility allows the teaching team to be more responsive to students’ various needs and interests. Capellini will often place graduate students by themselves to enhance their workload and give them training directly relevant to their future thesis work. Undergraduates are able to self-select into groups or can be assigned based on shared interests. “If two people are enthusiastic about examining the knee, for instance, we’ll match them together.”
  • Consider using multiple types of assessments.  Capellini notes that exams and quizzes are administered in the first half of the course and scaffolded so that students can practice the skills they need to successfully apply course material in the final project. “Lots of the initial examples are hypothetical,” he explains, even grounded in fiction and pop culture references, “but [students] have to eventually apply the skills they learned in addressing the hypothetical example to their own real example and the data they generate” for the Evo-Devo project. This is coupled with a paper and a presentation treated like a conference talk.

Bottom line:  Capellini’s top advice for professors looking to help their own students grow as researchers is to ensure research projects are designed with intentionality and fully integrated into the syllabus. “You can’t simply tack it on at the end,” he underscores. “If you want this research project to be a substantive learning opportunity, it has to happen from Day 1.” That includes carving out time in class for students to work on it and make the connections they need to conduct research. “Listen to your students and learn about them personally” so you can tap into what they’re excited about. Have some fun in the course, and they’ll be motivated to do the work.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

importance of research in education as a student

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

17k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

The importance of research and its impact on education

Tertiary education is indeed a big investment, so looking for the right university takes time, patience, and dedication. In case you hadn’t noticed, most universities tend to highlight research as one of their most distinguished and competitive strengths. But the question here is why ?

From an individual point of view, the advantages of research extend beyond having an impressive degree certificate. Through detailed research, students develop critical thinking expertise, as well as effective analytical, research, and communication skills that are globally sought-after and incredibly beneficial. Ultimately, research is essential to economic and social development of our globalised society, forming the foundations governmental policies around the world.

“Knowledge generated by research is the basis of sustainable development, which requires that knowledge be placed at the service of development, be converted into applications, and be shared to ensure widespread benefits,” says Mary-Louise Kearney, Director of the UNESCO Forum on Higher Education, Research and Knowledge.

One institution which understands this is the University of Skovde . Though the university is actually much younger than most, its education and internationally-competitive research are highly respected, particularly within the School of Bioscience . The university has a well-developed collaboration between education, research, the business community, and society on both a national and international level.

The school has three divisions : – The Division for Bioinformatics and Ecology, The Division for Cognitive Neuroscience and Philosophy, and The Division for Molecular Biology; offering a total of 13 academic programs at the undergraduate and advanced levels. Besides providing an impressive array of courses, the school has its own research centre known as the Systems Biology Research Center , where research is conducted in the following areas:- Infection Biology , Bioinformatics , Biotechnology , Cognitive Neuroscience and Philosophy and Ecological Modeling . Here are some examples of what Skovde’s experienced research teams have been working on:

Infection Biology

Research from the Infection Biology Group focuses on the development of mathematical and statistical models as well as experimental methodology used to help understand the complex systems that make up infection biology. The Group’s current funded projects focus on:

  • Identifying new biomarkers to help diagnose sepsis patients at an early stage
  • Identifying biomarker profiles for immunosuppressive drugs
  • Developing new methods for the detection of plant pathogens

Bioinformatics

Formed by computer science researchers, this area of investigation focuses on the development and application of algorithms for the analysis of biological data. Skovde’s research has incorporated the development of algorithms, software and databases, as well as solving biological research problems with these tools. As part of the research team, students get to work with other researchers such as stem cell and tumour biologists from other groups within the university , industrial partners and other establishments.

Cognitive neuroscience and philosophy

Research in cognitive neuroscience seeks to increase knowledge and understanding of human abilities, reflected in the form of cerebral activity. One of the main goals of the research is to increase our understanding of human consciousness, as well as to study methods that might increase human wellbeing.

Biotechnology

Defined as the application of biological organisms, systems, or processes by various industries, stakeholders and researchers, Biotechnology encompasses science and life, improving the value of materials and organisms through pharmaceuticals, crops, livestock and the environment. While research in plant biotechnology seeks to identify specific genes to eliminate various forms of arsenic contamination, Skovde’s research projects in microbial biotechnology can also be used to develop microbial bioreactors. The mussel research project that is run together with ecologists includes development of molecular markers that will enable scientists to identify different mussel species.

Skovde’s high-impact research also extends far beyond the laboratory, where the school collaborates with  Life Science companies, public organisations and other universities to strengthen its research. Through these partnerships, the school has access to specific expertise, highly advanced laboratories and equipment, as well as PhD studies.

Additionally, the university works with business partners like AstraZeneca , Abbott Diagnostics AB and EnviroPlanning to teach industrial PhD students, and also conduct research in the interest of the company. Students who register for an industrial PhD will be employed by these companies, and receive PhD training at the School of Bioscience – a great career experience that enhances their CV tremendously.

In short, studying at a university with a reputable research foundation not only gives you a firm platform on which you can continue learning, but the skills you master also provide a real advantage over others in the real-world.

Click here to view Skovde’s recent research publications

Follow University of Skovde on Facebook and YouTube

All images courtesy of University of Skovde

Liked this then you’ll love these….

The phenomenal growth of Life Sciences in emerging markets

The role of university research in tackling social challenges and driving economic growth

Popular stories

He has adhd and was miserable in singapore until he moved to this country for university, the hun school of princeton: the power of real-world, self-directed learning, i have adhd and i graduated university with distinction. here’s how i did it., the oldest languages in the world are more than 100,000 years old.

  • Copy/Paste Link Link Copied

Using Research and Reason in Education: How Teachers Can Use Scientifically Based Research to Make Curricular & Instructional Decisions

Paula J. Stanovich and Keith E. Stanovich University of Toronto

Produced by RMC Research Corporation, Portsmouth, New Hampshire

This publication was produced under National Institute for Literacy Contract No. ED-00CO-0093 with RMC Research Corporation. Sandra Baxter served as the contracting officer's technical representative. The views expressed herein do not necessarily represent the policies of the National Institute for Literacy. No official endorsement by the National Institute for Literacy or any product, commodity, service, or enterprise is intended or should be inferred.

The National Institute for Literacy

Sandra Baxter, Interim Executive Director Lynn Reddy, Communications Director

To order copies of this booklet, contact the National Institute for Literacy at EdPubs, PO Box 1398, Jessup, MD 20794-1398. Call 800-228-8813 or email [email protected] .

The National Institute for Literacy, an independent federal organization, supports the development of high quality state, regional, and national literacy services so that all Americans can develop the literacy skills they need to succeed at work, at home, and in the community.

The Partnership for Reading, a project administered by the National Institute for Literacy, is a collaborative effort of the National Institute for Literacy, the National Institute of Child Health and Human Development, the U.S. Department of Education, and the U.S. Department of Health and Human Services to make evidence-based reading research available to educators, parents, policy makers, and others with an interest in helping all people learn to read well.

Editorial support provided by C. Ralph Adler and Elizabeth Goldman, and design/production support provided by Diane Draper and Bob Kozman, all of RMC Research Corporation.

Introduction

In the recent move toward standards-based reform in public education, many educational reform efforts require schools to demonstrate that they are achieving educational outcomes with students performing at a required level of achievement. Federal and state legislation, in particular, has codified this standards-based movement and tied funding and other incentives to student achievement.

At first, demonstrating student learning may seem like a simple task, but reflection reveals that it is a complex challenge requiring educators to use specific knowledge and skills. Standards-based reform has many curricular and instructional prerequisites. The curriculum must represent the most important knowledge, skills, and attributes that schools want their students to acquire because these learning outcomes will serve as the basis of assessment instruments. Likewise, instructional methods should be appropriate for the designed curriculum. Teaching methods should lead to students learning the outcomes that are the focus of the assessment standards.

Standards- and assessment-based educational reforms seek to obligate schools and teachers to supply evidence that their instructional methods are effective. But testing is only one of three ways to gather evidence about the effectiveness of instructional methods. Evidence of instructional effectiveness can come from any of the following sources:

  • Demonstrated student achievement in formal testing situations implemented by the teacher, school district, or state;
  • Published findings of research-based evidence that the instructional methods being used by teachers lead to student achievement; or
  • Proof of reason-based practice that converges with a research-based consensus in the scientific literature. This type of justification of educational practice becomes important when direct evidence may be lacking (a direct test of the instructional efficacy of a particular method is absent), but there is a theoretical link to research-based evidence that can be traced.

Each of these methods has its pluses and minuses. While testing seems the most straightforward, it is not necessarily the clear indicator of good educational practice that the public seems to think it is. The meaning of test results is often not immediately clear. For example, comparing averages or other indicators of overall performance from tests across classrooms, schools, or school districts takes no account of the resources and support provided to a school, school district, or individual professional. Poor outcomes do not necessarily indict the efforts of physicians in Third World countries who work with substandard equipment and supplies. Likewise, objective evidence of below-grade or below-standard mean performance of a group of students should not necessarily indict their teachers if essential resources and supports (e.g., curriculum materials, institutional aid, parental cooperation) to support teaching efforts were lacking. However, the extent to which children could learn effectively even in under-equipped schools is not known because evidence-based practices are, by and large, not implemented. That is, there is evidence that children experiencing academic difficulties can achieve more educationally if they are taught with effective methods; sadly, scientific research about what works does not usually find its way into most classrooms.

Testing provides a useful professional calibrator, but it requires great contextual sensitivity in interpretation. It is not the entire solution for assessing the quality of instructional efforts. This is why research-based and reason-based educational practice are also crucial for determining the quality and impact of programs. Teachers thus have the responsibility to be effective users and interpreters of research. Providing a survey and synthesis of the most effective practices for a variety of key curriculum goals (such as literacy and numeracy) would seem to be a helpful idea, but no document could provide all of that information. (Many excellent research syntheses exist, such as the National Reading Panel, 2000; Snow, Burns, & Griffin, 1998; Swanson, 1999, but the knowledge base about effective educational practices is constantly being updated, and many issues remain to be settled.)

As professionals, teachers can become more effective and powerful by developing the skills to recognize scientifically based practice and, when the evidence is not available, use some basic research concepts to draw conclusions on their own. This paper offers a primer for those skills that will allow teachers to become independent evaluators of educational research.

The Formal Scientific Method and Scientific Thinking in Educational Practice

When you go to your family physician with a medical complaint, you expect that the recommended treatment has proven to be effective with many other patients who have had the same symptoms. You may even ask why a particular medication is being recommended for you. The doctor may summarize the background knowledge that led to that recommendation and very likely will cite summary evidence from the drug's many clinical trials and perhaps even give you an overview of the theory behind the drug's success in treating symptoms like yours.

All of this discussion will probably occur in rather simple terms, but that does not obscure the fact that the doctor has provided you with data to support a theory about your complaint and its treatment. The doctor has shared knowledge of medical science with you. And while everyone would agree that the practice of medicine has its "artful" components (for example, the creation of a healing relationship between doctor and patient), we have come to expect and depend upon the scientific foundation that underpins even the artful aspects of medical treatment. Even when we do not ask our doctors specifically for the data, we assume it is there, supporting our course of treatment.

Actually, Vaughn and Dammann (2001) have argued that the correct analogy is to say that teaching is in part a craft, rather than an art. They point out that craft knowledge is superior to alternative forms of knowledge such as superstition and folklore because, among other things, craft knowledge is compatible with scientific knowledge and can be more easily integrated with it. One could argue that in this age of education reform and accountability, educators are being asked to demonstrate that their craft has been integrated with science--that their instructional models, methods, and materials can be likened to the evidence a physician should be able to produce showing that a specific treatment will be effective. As with medicine, constructing teaching practice on a firm scientific foundation does not mean denying the craft aspects of teaching.

Architecture is another professional practice that, like medicine and education, grew from being purely a craft to a craft based firmly on a scientific foundation. Architects wish to design beautiful buildings and environments, but they must also apply many foundational principles of engineering and adhere to structural principles. If they do not, their buildings, however beautiful they may be, will not stand. Similarly, a teacher seeks to design lessons that stimulate students and entice them to learn--lessons that are sometimes a beauty to behold. But if the lessons are not based in the science of pedagogy, they, like poorly constructed buildings, will fail.

Education is informed by formal scientific research through the use of archival research-based knowledge such as that found in peer-reviewed educational journals. Preservice teachers are first exposed to the formal scientific research in their university teacher preparation courses (it is hoped), through the instruction received from their professors, and in their course readings (e.g., textbooks, journal articles). Practicing teachers continue their exposure to the results of formal scientific research by subscribing to and reading professional journals, by enrolling in graduate programs, and by becoming lifelong learners.

Scientific thinking in practice is what characterizes reflective teachers--those who inquire into their own practice and who examine their own classrooms to find out what works best for them and their students. What follows in this document is, first, a "short course" on how to become an effective consumer of the archival literature that results from the conduct of formal scientific research in education and, second, a section describing how teachers can think scientifically in their ongoing reflection about their classroom practice.

Being able to access mechanisms that evaluate claims about teaching methods and to recognize scientific research and its findings is especially important for teachers because they are often confronted with the view that "anything goes" in the field of education--that there is no such thing as best practice in education, that there are no ways to verify what works best, that teachers should base their practice on intuition, or that the latest fad must be the best way to teach, please a principal, or address local school reform. The "anything goes" mentality actually represents a threat to teachers' professional autonomy. It provides a fertile environment for gurus to sell untested educational "remedies" that are not supported by an established research base.

Teachers as independent evaluators of research evidence

One factor that has impeded teachers from being active and effective consumers of educational science has been a lack of orientation and training in how to understand the scientific process and how that process results in the cumulative growth of knowledge that leads to validated educational practice. Educators have only recently attempted to resolve educational disputes scientifically, and teachers have not yet been armed with the skills to evaluate disputes on their own.

Educational practice has suffered greatly because its dominant model for resolving or adjudicating disputes has been more political (with its corresponding factions and interest groups) than scientific. The field's failure to ground practice in the attitudes and values of science has made educators susceptible to the "authority syndrome" as well as fads and gimmicks that ignore evidence-based practice.

When our ancestors needed information about how to act, they would ask their elders and other wise people. Contemporary society and culture are much more complex. Mass communication allows virtually anyone (on the Internet, through self-help books) to proffer advice, to appear to be a "wise elder." The current problem is how to sift through the avalanche of misguided and uninformed advice to find genuine knowledge. Our problem is not information; we have tons of information. What we need are quality control mechanisms.

Peer-reviewed research journals in various disciplines provide those mechanisms. However, even with mechanisms like these in behavioral science and education, it is all too easy to do an "end run" around the quality control they provide. Powerful information dissemination outlets such as publishing houses and mass media frequently do not discriminate between good and bad information. This provides a fertile environment for gurus to sell untested educational "remedies" that are not supported by an established research base and, often, to discredit science, scientific evidence, and the notion of research-based best practice in education. As Gersten (2001) notes, both seasoned and novice teachers are "deluged with misinformation" (p. 45).

We need tools for evaluating the credibility of these many and varied sources of information; the ability to recognize research-based conclusions is especially important. Acquiring those tools means understanding scientific values and learning methods for making inferences from the research evidence that arises through the scientific process. These values and methods were recently summarized by a panel of the National Academy of Sciences convened on scientific inquiry in education (Shavelson & Towne, 2002), and our discussion here will be completely consistent with the conclusions of that NAS panel.

The scientific criteria for evaluating knowledge claims are not complicated and could easily be included in initial teacher preparation programs, but they usually are not (which deprives teachers from an opportunity to become more efficient and autonomous in their work right at the beginning of their careers). These criteria include:

  • the publication of findings in refereed journals (scientific publications that employ a process of peer review),
  • the duplication of the results by other investigators, and
  • a consensus within a particular research community on whether there is a critical mass of studies that point toward a particular conclusion.

In their discussion of the evolution of the American Educational Research Association (AERA) conference and the importance of separating research evidence from opinion when making decisions about instructional practice, Levin and O'Donnell (2000) highlight the importance of enabling teachers to become independent evaluators of research evidence. Being aware of the importance of research published in peer-reviewed scientific journals is only the first step because this represents only the most minimal of criteria. Following is a review of some of the principles of research-based evaluation that teachers will find useful in their work.

Publicly verifiable research conclusions: Replication and Peer Review

Source credibility: the consumer protection of peer reviewed journals..

The front line of defense for teachers against incorrect information in education is the existence of peer-reviewed journals in education, psychology, and other related social sciences. These journals publish empirical research on topics relevant to classroom practice and human cognition and learning. They are the first place that teachers should look for evidence of validated instructional practices.

As a general quality control mechanism, peer review journals provide a "first pass" filter that teachers can use to evaluate the plausibility of educational claims. To put it more concretely, one ironclad criterion that will always work for teachers when presented with claims of uncertain validity is the question: Have findings supporting this method been published in recognized scientific journals that use some type of peer review procedure? The answer to this question will almost always separate pseudoscientific claims from the real thing.

In a peer review, authors submit a paper to a journal for publication, where it is critiqued by several scientists. The critiques are reviewed by an editor (usually a scientist with an extensive history of work in the specialty area covered by the journal). The editor then decides whether the weight of opinion warrants immediate publication, publication after further experimentation and statistical analysis, or rejection because the research is flawed or does not add to the knowledge base. Most journals carry a statement of editorial policy outlining their exact procedures for publication, so it is easy to check whether a journal is in fact, peer-reviewed.

Peer review is a minimal criterion, not a stringent one. Not all information in peer-reviewed scientific journals is necessarily correct, but it has at the very least undergone a cycle of peer criticism and scrutiny. However, it is because the presence of peer-reviewed research is such a minimal criterion that its absence becomes so diagnostic. The failure of an idea, a theory, an educational practice, behavioral therapy, or a remediation technique to have adequate documentation in the peer-reviewed literature of a scientific discipline is a very strong indication to be wary of the practice.

The mechanisms of peer review vary somewhat from discipline to discipline, but the underlying rationale is the same. Peer review is one way (replication of a research finding is another) that science institutionalizes the attitudes of objectivity and public criticism. Ideas and experimentation undergo a honing process in which they are submitted to other critical minds for evaluation. Ideas that survive this critical process have begun to meet the criterion of public verifiability. The peer review process is far from perfect, but it really is the only external consumer protection that teachers have.

The history of reading instruction illustrates the high cost that is paid when the peer-reviewed literature is ignored, when the normal processes of scientific adjudication are replaced with political debates and rhetorical posturing. A vast literature has been generated on best practices that foster children's reading acquisition (Adams, 1990; Anderson, Hiebert, Scott, & Wilkinson, 1985; Chard & Osborn, 1999; Cunningham & Allington, 1994; Ehri, Nunes, Stahl, & Willows, 2001; Moats, 1999; National Reading Panel, 2000; Pearson, 1993; Pressley, 1998; Pressley, Rankin, & Yokol, 1996; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2002; Reading Coherence Initiative, 1999; Snow, Burns, & Griffin, 1998; Spear-Swerling & Sternberg, 2001). Yet much of this literature remains unknown to many teachers, contributing to the frustrating lack of clarity about accepted, scientifically validated findings and conclusions on reading acquisition.

Teachers should also be forewarned about the difference between professional education journals that are magazines of opinion in contrast to journals where primary reports of research, or reviews of research, are peer reviewed. For example, the magazines Phi Delta Kappan and Educational Leadership both contain stimulating discussions of educational issues, but neither is a peer-reviewed journal of original research. In contrast, the American Educational Research Journal (a flagship journal of the AERA) and the Journal of Educational Psychology (a flagship journal of the American Psychological Association) are both peer-reviewed journals of original research. Both are main sources for evidence on validated techniques of reading instruction and for research on aspects of the reading process that are relevant to a teacher's instructional decisions.

This is true, too, of presentations at conferences of educational organizations. Some are data-based presentations of original research. Others are speeches reflecting personal opinion about educational problems. While these talks can be stimulating and informative, they are not a substitute for empirical research on educational effectiveness.

Replication and the importance of public verifiability.

Research-based conclusions about educational practice are public in an important sense: they do not exist solely in the mind of a particular individual but have been submitted to the scientific community for criticism and empirical testing by others. Knowledge considered "special"--the province of the thought of an individual and immune from scrutiny and criticism by others--can never have the status of scientific knowledge. Research-based conclusions, when published in a peer reviewed journal, become part of the public realm, available to all, in a way that claims of "special expertise" are not.

Replication is the second way that science uses to make research-based conclusions concrete and "public." In order to be considered scientific, a research finding must be presented to other researchers in the scientific community in a way that enables them to attempt the same experiment and obtain the same results. When the same results occur, the finding has been replicated . This process ensures that a finding is not the result of the errors or biases of a particular investigator. Replicable findings become part of the converging evidence that forms the basis of a research-based conclusion about educational practice.

John Donne told us that "no man is an island." Similarly, in science, no researcher is an island. Each investigator is connected to the research community and its knowledge base. This interconnection enables science to grow cumulatively and for research-based educational practice to be built on a convergence of knowledge from a variety of sources. Researchers constantly build on previous knowledge in order to go beyond what is currently known. This process is possible only if research findings are presented in such a way that any investigator can use them to build on.

Philosopher Daniel Dennett (1995) has said that science is "making mistakes in public. Making mistakes for all to see, in the hopes of getting the others to help with the corrections" (p. 380). We might ask those proposing an educational innovation for the evidence that they have in fact "made some mistakes in public." Legitimate scientific disciplines can easily provide such evidence. For example, scientists studying the psychology of reading once thought that reading difficulties were caused by faulty eye movements. This hypothesis has been shown to be in error, as has another that followed it, that so-called visual reversal errors were a major cause of reading difficulty. Both hypotheses were found not to square with the empirical evidence (Rayner, 1998; Share & Stanovich, 1995). The hypothesis that reading difficulties can be related to language difficulties at the phonological level has received much more support (Liberman, 1999; National Reading Panel, 2000; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2002; Shankweiler, 1999; Stanovich, 2000).

After making a few such "errors" in public, reading scientists have begun, in the last 20 years, to get it right. But the only reason teachers can have confidence that researchers are now "getting it right" is that researchers made it open, public knowledge when they got things wrong. Proponents of untested and pseudoscientific educational practices will never point to cases where they "got it wrong" because they are not committed to public knowledge in the way that actual science is. These proponents do not need, as Dennett says, "to get others to help in making the corrections" because they have no intention of correcting their beliefs and prescriptions based on empirical evidence.

Education is so susceptible to fads and unproven practices because of its tacit endorsement of a personalistic view of knowledge acquisition--one that is antithetical to the scientific value of the public verifiability of knowledge claims. Many educators believe that knowledge resides within particular individuals--with particularly elite insights--who then must be called upon to dispense this knowledge to others. Indeed, some educators reject public, depersonalized knowledge in social science because they believe it dehumanizes people. Science, however, with its conception of publicly verifiable knowledge, actually democratizes knowledge. It frees practitioners and researchers from slavish dependence on authority.

Subjective, personalized views of knowledge degrade the human intellect by creating conditions that subjugate it to an elite whose "personal" knowledge is not accessible to all (Bronowski, 1956, 1977; Dawkins, 1998; Gross, Levitt, & Lewis, 1997; Medawar, 1982, 1984, 1990; Popper, 1972; Wilson, 1998). Empirical science, by generating knowledge and moving it into the public domain, is a liberating force. Teachers can consult the research and decide for themselves whether the state of the literature is as the expert portrays it. All teachers can benefit from some rudimentary grounding in the most fundamental principles of scientific inference. With knowledge of a few uncomplicated research principles, such as control, manipulation, and randomization, anyone can enter the open, public discourse about empirical findings. In fact, with the exception of a few select areas such as the eye movement research mentioned previously, much of the work described in noted summaries of reading research (e.g., Adams, 1990; Snow, Burns, & Griffin, 1998) could easily be replicated by teachers themselves.

There are many ways that the criteria of replication and peer review can be utilized in education to base practitioner training on research-based best practice. Take continuing teacher education in the form of inservice sessions, for example. Teachers and principals who select speakers for professional development activities should ask speakers for the sources of their conclusions in the form of research evidence in peer-reviewed journals. They should ask speakers for bibliographies of the research evidence published on the practices recommended in their presentations.

The science behind research-based practice relies on systematic empiricism

Empiricism is the practice of relying on observation. Scientists find out about the world by examining it. The refusal by some scientists to look into Galileo's telescope is an example of how empiricism has been ignored at certain points in history. It was long believed that knowledge was best obtained through pure thought or by appealing to authority. Galileo claimed to have seen moons around the planet Jupiter. Another scholar, Francesco Sizi, attempted to refute Galileo, not with observations, but with the following argument:

There are seven windows in the head, two nostrils, two ears, two eyes and a mouth; so in the heavens there are two favorable stars, two unpropitious, two luminaries, and Mercury alone undecided and indifferent. From which and many other similar phenomena of nature such as the seven metals, etc., which it were tedious to enumerate, we gather that the number of planets is necessarily seven...ancient nations, as well as modern Europeans, have adopted the division of the week into seven days, and have named them from the seven planets; now if we increase the number of planets, this whole system falls to the ground...moreover, the satellites are invisible to the naked eye and therefore can have no influence on the earth and therefore would be useless and therefore do not exist. (Holton & Roller, 1958, p. 160)

Three centuries of the demonstrated power of the empirical approach give us an edge on poor Sizi. Take away those years of empiricism, and many of us might have been there nodding our heads and urging him on. In fact, the empirical approach is not necessarily obvious, which is why we often have to teach it, even in a society that is dominated by science.

Empiricism pure and simple is not enough, however. Observation itself is fine and necessary, but pure, unstructured observation of the natural world will not lead to scientific knowledge. Write down every observation you make from the time you get up in the morning to the time you go to bed on a given day. When you finish, you will have a great number of facts, but you will not have a greater understanding of the world. Scientific observation is termed systematic because it is structured so that the results of the observation reveal something about the underlying causal structure of events in the world. Observations are structured so that, depending upon the outcome of the observation, some theories of the causes of the outcome are supported and others rejected.

Teachers can benefit by understanding two things about research and causal inferences. The first is the simple (but sometimes obscured) fact that statements about best instructional practices are statements that contain a causal claim. These statements claim that one type of method or practice causes superior educational outcomes. Second, teachers must understand how the logic of the experimental method provides the critical support for making causal inferences.

Science addresses testable questions

Science advances by positing theories to account for particular phenomena in the world, by deriving predictions from these theories, by testing the predictions empirically, and by modifying the theories based on the tests (the sequence is typically theory -> prediction -> test -> theory modification). What makes a theory testable? A theory must have specific implications for observable events in the natural world.

Science deals only with a certain class of problem: the kind that is empirically solvable. That does not mean that different classes of problems are inherently solvable or unsolvable and that this division is fixed forever. Quite the contrary: some problems that are currently unsolvable may become solvable as theory and empirical techniques become more sophisticated. For example, decades ago historians would not have believed that the controversial issue of whether Thomas Jefferson had a child with his slave Sally Hemings was an empirically solvable question. Yet, by 1998, this problem had become solvable through advances in genetic technology, and a paper was published in the journal Nature (Foster, Jobling, Taylor, Donnelly, Deknijeff, Renemieremet, Zerjal, & Tyler-Smith, 1998) on the question.

The criterion of whether a problem is "testable" is called the falsifiability criterion: a scientific theory must always be stated in such a way that the predictions derived from it can potentially be shown to be false. The falsifiability criterion states that, for a theory to be useful, the predictions drawn from it must be specific. The theory must go out on a limb, so to speak, because in telling us what should happen, the theory must also imply that certain things will not happen. If these latter things do happen, it is a clear signal that something is wrong with the theory. It may need to be modified, or we may need to look for an entirely new theory. Either way, we will end up with a theory that is closer to the truth.

In contrast, if a theory does not rule out any possible observations, then the theory can never be changed, and we are frozen into our current way of thinking with no possibility of progress. A successful theory cannot posit or account for every possible happening. Such a theory robs itself of any predictive power.

What we are talking about here is a certain type of intellectual honesty. In science, the proponent of a theory is always asked to address this question before the data are collected: "What data pattern would cause you to give up, or at least to alter, this theory?" In the same way, the falsifiability criterion is a useful consumer protection for the teacher when evaluating claims of educational effectiveness. Proponents of an educational practice should be asked for evidence; they should also be willing to admit that contrary data will lead them to abandon the practice. True scientific knowledge is held tentatively and is subject to change based on contrary evidence. Educational remedies not based on scientific evidence will often fail to put themselves at risk by specifying what data patterns would prove them false.

Objectivity and intellectual honesty

Objectivity, another form of intellectual honesty in research, means that we let nature "speak for itself" without imposing our wishes on it--that we report the results of experimentation as accurately as we can and that we interpret them as fairly as possible. (The fact that this goal is unattainable for any single human being should not dissuade us from holding objectivity as a value.)

In the language of the general public, open-mindedness means being open to possible theories and explanations for a particular phenomenon. But in science it means that and something more. Philosopher Jonathan Adler (1998) teaches us that science values another aspect of open-mindedness even more highly: "What truly marks an open-minded person is the willingness to follow where evidence leads. The open-minded person is willing to defer to impartial investigations rather than to his own predilections...Scientific method is attunement to the world, not to ourselves" (p. 44).

Objectivity is critical to the process of science, but it does not mean that such attitudes must characterize each and every scientist for science as a whole to work. Jacob Bronowski (1973, 1977) often argued that the unique power of science to reveal knowledge about the world does not arise because scientists are uniquely virtuous (that they are completely objective or that they are never biased in interpreting findings, for example). It arises because fallible scientists are immersed in a process of checks and balances --a process in which scientists are always there to criticize and to root out errors. Philosopher Daniel Dennett (1999/2000) points out that "scientists take themselves to be just as weak and fallible as anybody else, but recognizing those very sources of error in themselvesÉthey have devised elaborate systems to tie their own hands, forcibly preventing their frailties and prejudices from infecting their results" (p. 42). More humorously, psychologist Ray Nickerson (1998) makes the related point that the vanities of scientists are actually put to use by the scientific process, by noting that it is "not so much the critical attitude that individual scientists have taken with respect to their own ideas that has given science its success...but more the fact that individual scientists have been highly motivated to demonstrate that hypotheses that are held by some other scientists are false" (p. 32). These authors suggest that the strength of scientific knowledge comes not because scientists are virtuous, but from the social process where scientists constantly cross-check each others' knowledge and conclusions.

The public criteria of peer review and replication of findings exist in part to keep checks on the objectivity of individual scientists. Individuals cannot hide bias and nonobjectivity by personalizing their claims and keeping them from public scrutiny. Science does not accept findings that have failed the tests of replication and peer review precisely because it wants to ensure that all findings in science are in the public domain, as defined above. Purveyors of pseudoscientific educational practices fail the test of objectivity and are often identifiable by their attempts to do an "end run" around the public mechanisms of science by avoiding established peer review mechanisms and the information-sharing mechanisms that make replication possible. Instead, they attempt to promulgate their findings directly to consumers, such as teachers.

The principle of converging evidence

The principle of converging evidence has been well illustrated in the controversies surrounding the teaching of reading. The methods of systematic empiricism employed in the study of reading acquisition are many and varied. They include case studies, correlational studies, experimental studies, narratives, quasi-experimental studies, surveys, epidemiological studies and many others. The results of many of these studies have been synthesized in several important research syntheses (Adams, 1990; Ehri et al., 2001; National Reading Panel, 2000; Pressley, 1998; Rayner et al., 2002; Reading Coherence Initiative, 1999; Share & Stanovich, 1995; Snow, Burns, & Griffin, 1998; Snowling, 2000; Spear-Swerling & Sternberg, 2001; Stanovich, 2000). These studies were used in a process of establishing converging evidence, a principle that governs the drawing of the conclusion that a particular educational practice is research-based.

The principle of converging evidence is applied in situations requiring a judgment about where the "preponderance of evidence" points. Most areas of science contain competing theories. The extent to which a particular study can be seen as uniquely supporting one particular theory depends on whether other competing explanations have been ruled out. A particular experimental result is never equally relevant to all competing theories. An experiment may be a very strong test of one or two alternative theories but a weak test of others. Thus, research is considered highly convergent when a series of experiments consistently supports a given theory while collectively eliminating the most important competing explanations. Although no single experiment can rule out all alternative explanations, taken collectively, a series of partially diagnostic experiments can lead to a strong conclusion if the data converge.

Contrast this idea of converging evidence with the mistaken view that a problem in science can be solved with a single, crucial experiment, or that a single critical insight can advance theory and overturn all previous knowledge. This view of scientific progress fits nicely with the operation of the news media, in which history is tracked by presenting separate, disconnected "events" in bite-sized units. This is a gross misunderstanding of scientific progress and, if taken too seriously, leads to misconceptions about how conclusions are reached about research-based practices.

One experiment rarely decides an issue, supporting one theory and ruling out all others. Issues are most often decided when the community of scientists gradually begins to agree that the preponderance of evidence supports one alternative theory rather than another. Scientists do not evaluate data from a single experiment that has finally been designed in the perfect way. They most often evaluate data from dozens of experiments, each containing some flaws but providing part of the answer.

Although there are many ways in which an experiment can go wrong (or become confounded ), a scientist with experience working on a particular problem usually has a good idea of what most of the critical factors are, and there are usually only a few. The idea of converging evidence tells us to examine the pattern of flaws running through the research literature because the nature of this pattern can either support or undermine the conclusions that we might draw.

For example, suppose that the findings from a number of different experiments were largely consistent in supporting a particular conclusion. Given the imperfect nature of experiments, we would evaluate the extent and nature of the flaws in these studies. If all the experiments were flawed in a similar way, this circumstance would undermine confidence in the conclusions drawn from them because the consistency of the outcome may simply have resulted from a particular, consistent flaw. On the other hand, if all the experiments were flawed in different ways, our confidence in the conclusions increases because it is less likely that the consistency in the results was due to a contaminating factor that confounded all the experiments. As Anderson and Anderson (1996) note, "When a conceptual hypothesis survives many potential falsifications based on different sets of assumptions, we have a robust effect." (p. 742).

Suppose that five different theoretical summaries (call them A, B, C, D, and E) of a given set of phenomena exist at one time and are investigated in a series of experiments. Suppose that one set of experiments represents a strong test of theories A, B, and C, and that the data largely refute theories A and B and support C. Imagine also that another set of experiments is a particularly strong test of theories C, D, and E, and that the data largely refute theories D and E and support C. In such a situation, we would have strong converging evidence for theory C. Not only do we have data supportive of theory C, but we have data that contradict its major competitors. Note that no one experiment tests all the theories, but taken together, the entire set of experiments allows a strong inference.

In contrast, if the two sets of experiments each represent strong tests of B, C, and E, and the data strongly support C and refute B and E, the overall support for theory C would be less strong than in our previous example. The reason is that, although data supporting theory C have been generated, there is no strong evidence ruling out two viable alternative theories (A and D). Thus research is highly convergent when a series of experiments consistently supports a given theory while collectively eliminating the most important competing explanations. Although no single experiment can rule out all alternative explanations, taken collectively, a series of partially diagnostic experiments can lead to a strong conclusion if the data converge in the manner of our first example.

Increasingly, the combining of evidence from disparate studies to form a conclusion is being done more formally by the use of the statistical technique termed meta-analysis (Cooper & Hedges, 1994; Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Rosenthal, 1995; Schmidt, 1992; Swanson, 1999) which has been used extensively to establish whether various medical practices are research based. In a medical context, meta-analysis:

involves adding together the data from many clinical trials to create a single pool of data big enough to eliminate much of the statistical uncertainty that plagues individual trials...The great virtue of meta-analysis is that clear findings can emerge from a group of studies whose findings are scattered all over the map. (Plotkin,1996, p. 70)

The use of meta-analysis for determining the research validation of educational practices is just the same as in medicine. The effects obtained when one practice is compared against another are expressed in a common statistical metric that allows comparison of effects across studies. The findings are then statistically amalgamated in some standard ways (Cooper & Hedges, 1994; Hedges & Olkin, 1985; Swanson, 1999) and a conclusion about differential efficacy is reached if the amalgamation process passes certain statistical criteria. In some cases, of course, no conclusion can be drawn with confidence, and the result of the meta-analysis is inconclusive.

More and more commentators on the educational research literature are calling for a greater emphasis on meta-analysis as a way of dampening the contentious disputes about conflicting studies that plague education and other behavioral sciences (Kavale & Forness, 1995; Rosnow & Rosenthal, 1989; Schmidt, 1996; Stanovich, 2001; Swanson, 1999). The method is useful for ending disputes that seem to be nothing more than a "he-said, she-said" debate. An emphasis on meta-analysis has often revealed that we actually have more stable and useful findings than is apparent from a perusal of the conflicts in our journals.

The National Reading Panel (2000) found just this in their meta-analysis of the evidence surrounding several issues in reading education. For example, they concluded that the results of a meta-analysis of the results of 66 comparisons from 38 different studies indicated "solid support for the conclusion that systematic phonics instruction makes a bigger contribution to children's growth in reading than alternative programs providing unsystematic or no phonics instruction" (p. 2-84). In another section of their report, the National Reading Panel reported that a meta-analysis of 52 studies of phonemic awareness training indicated that "teaching children to manipulate the sounds in language helps them learn to read. Across the various conditions of teaching, testing, and participant characteristics, the effect sizes were all significantly greater than chance and ranged from large to small, with the majority in the moderate range. Effects of phonemic awareness training on reading lasted well beyond the end of training" (p. 2-5).

A statement by a task force of the American Psychological Association (Wilkinson, 1999) on statistical methods in psychology journals provides an apt summary for this section. The task force stated that investigators should not "interpret a single study's results as having importance independent of the effects reported elsewhere in the relevant literature" (p. 602). Science progresses by convergence upon conclusions. The outcomes of one study can only be interpreted in the context of the present state of the convergence on the particular issue in question.

The logic of the experimental method

Scientific thinking is based on the ideas of comparison, control, and manipulation . In a true experimental study, these characteristics of scientific investigation must be arranged to work in concert.

Comparison alone is not enough to justify a causal inference. In methodology texts, correlational investigations (which involve comparison only) are distinguished from true experimental investigations that warrant much stronger causal inferences because they involve comparison, control, and manipulation. The mere existence of a relationship between two variables does not guarantee that changes in one are causing changes in the other. Correlation does not imply causation.

There are two potential problems with drawing causal inferences from correlational evidence. The first is called the third-variable problem. It occurs when the correlation between the two variables does not indicate a direct causal path between them but arises because both variables are related to a third variable that has not even been measured.

The second reason is called the directionality problem. It creates potential interpretive difficulties because even if two variables have a direct causal relationship, the direction of that relationship is not indicated by the mere presence of the correlation. In short, a correlation between variables A and B could arise because changes in A are causing changes in B or because changes in B are causing changes in A. The mere presence of the correlation does not allow us to decide between these two possibilities.

The heart of the experimental method lies in manipulation and control. In contrast to a correlational study, where the investigator simply observes whether the natural fluctuation in two variables displays a relationship, the investigator in a true experiment manipulates the variable thought to be the cause (the independent variable) and looks for an effect on the variable thought to be the effect (the dependent variable ) while holding all other variables constant by control and randomization. This method removes the third-variable problem because, in the natural world, many different things are related. The experimental method may be viewed as a way of prying apart these naturally occurring relationships. It does so because it isolates one particular variable (the hypothesized cause) by manipulating it and holding everything else constant (control).

When manipulation is combined with a procedure known as random assignment (in which the subjects themselves do not determine which experimental condition they will be in but, instead, are randomly assigned to one of the experimental groups), scientists can rule out alternative explanations of data patterns. By using manipulation, experimental control, and random assignment, investigators construct stronger comparisons so that the outcome eliminates alternative theories and explanations.

The need for both correlational methods and true experiments

As strong as they are methodologically, studies employing true experimental logic are not the only type that can be used to draw conclusions. Correlational studies have value. The results from many different types of investigation, including correlational studies, can be amalgamated to derive a general conclusion. The basis for conclusion rests on the convergence observed from the variety of methods used. This is most certainly true in classroom and curriculum research. It is necessary to amalgamate the results from not only experimental investigations, but correlational studies, nonequivalent control group studies, time series designs, and various other quasi-experimental designs and multivariate correlational designs, All have their strengths and weaknesses. For example, it is often (but not always) the case that experimental investigations are high in internal validity, but limited in external validity, whereas correlational studies are often high in external validity, but low in internal validity.

Internal validity concerns whether we can infer a causal effect for a particular variable. The more a study employs the logic of a true experiment (i.e., includes manipulation, control, and randomization), the more we can make a strong causal inference. External validity concerns the generalizability of the conclusion to the population and setting of interest. Internal and external validity are often traded off across different methodologies. Experimental laboratory investigations are high in internal validity but may not fully address concerns about external validity. Field classroom investigations, on the other hand, are often quite high in external validity but because of the logistical difficulties involved in carrying them out, they are often quite low in internal validity. That is why we need to look for a convergence of results, not just consistency from one method. Convergence increases our confidence in the external and internal validity of our conclusions.

Again, this underscores why correlational studies can contribute to knowledge. First, some variables simply cannot be manipulated for ethical reasons (for instance, human malnutrition or physical disabilities). Other variables, such as birth order, sex, and age, are inherently correlational because they cannot be manipulated, and therefore the scientific knowledge concerning them must be based on correlational evidence. Finally, logistical difficulties in classroom and curriculum research often make it impossible to achieve the logic of the true experiment. However, this circumstance is not unique to educational or psychological research. Astronomers obviously cannot manipulate all the variables affecting the objects they study, yet they are able to arrive at conclusions.

Complex correlational techniques are essential in the absence of experimental research because complex correlational statistics such as multiple regression, path analysis, and structural equation modeling that allow for the partial control of third variables when those variables can be measured. These statistics allow us to recalculate the correlation between two variables after the influence of other variables is removed. If a potential third variable can be measured, complex correlational statistics can help us determine whether that third variable is determining the relationship. These correlational statistics and designs help to rule out certain causal hypotheses, even if they cannot demonstrate the true causal relation definitively.

Stages of scientific investigation: The Role of Case Studies and Qualitative Investigations

The educational literature includes many qualitative investigations that focus less on issues of causal explanation and variable control and more on thick description , in the manner of the anthropologist (Geertz, 1973, 1979). The context of a person's behavior is described as much as possible from the standpoint of the participant. Many different fields (e.g., anthropology, psychology, education) contain case studies where the focus is detailed description and contextualization of the situation of a single participant (or very few participants).

The usefulness of case studies and qualitative investigations is strongly determined by how far scientific investigation has advanced in a particular area. The insights gained from case studies or qualitative investigations may be quite useful in the early stages of an investigation of a certain problem. They can help us determine which variables deserve more intense study by drawing attention to heretofore unrecognized aspects of a person's behavior and by suggesting how understanding of behavior might be sharpened by incorporating the participant's perspective.

However, when we move from the early stages of scientific investigation, where case studies may be very useful, to the more mature stages of theory testing--where adjudicating between causal explanations is the main task--the situation changes drastically. Case studies and qualitative description are not useful at the later stages of scientific investigation because they cannot be used to confirm or disconfirm a particular causal theory. They lack the comparative information necessary to rule out alternative explanations.

Where qualitative investigations are useful relates strongly to a distinction in philosophy of science between the context of discovery and the context of justification . Qualitative research, case studies, and clinical observations support a context of discovery where, as Levin and O'Donnell (2000) note in an educational context, such research must be regarded as "preliminary/exploratory, observational, hypothesis generating" (p. 26). They rightly point to the essential importance of qualitative investigations because "in the early stages of inquiry into a research topic, one has to look before one can leap into designing interventions, making predictions, or testing hypotheses" (p. 26). The orientation provided by qualitative investigations is critical in such cases. Even more important, the results of quantitative investigations--which must sometimes abstract away some of the contextual features of a situation--are often contextualized by the thick situational description provided by qualitative work.

However, in the context of justification, variables must be measured precisely, large groups must be tested to make sure the conclusion generalizes and, most importantly, many variables must be controlled because alternative causal explanations must be ruled out. Gersten (2001) summarizes the value of qualitative research accurately when he says that "despite the rich insights they often provide, descriptive studies cannot be used as evidence for an intervention's efficacy...descriptive research can only suggest innovative strategies to teach students and lay the groundwork for development of such strategies" (p. 47). Qualitative research does, however, help to identify fruitful directions for future experimental studies.

Nevertheless, here is why the sole reliance on qualitative techniques to determine the effectiveness of curricula and instructional strategies has become problematic. As a researcher, you desire to do one of two things.

Objective A

The researcher wishes to make some type of statement about a relationship, however minimal. That is, you at least want to use terms like greater than, or less than, or equal to. You want to say that such and such an educational program or practice is better than another. "Better than" and "worse than" are, of course, quantitative statements--and, in the context of issues about what leads to or fosters greater educational achievement, they are causal statements as well . As quantitative causal statements, the support for such claims obviously must be found in the experimental logic that has been outlined above. To justify such statements, you must adhere to the canons of quantitative research logic.

Objective B

The researcher seeks to adhere to an exclusively qualitative path that abjures statements about relationships and never uses comparative terms of magnitude. The investigator desires to simply engage in thick description of a domain that may well prompt hypotheses when later work moves on to the more quantitative methods that are necessary to justify a causal inference.

Investigators pursuing Objective B are doing essential work. They provide quantitative information with suggestions for richer hypotheses to study. In education, however, investigators sometimes claim to be pursuing Objective B but slide over into Objective A without realizing they have made a crucial switch. They want to make comparative, or quantitative, statements, but have not carried out the proper types of investigation to justify them. They want to say that a certain educational program is better than another (that is, it causes better school outcomes). They want to give educational strictures that are assumed to hold for a population of students, not just to the single or few individuals who were the objects of the qualitative study. They want to condemn an educational practice (and, by inference, deem an alternative quantitatively and causally better). But instead of taking the necessary course of pursuing Objective A, they carry out their investigation in the manner of Objective B.

Let's recall why the use of single case or qualitative description as evidence in support of a particular causal explanation is inappropriate. The idea of alternative explanations is critical to an understanding of theory testing. The goal of experimental design is to structure events so that support of one particular explanation simultaneously disconfirms other explanations. Scientific progress can occur only if the data that are collected rule out some explanations. Science sets up conditions for the natural selection of ideas. Some survive empirical testing and others do not.

This is the honing process by which ideas are sifted so that those that contain the most truth are found. But there must be selection in this process: data collected as support for a particular theory must not leave many other alternative explanations as equally viable candidates. For this reason, scientists construct control or comparison groups in their experimentation. These groups are formed so that, when their results are compared with those from an experimental group, some alternative explanations are ruled out.

Case studies and qualitative description lack the comparative information necessary to prove that a particular theory or educational practice is superior, because they fail to test an alternative; they rule nothing out. Take the seminal work of Jean Piaget for example. His case studies were critical in pointing developmental psychology in new and important directions, but many of his theoretical conclusions and causal explanations did not hold up in controlled experiments (Bjorklund, 1995; Goswami, 1998; Siegler, 1991).

In summary, as educational psychologist Richard Mayer (2000) notes, "the domain of science includes both some quantitative and qualitative methodologies" (p. 39), and the key is to use each where it is most effective (see Kamil, 1995). Likewise, in their recent book on research-based best practices in comprehension instruction, Block and Pressley (2002) argue that future progress in understanding how comprehension works will depend on a healthy interaction between qualitative and quantitative approaches. They point out that getting an initial idea of the comprehension processes involved in hypertext and Web-based environments will involve detailed descriptive studies using think-alouds and assessments of qualitative decision making. Qualitative studies of real reading environments will set the stage for more controlled investigations of causal hypotheses.

The progression to more powerful methods

A final useful concept is the progression to more powerful research methods ("more powerful" in this context meaning more diagnostic of a causal explanation). Research on a particular problem often proceeds from weaker methods (ones less likely to yield a causal explanation) to ones that allow stronger causal inferences. For example, interest in a particular hypothesis may originally emerge from a particular case study of unusual interest. This is the proper role for case studies: to suggest hypotheses for further study with more powerful techniques and to motivate scientists to apply more rigorous methods to a research problem. Thus, following the case studies, researchers often undertake correlational investigations to verify whether the link between variables is real rather than the result of the peculiarities of a few case studies. If the correlational studies support the relationship between relevant variables, then researchers will attempt experiments in which variables are manipulated in order to isolate a causal relationship between the variables.

Summary of principles that support research-based inferences about best practice

Our sketch of the principles that support research-based inferences about best practice in education has revealed that:

  • Science progresses by investigating solvable, or testable, empirical problems.
  • To be testable, a theory must yield predictions that could possible be shown to be wrong.
  • The concepts in the theories in science evolve as evidence accumulates. Scientific knowledge is not infallible knowledge, but knowledge that has at least passed some minimal tests. The theories behind research-based practice can be proven wrong, and therefore they contain a mechanism for growth and advancement.
  • Theories are tested by systematic empiricism. The data obtained from empirical research are in the public domain in the sense that they are presented in a manner that allows replication and criticism by other scientists.
  • Data and theories in science are considered in the public domain only after publication in peer-reviewed scientific journals.
  • Empiricism is systematic because it strives for the logic of control and manipulation that characterizes a true experiment.
  • Correlational techniques are helpful when the logic of an experiment cannot be approximated, but because these techniques only help rule out hypotheses, they are considered weaker than true experimental methods.
  • Researchers use many different methods to arrive at their conclusions, and the strengths and weaknesses of these methods vary. Most often, conclusions are drawn only after a slow accumulation of data from many studies.

Scientific thinking in educational practice: Reason-based practice in the absence of direct evidence

Some areas in educational research, to date, lack a research-based consensus, for a number of reasons. Perhaps the problem or issue has not been researched extensively. Perhaps research into the issue is in the early stages of investigation, where descriptive studies are suggesting interesting avenues, but no controlled research justifying a causal inference has been completed. Perhaps many correlational studies and experiments have been conducted on the issue, but the research evidence has not yet converged in a consistent direction.

Even if teachers know the principles of scientific evaluation described earlier, the research literature sometimes fails to give them clear direction. They will have to fall back on their own reasoning processes as informed by their own teaching experiences. In those cases, teachers still have many ways of reasoning scientifically.

Tracing the link from scientific research to scientific thinking in practice

Scientific thinking in can be done in several ways. Earlier we discussed different types of professional publications that teachers can read to improve their practice. The most important defining feature of these outlets is whether they are peer reviewed. Another defining feature is whether the publication contains primary research rather than presenting opinion pieces or essays on educational issues. If a journal presents primary research, we can evaluate the research using the formal scientific principles outlined above.

If the journal is presenting opinion pieces about what constitutes best practice, we need to trace the link between those opinions and archival peer-reviewed research. We would look to see whether the authors have based their opinions on peer-reviewed research by reading the reference list. Do the authors provide a significant amount of original research citations (is their opinion based on more than one study)? Do the authors cite work other than their own (have the results been replicated)? Are the cited journals peer-reviewed? For example, in the case of best practice for reading instruction, if we came across an article in an opinion-oriented journal such as Intervention in School and Clinic, we might look to see if the authors have cited work that has appeared in such peer-reviewed journals as Journal of Educational Psychology , Elementary School Journal , Journal of Literacy Research , Scientific Studies of Reading , or the Journal of Learning Disabilities .

These same evaluative criteria can be applied to presenters at professional development workshops or papers given at conferences. Are they conversant with primary research in the area on which they are presenting? Can they provide evidence for their methods and does that evidence represent a scientific consensus? Do they understand what is required to justify causal statements? Are they open to the possibility that their claims could be proven false? What evidence would cause them to shift their thinking?

An important principle of scientific evaluation--the connectivity principle (Stanovich, 2001)--can be generalized to scientific thinking in the classroom. Suppose a teacher comes upon a new teaching method, curriculum component, or process. The method is advertised as totally new, which provides an explanation for the lack of direct empirical evidence for the method. A lack of direct empirical evidence should be grounds for suspicion, but should not immediately rule it out. The principle of connectivity means that the teacher now has another question to ask: "OK, there is no direct evidence for this method, but how is the theory behind it (the causal model of the effects it has) connected to the research consensus in the literature surrounding this curriculum area?" Even in the absence of direct empirical evidence on a particular method or technique, there could be a theoretical link to the consensus in the existing literature that would support the method.

For further tips on translating research into classroom practice, see Warby, Greene, Higgins, & Lovitt (1999). They present a format for selecting, reading, and evaluating research articles, and then importing the knowledge gained into the classroom.

Let's take an imaginary example from the domain of treatments for children with extreme reading difficulties. Imagine two treatments have been introduced to a teacher. No direct empirical tests of efficacy have been carried out using either treatment. The first, Treatment A, is a training program to facilitate the awareness of the segmental nature of language at the phonological level. The second, Treatment B, involves giving children training in vestibular sensitivity by having them walk on balance beams while blindfolded. Treatment A and B are equal in one respect--neither has had a direct empirical test of its efficacy, which reflects badly on both. Nevertheless, one of the treatments has the edge when it comes to the principle of connectivity. Treatment A makes contact with a broad consensus in the research literature that children with extraordinary reading difficulties are hampered because of insufficiently developed awareness of the segmental structure of language. Treatment B is not connected to any corresponding research literature consensus. Reason dictates that Treatment A is a better choice, even though neither has been directly tested.

Direct connections with research-based evidence and use of the connectivity principle when direct empirical evidence is absent give us necessary cross-checks on some of the pitfalls that arise when we rely solely on personal experience. Drawing upon personal experience is necessary and desirable in a veteran teacher, but it is not sufficient for making critical judgments about the effectiveness of an instructional strategy or curriculum. The insufficiency of personal experience becomes clear if we consider that the educational judgments--even of veteran teachers--often are in conflict. That is why we have to adjudicate conflicting knowledge claims using the scientific method.

Let us consider two further examples that demonstrate why we need controlled experimentation to verify even the most seemingly definitive personal observations. In the 1990s, considerable media and professional attention were directed at a method for aiding the communicative capacity of autistic individuals. This method is called facilitated communication. Autistic individuals who had previously been nonverbal were reported to have typed highly literate messages on a keyboard when their hands and arms were supported over the typewriter by a so-called facilitator. These startlingly verbal performances by autistic children who had previously shown very limited linguistic behavior raised incredible hopes among many parents of autistic children.

Unfortunately, claims for the efficacy of facilitated communication were disseminated by many media outlets before any controlled studies had been conducted. Since then, many studies have appeared in journals in speech science, linguistics, and psychology and each study has unequivocally demonstrated the same thing: the autistic child's performance is dependent upon tactile cueing from the facilitator. In the experiments, it was shown that when both child and facilitator were looking at the same drawing, the child typed the correct name of the drawing. When the viewing was occluded so that the child and the facilitator were shown different drawings, the child typed the name of the facilitator's drawing, not the one that the child herself was looking at (Beck & Pirovano, 1996; Burgess, Kirsch, Shane, Niederauer, Graham, & Bacon, 1998; Hudson, Melita, & Arnold, 1993; Jacobson, Mulick, & Schwartz, 1995; Wheeler, Jacobson, Paglieri, & Schwartz, 1993). The experimental studies directly contradicted the extensive case studies of the experiences of the facilitators of the children. These individuals invariably deny that they have inadvertently cued the children. Their personal experience, honest and heartfelt though it is, suggests the wrong model for explaining this outcome. The case study evidence told us something about the social connections between the children and their facilitators. But that is something different than what we got from the controlled experimental studies, which provided direct tests of the claim that the technique unlocks hidden linguistic skills in these children. Even if the claim had turned out to be true, the verification of the proof of its truth would not have come from the case studies or personal experiences, but from the necessary controlled studies.

Another example of the need for controlled experimentation to test the insights gleaned from personal experience is provided by the concept of learning styles--the idea that various modality preferences (or variants of this theme in terms of analytic/holistic processing or "learning styles") will interact with instructional methods, allowing teachers to individualize learning. The idea seems to "feel right" to many of us. It does seem to have some face validity, but it has never been demonstrated to work in practice. Its modern incarnation (see Gersten, 2001, Spear-Swerling & Sternberg, 2001) takes a particularly harmful form, one where students identified as auditory learners are matched with phonics instruction and visual and/or kinesthetic learners matched with holistic instruction. The newest form is particularly troublesome because the major syntheses of reading research demonstrate that many children can benefit from phonics-based instruction, not just "auditory" learners (National Reading Panel, 2000; Rayner et al., 2002; Stanovich, 2000). Excluding students identified as "visual/kinesthetic" learners from effective phonics instruction is a bad instructional practice--bad because it is not only not research based, it is actually contradicted by research.

A thorough review of the literature by Arter and Jenkins (1979) found no consistent evidence for the idea that modality strengths and weaknesses could be identified in a reliable and valid way that warranted differential instructional prescriptions. A review of the research evidence by Tarver and Dawson (1978) found likewise that the idea of modality preferences did not hold up to empirical scrutiny. They concluded, "This review found no evidence supporting an interaction between modality preference and method of teaching reading" (p. 17). Kampwirth and Bates (1980) confirmed the conclusions of the earlier reviews, although they stated their conclusions a little more baldly: "Given the rather general acceptance of this idea, and its common-sense appeal, one would presume that there exists a body of evidence to support it. UnfortunatelyÉno such firm evidence exists" (p. 598).

More recently, the idea of modality preferences (also referred to as learning styles, holistic versus analytic processing styles, and right versus left hemispheric processing) has again surfaced in the reading community. The focus of the recent implementations refers more to teaching to strengths, as opposed to remediating weaknesses (the latter being more the focus of the earlier efforts in the learning disabilities field). The research of the 1980s was summarized in an article by Steven Stahl (1988). His conclusions are largely negative because his review of the literature indicates that the methods that have been used in actual implementations of the learning styles idea have not been validated. Stahl concludes: "As intuitively appealing as this notion of matching instruction with learning style may be, past research has turned up little evidence supporting the claim that different teaching methods are more or less effective for children with different reading styles" (p. 317).

Obviously, such research reviews cannot prove that there is no possible implementation of the idea of learning styles that could work. However, the burden of proof in science rests on the investigator who is making a new claim about the nature of the world. It is not incumbent upon critics of a particular claim to show that it "couldn't be true." The question teachers might ask is, "Have the advocates for this new technique provided sufficient proof that it works?" Their burden of responsibility is to provide proof that their favored methods work. Teachers should not allow curricular advocates to avoid this responsibility by introducing confusion about where the burden of proof lies. For example, it is totally inappropriate and illogical to ask "Has anyone proved that it can't work?" One does not "prove a negative" in science. Instead, hypotheses are stated, and then must be tested by those asserting the hypotheses.

Reason-based practice in the classroom

Effective teachers engage in scientific thinking in their classrooms in a variety of ways: when they assess and evaluate student performance, develop Individual Education Plans (IEPs) for their students with disabilities, reflect on their practice, or engage in action research. For example, consider the assessment and evaluation activities in which teachers engage. The scientific mechanisms of systematic empiricism--iterative testing of hypotheses that are revised after the collection of data--can be seen when teachers plan for instruction: they evaluate their students' previous knowledge, develop hypotheses about the best methods for attaining lesson objectives, develop a teaching plan based on those hypotheses, observe the results, and base further instruction on the evidence collected.

This assessment cycle looks even more like the scientific method when teachers (as part of a multidisciplinary team) are developing and implementing an IEP for a student with a disability. The team must assess and evaluate the student's learning strengths and difficulties, develop hypotheses about the learning problems, select curriculum goals and objectives, base instruction on the hypotheses and the goals selected, teach, and evaluate the outcomes of that teaching. If the teaching is successful (goals and objectives are attained), the cycle continues with new goals. If the teaching has been unsuccessful (goals and objectives have not been achieved), the cycle begins again with new hypotheses. We can also see the principle of converging evidence here. No one piece of evidence might be decisive, but collectively the evidence might strongly point in one direction.

Scientific thinking in practice occurs when teachers engage in action research. Action research is research into one's own practice that has, as its main aim, the improvement of that practice. Stokes (1997) discusses how many advances in science came about as a result of "use-inspired research" which draws upon observations in applied settings. According to McNiff, Lomax, and Whitehead (1996), action research shares several characteristics with other types of research: "it leads to knowledge, it provides evidence to support this knowledge, it makes explicit the process of enquiry through which knowledge emerges, and it links new knowledge with existing knowledge" (p. 14). Notice the links to several important concepts: systematic empiricism, publicly verifiable knowledge, converging evidence, and the connectivity principle.

Teachers and Research Commonality in a "what works" epistemology

Many educational researchers have drawn attention to the epistemological commonalities between researchers and teachers (Gersten, Vaughn, Deshler, & Schiller, 1997; Stanovich, 1993/1994). A "what works" epistemology is a critical source of underlying unity in the world views of educators and researchers (Gersten & Dimino, 2001; Gersten, Chard, & Baker, 2000). Empiricism, broadly construed (as opposed to the caricature of white coats, numbers, and test tubes that is often used to discredit scientists) is about watching the world, manipulating it when possible, observing outcomes, and trying to associate outcomes with features observed and with manipulations. This is what the best teachers do. And this is true despite the grain of truth in the statement that "teaching is an art." As Berliner (1987) notes: "No one I know denies the artistic component to teaching. I now think, however, that such artistry should be research-based. I view medicine as an art, but I recognize that without its close ties to science it would be without success, status, or power in our society. Teaching, like medicine, is an art that also can be greatly enhanced by developing a close relationship to science (p. 4)."

In his review of the work of the Committee on the Prevention of Reading Difficulties for the National Research Council of the National Academy of Sciences (Snow, Burns, & Griffin, 1998), Pearson (1999) warned educators that resisting evaluation by hiding behind the "art of teaching" defense will eventually threaten teacher autonomy. Teachers need creativity, but they also need to demonstrate that they know what evidence is, and that they recognize that they practice in a profession based in behavioral science. While making it absolutely clear that he opposes legislative mandates, Pearson (1999) cautions:

We have a professional responsibility to forge best practice out of the raw materials provided by our most current and most valid readings of research...If professional groups wish to retain the privileges of teacher prerogative and choice that we value so dearly, then the price we must pay is constant attention to new knowledge as a vehicle for fine-tuning our individual and collective views of best practice. This is the path that other professions, such as medicine, have taken in order to maintain their professional prerogative, and we must take it, too. My fear is that if the professional groups in education fail to assume this responsibility squarely and openly, then we will find ourselves victims of the most onerous of legislative mandates (p. 245).

Those hostile to a research-based approach to educational practice like to imply that the insights of teachers and those of researchers conflict. Nothing could be farther from the truth. Take reading, for example. Teachers often do observe exactly what the research shows--that most of their children who are struggling with reading have trouble decoding words. In an address to the Reading Hall of Fame at the 1996 meeting of the International Reading Association, Isabel Beck (1996) illustrated this point by reviewing her own intellectual history (see Beck, 1998, for an archival version). She relates her surprise upon coming as an experienced teacher to the Learning Research and Development Center at the University of Pittsburgh and finding "that there were some people there (psychologists) who had not taught anyone to read, yet they were able to describe phenomena that I had observed in the course of teaching reading" (Beck, 1996, p. 5). In fact, what Beck was observing was the triangulation of two empirical approaches to the same issue--two perspectives on the same underlying reality. And she also came to appreciate how these two perspectives fit together: "What I knew were a number of whats--what some kids, and indeed adults, do in the early course of learning to read. And what the psychologists knew were some whys--why some novice readers might do what they do" (pp. 5-6).

Beck speculates on why the disputes about early reading instruction have dragged on so long without resolution and posits that it is due to the power of a particular kind of evidence--evidence from personal observation. The determination of whole language advocates is no doubt sustained because "people keep noticing the fact that some children or perhaps many children--in any event a subset of children--especially those who grow up in print-rich environments, don't seem to need much more of a boost in learning to read than to have their questions answered and to point things out to them in the course of dealing with books and various other authentic literacy acts" (Beck, 1996, p. 8). But Beck points out that it is equally true that proponents of the importance of decoding skills are also fueled by personal observation: "People keep noticing the fact that some children or perhaps many children--in any event a subset of children--don't seem to figure out the alphabetic principle, let alone some of the intricacies involved without having the system directly and systematically presented" (p. 8). But clearly we have lost sight of the basic fact that the two observations are not mutually exclusive--one doesn't negate the other. This is just the type of situation for which the scientific method was invented: a situation requiring a consensual view, triangulated across differing observations by different observers.

Teachers, like scientists, are ruthless pragmatists (Gersten & Dimino, 2001; Gersten, Chard, & Baker, 2000). They believe that some explanations and methods are better than others. They think there is a real world out there--a world in flux, obviously--but still one that is trackable by triangulating observations and observers. They believe that there are valid, if fallible, ways of finding out which educational practices are best. Teachers believe in a world that is predictable and controllable by manipulations that they use in their professional practice, just as scientists do. Researchers and educators are kindred spirits in their approach to knowledge, an important fact that can be used to forge a coalition to bring hard-won research knowledge to light in the classroom.

  • Adams, M. J. (1990). Beginning to read: Thinking and learning about print . Cambridge, MA: MIT Press.
  • Adler, J. E. (1998, January). Open minds and the argument from ignorance. Skeptical Inquirer , 22 (1), 41-44.
  • Anderson, C. A., & Anderson, K. B. (1996). Violent crime rate studies in philosophical context: A destructive testing approach to heat and Southern culture of violence effects. Journal of Personality and Social Psychology , 70 , 740-756.
  • Anderson, R. C., Hiebert, E. H., Scott, J., & Wilkinson, I. (1985). Becoming a nation of readers . Washington, D. C.: National Institute of Education.
  • Arter, A. and Jenkins, J. (1979). Differential diagnosis-prescriptive teaching: A critical appraisal, Review of Educational Research , 49 , 517-555.
  • Beck, A. R., & Pirovano, C. M. (1996). Facilitated communications' performance on a task of receptive language with children and youth with autism. Journal of Autism and Developmental Disorders , 26 , 497-512.
  • Beck, I. L. (1996, April). Discovering reading research: Why I didn't go to law school . Paper presented at the Reading Hall of Fame, International Reading Association, New Orleans.
  • Beck, I. (1998). Understanding beginning reading: A journey through teaching and research. In J. Osborn & F. Lehr (Eds.), Literacy for all: Issues in teaching and learning (pp. 11-31). New York: Guilford Press.
  • Berliner, D. C. (1987). Knowledge is power: A talk to teachers about a revolution in the teaching profession. In D. C. Berliner & B. V. Rosenshine (Eds.), Talks to teachers (pp. 3-33). New York: Random House.
  • Bjorklund, D. F. (1995). Children's thinking: Developmental function and individual differences (Second Edition) . Pacific Grove, CA: Brooks/Cole.
  • Block, C. C., & Pressley, M. (Eds.). (2002). Comprehension instruction: Research-based best practices . New York: Guilford Press.
  • Bronowski, J. (1956). Science and human values . New York: Harper & Row.
  • Bronowski, J. (1973). The ascent of man . Boston: Little, Brown.
  • Bronowski, J. (1977). A sense of the future . Cambridge: MIT Press.
  • Burgess, C. A., Kirsch, I., Shane, H., Niederauer, K., Graham, S., & Bacon, A. (1998). Facilitated communication as an ideomotor response. Psychological Science , 9 , 71-74.
  • Chard, D. J., & Osborn, J. (1999). Phonics and word recognition in early reading programs: Guidelines for accessibility. Learning Disabilities Research & Practice , 14 , 107-117.
  • Cooper, H. & Hedges, L. V. (Eds.), (1994). The handbook of research synthesis . New York: Russell Sage Foundation.
  • Cunningham, P. M., & Allington, R. L. (1994). Classrooms that work: They all can read and write . New York: HarperCollins.
  • Dawkins, R. (1998). Unweaving the rainbow . Boston: Houghton Mifflin.
  • Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life . New York: Simon & Schuster.
  • Dennett, D. C. (1999/2000, Winter). Why getting it right matters. Free Inquiry , 20 (1), 40-43.
  • Ehri, L. C., Nunes, S., Stahl, S., & Willows, D. (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel's Meta-Analysis. Review of Educational Research , 71 , 393-447.
  • Foster, E. A., Jobling, M. A., Taylor, P. G., Donnelly, P., Deknijff, P., Renemieremet, J., Zerjal, T., & Tyler-Smith, C. (1998). Jefferson fathered slave's last child. Nature , 396 , 27-28.
  • Fraenkel, J. R., & Wallen, N. R. (1996). How to design and evaluate research in education (Third Edition). New York: McGraw-Hill.
  • Geertz, C. (1973). The interpretation of cultures . New York: Basic Books.
  • Geertz, C. (1979). From the native's point of view: On the nature of anthropological understanding. In P. Rabinow & W. Sullivan (Eds.), Interpretive social science (pp. 225-242). Berkeley: University of California Press.
  • Gersten, R. (2001). Sorting out the roles of research in the improvement of practice. Learning Disabilities: Research & Practice , 16 (1), 45-50.
  • Gersten, R., Chard, D., & Baker, S. (2000). Factors enhancing sustained use of research-based instructional practices. Journal of Learning Disabilities , 33 (5), 445-457.
  • Gersten, R., & Dimino, J. (2001). The realities of translating research into classroom practice. Learning Disabilities: Research & Practice , 16 (2), 120-130.
  • Gersten, R., Vaughn, S., Deshler, D., & Schiller, E. (1997).What we know about using research findings: Implications for improving special education practice. Journal of Learning Disabilities , 30 (5), 466-476.
  • Goswami, U. (1998). Cognition in children . Hove, England: Psychology Press.
  • Gross, P. R., Levitt, N., & Lewis, M. (1997). The flight from science and reason . New York: New York Academy of Science.
  • Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis . New York: Academic Press.
  • Holton, G., & Roller, D. (1958). Foundations of modern physical science . Reading, MA: Addison-Wesley.
  • Hudson, A., Melita, B., & Arnold, N. (1993). A case study assessing the validity of facilitated communication. Journal of Autism and Developmental Disorders , 23 , 165-173.
  • Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings . Newbury Park, CA: Sage.
  • Jacobson, J. W., Mulick, J. A., & Schwartz, A. A. (1995). A history of facilitated communication: Science, pseudoscience, and antiscience. American Psychologist , 50 , 750-765.
  • Kamil, M. L. (1995). Some alternatives to paradigm wars in literacy research. Journal of Reading Behavior , 27 , 243-261.
  • Kampwirth, R., and Bates, E. (1980). Modality preference and teaching method: A review of the research, Academic Therapy , 15 , 597-605.
  • Kavale, K. A., & Forness, S. R. (1995). The nature of learning disabilities: Critical elements of diagnosis and classification . Mahweh, NJ: Lawrence Erlbaum Associates.
  • Levin, J. R., & O'Donnell, A. M. (2000). What to do about educational research's credibility gaps? Issues in Education: Contributions from Educational Psychology , 5 , 1-87.
  • Liberman, A. M. (1999). The reading researcher and the reading teacher need the right theory of speech. Scientific Studies of Reading , 3 , 95-111.
  • Magee, B. (1985). Philosophy and the real world: An introduction to Karl Popper . LaSalle, IL: Open Court.
  • Mayer, R. E. (2000). What is the place of science in educational research? Educational Researcher , 29 (6), 38-39.
  • McNiff, J.,Lomax, P., & Whitehead, J. (1996). You and your action research project . London: Routledge.
  • Medawar, P. B. (1982). Pluto's republic . Oxford: Oxford University Press.
  • Medawar, P. B. (1984). The limits of science . New York: Harper & Row.
  • Medawar, P. B. (1990). The threat and the glory . New York: Harper Collins.
  • Moats, L. (1999). Teaching reading is rocket science . Washington, DC: American Federation of Teachers.
  • National Reading Panel: Reports of the Subgroups. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction . Washington, DC.
  • Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology , 2 , 175-220.
  • Pearson, P. D. (1993). Teaching and learning to read: A research perspective. Language Arts , 70 , 502-511.
  • Pearson, P. D. (1999). A historically based review of preventing reading difficulties in young children. Reading Research Quarterly , 34 , 231-246.
  • Plotkin, D. (1996, June). Good news and bad news about breast cancer. Atlantic Monthly , 53-82.
  • Popper, K. R. (1972). Objective knowledge . Oxford: Oxford University Press.
  • Pressley, M. (1998). Reading instruction that works: The case for balanced teaching . New York: Guilford Press.
  • Pressley, M., Rankin, J., & Yokol, L. (1996). A survey of the instructional practices of outstanding primary-level literacy teachers. Elementary School Journal , 96 , 363-384.
  • Rayner, K. (1998). Eye movements in reading and information processing: 20 Years of research. Psychological Bulletin , 124 , 372-422.
  • Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S. (2002, March). How should reading be taught? Scientific American , 286 (3), 84-91.
  • Reading Coherence Initiative. (1999). Understanding reading: What research says about how children learn to read . Austin, TX: Southwest Educational Development Laboratory.
  • Rosenthal, R. (1995). Writing meta-analytic reviews. Psychological Bulletin , 118 , 183-192.
  • Rosnow, R. L., & Rosenthal, R. (1989). Statistical procedures and the justification of knowledge in psychological science. American Psychologist , 44 , 1276-1284.
  • Shankweiler, D. (1999). Words to meaning. Scientific Studies of Reading , 3 , 113-127.
  • Share, D. L., & Stanovich, K. E. (1995). Cognitive processes in early reading development: Accommodating individual differences into a model of acquisition. Issues in Education: Contributions from Educational Psychology , 1 , 1-57.
  • Shavelson, R. J., & Towne, L. (Eds.) (2002). Scientific research in education . Washington, DC: National Academy Press.
  • Siegler, R. S. (1991). Children's thinking (Second Edition) . Englewood Cliffs, NJ: Prentice Hall.
  • Snow, C. E., Burns, M. S., & Griffin, P. (Eds.). (1998). Preventing reading difficulties in young children . Washington, DC: National Academy Press.
  • Snowling, M. (2000). Dyslexia (Second Edition) . Oxford: Blackwell.
  • Spear-Swerling, L., & Sternberg, R. J. (2001). What science offers teachers of reading. Learning Disabilities: Research & Practice , 16 (1), 51-57.
  • Stahl, S. (December, 1988). Is there evidence to support matching reading styles and initial reading methods? Phi Delta Kappan , 317-327.
  • Stanovich, K. E. (1993/1994). Romance and reality. The Reading Teacher , 47 (4), 280-291.
  • Stanovich, K. E. (2000). Progress in understanding reading: Scientific foundations and new frontiers . New York: Guilford Press.
  • Stanovich, K. E. (2001). How to think straight about psychology (Sixth Edition). Boston: Allyn & Bacon.
  • Stokes, D. E. (1997). Pasteur's quadrant: Basic science and technological innovation . Washington, DC: Brookings Institution Press.
  • Swanson, H. L. (1999). Interventions for students with learning disabilities: A meta-analysis of treatment outcomes . New York: Guilford Press.
  • Tarver, S. G., & Dawson, E. (1978). Modality preference and the teaching of reading: A review, Journal of Learning Disabilities , 11, 17-29.
  • Vaughn, S., & Dammann, J. E. (2001). Science and sanity in special education. Behavioral Disorders , 27, 21-29.
  • Warby, D. B., Greene, M. T., Higgins, K., & Lovitt, T. C. (1999). Suggestions for translating research into classroom practices. Intervention in School and Clinic , 34 (4), 205-211.
  • Wheeler, D. L., Jacobson, J. W., Paglieri, R. A., & Schwartz, A. A. (1993). An experimental assessment of facilitated communication. Mental Retardation , 31 , 49-60.
  • Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist , 54 , 595-604.
  • Wilson, E. O. (1998). Consilience: The unity of knowledge . New York: Knopf.

For additional copies of this document:

Contact the National Institute for Literacy at ED Pubs PO Box 1398, Jessup, Maryland 20794-1398

Phone 1-800-228-8813 Fax 301-430-1244 [email protected]

NICHD logo

Date Published: 2003 Date Posted: March 2010

Department of Education logo

  • What is Educational Research? + [Types, Scope & Importance]

busayo.longe

Education is an integral aspect of every society and in a bid to expand the frontiers of knowledge, educational research must become a priority. Educational research plays a vital role in the overall development of pedagogy, learning programs, and policy formulation. 

Educational research is a spectrum that bothers on multiple fields of knowledge and this means that it draws from different disciplines. As a result of this, the findings of this research are multi-dimensional and can be restricted by the characteristics of the research participants and the research environment. 

What is Educational Research?

Educational research is a type of systematic investigation that applies empirical methods to solving challenges in education. It adopts rigorous and well-defined scientific processes in order to gather and analyze data for problem-solving and knowledge advancement. 

J. W. Best defines educational research as that activity that is directed towards the development of a science of behavior in educational situations. The ultimate aim of such a science is to provide knowledge that will permit the educator to achieve his goals through the most effective methods.

The primary purpose of educational research is to expand the existing body of knowledge by providing solutions to different problems in pedagogy while improving teaching and learning practices. Educational researchers also seek answers to questions bothering on learner motivation, development, and classroom management. 

Characteristics of Education Research  

While educational research can take numerous forms and approaches, several characteristics define its process and approach. Some of them are listed below:

  • It sets out to solve a specific problem.
  • Educational research adopts primary and secondary research methods in its data collection process . This means that in educational research, the investigator relies on first-hand sources of information and secondary data to arrive at a suitable conclusion. 
  • Educational research relies on empirical evidence . This results from its largely scientific approach.
  • Educational research is objective and accurate because it measures verifiable information.
  • In educational research, the researcher adopts specific methodologies, detailed procedures, and analysis to arrive at the most objective responses
  • Educational research findings are useful in the development of principles and theories that provide better insights into pressing issues.
  • This research approach combines structured, semi-structured, and unstructured questions to gather verifiable data from respondents.
  • Many educational research findings are documented for peer review before their presentation. 
  • Educational research is interdisciplinary in nature because it draws from different fields and studies complex factual relations.

Types of Educational Research 

Educational research can be broadly categorized into 3 which are descriptive research , correlational research , and experimental research . Each of these has distinct and overlapping features. 

Descriptive Educational Research

In this type of educational research, the researcher merely seeks to collect data with regards to the status quo or present situation of things. The core of descriptive research lies in defining the state and characteristics of the research subject being understudied. 

Because of its emphasis on the “what” of the situation, descriptive research can be termed an observational research method . In descriptive educational research, the researcher makes use of quantitative research methods including surveys and questionnaires to gather the required data.

Typically, descriptive educational research is the first step in solving a specific problem. Here are a few examples of descriptive research: 

  • A reading program to help you understand student literacy levels.
  • A study of students’ classroom performance.
  • Research to gather data on students’ interests and preferences. 

From these examples, you would notice that the researcher does not need to create a simulation of the natural environment of the research subjects; rather, he or she observes them as they engage in their routines. Also, the researcher is not concerned with creating a causal relationship between the research variables. 

Correlational Educational Research

This is a type of educational research that seeks insights into the statistical relationship between two research variables. In correlational research, the researcher studies two variables intending to establish a connection between them. 

Correlational research can be positive, negative, or non-existent. Positive correlation occurs when an increase in variable A leads to an increase in variable B, while negative correlation occurs when an increase in variable A results in a decrease in variable B. 

When a change in any of the variables does not trigger a succeeding change in the other, then the correlation is non-existent. Also, in correlational educational research, the research does not need to alter the natural environment of the variables; that is, there is no need for external conditioning. 

Examples of educational correlational research include: 

  • Research to discover the relationship between students’ behaviors and classroom performance.
  • A study into the relationship between students’ social skills and their learning behaviors. 

Experimental Educational Research

Experimental educational research is a research approach that seeks to establish the causal relationship between two variables in the research environment. It adopts quantitative research methods in order to determine the cause and effect in terms of the research variables being studied. 

Experimental educational research typically involves two groups – the control group and the experimental group. The researcher introduces some changes to the experimental group such as a change in environment or a catalyst, while the control group is left in its natural state. 

The introduction of these catalysts allows the researcher to determine the causative factor(s) in the experiment. At the core of experimental educational research lies the formulation of a hypothesis and so, the overall research design relies on statistical analysis to approve or disprove this hypothesis.

Examples of Experimental Educational Research

  • A study to determine the best teaching and learning methods in a school.
  • A study to understand how extracurricular activities affect the learning process. 

Based on functionality, educational research can be classified into fundamental research , applied research , and action research. The primary purpose of fundamental research is to provide insights into the research variables; that is, to gain more knowledge. Fundamental research does not solve any specific problems. 

Just as the name suggests, applied research is a research approach that seeks to solve specific problems. Findings from applied research are useful in solving practical challenges in the educational sector such as improving teaching methods, modifying learning curricula, and simplifying pedagogy. 

Action research is tailored to solve immediate problems that are specific to a context such as educational challenges in a local primary school. The goal of action research is to proffer solutions that work in this context and to solve general or universal challenges in the educational sector. 

Importance of Educational Research

  • Educational research plays a crucial role in knowledge advancement across different fields of study. 
  • It provides answers to practical educational challenges using scientific methods.
  • Findings from educational research; especially applied research, are instrumental in policy reformulation. 
  • For the researcher and other parties involved in this research approach, educational research improves learning, knowledge, skills, and understanding.
  • Educational research improves teaching and learning methods by empowering you with data to help you teach and lead more strategically and effectively.
  • Educational research helps students apply their knowledge to practical situations.

Educational Research Methods 

  • Surveys/Questionnaires

A survey is a research method that is used to collect data from a predetermined audience about a specific research context. It usually consists of a set of standardized questions that help you to gain insights into the experiences, thoughts, and behaviors of the audience. 

Surveys can be administered physically using paper forms, face-to-face conversations, telephone conversations, or online forms. Online forms are easier to administer because they help you to collect accurate data and to also reach a larger sample size. Creating your online survey on data-gathering platforms like Formplus allows you to.also analyze survey respondent’s data easily. 

In order to gather accurate data via your survey, you must first identify the research context and the research subjects that would make up your data sample size. Next, you need to choose an online survey tool like Formplus to help you create and administer your survey with little or no hassles. 

An interview is a qualitative data collection method that helps you to gather information from respondents by asking questions in a conversation. It is typically a face-to-face conversation with the research subjects in order to gather insights that will prove useful to the specific research context. 

Interviews can be structured, semi-structured , or unstructured . A structured interview is a type of interview that follows a premeditated sequence; that is, it makes use of a set of standardized questions to gather information from the research subjects. 

An unstructured interview is a type of interview that is fluid; that is, it is non-directive. During a structured interview, the researcher does not make use of a set of predetermined questions rather, he or she spontaneously asks questions to gather relevant data from the respondents. 

A semi-structured interview is the mid-point between structured and unstructured interviews. Here, the researcher makes use of a set of standardized questions yet, he or she still makes inquiries outside these premeditated questions as dedicated by the flow of the conversations in the research context. 

Data from Interviews can be collected using audio recorders, digital cameras, surveys, and questionnaires. 

  • Observation

Observation is a method of data collection that entails systematically selecting, watching, listening, reading, touching, and recording behaviors and characteristics of living beings, objects, or phenomena. In the classroom, teachers can adopt this method to understand students’ behaviors in different contexts. 

Observation can be qualitative or quantitative in approach . In quantitative observation, the researcher aims at collecting statistical information from respondents and in qualitative information, the researcher aims at collecting qualitative data from respondents. 

Qualitative observation can further be classified into participant or non-participant observation. In participant observation, the researcher becomes a part of the research environment and interacts with the research subjects to gather info about their behaviors. In non-participant observation, the researcher does not actively take part in the research environment; that is, he or she is a passive observer. 

How to Create Surveys and Questionnaires with Formplus

  • On your dashboard, choose the “create new form” button to access the form builder. You can also choose from the available survey templates and modify them to suit your need.
  • Save your online survey to access the form customization section. Here, you can change the physical appearance of your form by adding preferred background images and inserting your organization’s logo.
  • Formplus has a form analytics dashboard that allows you to view insights from your data collection process such as the total number of form views and form submissions. You can also use the reports summary tool to generate custom graphs and charts from your survey data. 

Steps in Educational Research

Like other types of research, educational research involves several steps. Following these steps allows the researcher to gather objective information and arrive at valid findings that are useful to the research context. 

  • Define the research problem clearly. 
  • Formulate your hypothesis. A hypothesis is the researcher’s reasonable guess based on the available evidence, which he or she seeks to prove in the course of the research.
  • Determine the methodology to be adopted. Educational research methods include interviews, surveys, and questionnaires.
  • Collect data from the research subjects using one or more educational research methods. You can collect research data using Formplus forms.
  • Analyze and interpret your data to arrive at valid findings. In the Formplus analytics dashboard, you can view important data collection insights and you can also create custom visual reports with the reports summary tool. 
  • Create your research report. A research report details the entire process of the systematic investigation plus the research findings. 

Conclusion 

Educational research is crucial to the overall advancement of different fields of study and learning, as a whole. Data in educational research can be gathered via surveys and questionnaires, observation methods, or interviews – structured, unstructured, and semi-structured. 

You can create a survey/questionnaire for educational research with Formplu s. As a top-tier data tool, Formplus makes it easy for you to create your educational research survey in the drag-and-drop form builder, and share this with survey respondents using one or more of the form sharing options. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • education research
  • educational research types
  • examples of educational research
  • importance of educational research
  • purpose of educational research
  • busayo.longe

Formplus

You may also like:

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

importance of research in education as a student

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

Goodhart’s Law: Definition, Implications & Examples

In this article, we will discuss Goodhart’s law in different fields, especially in survey research, and how you can avoid it.

User Research: Definition, Methods, Tools and Guide

In this article, you’ll learn to provide value to your target market with user research. As a bonus, we’ve added user research tools and...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Find My Rep

You are here

What are the benefits of educational research for teachers.

Ask an Expert Rebecca Austin Researching Primary Education

Cultivating a research-based approach to developing your practice provides evidence to effect change in your teaching, your classroom, your school, and beyond. Rebecca Austin, author of Researching Primary Education  and Senior Lecturer at the School of Teacher Education and Development at Canterbury Christchurch University, highlights what the benefits are of research to your practice…

In the context of the debate about what works and why, there is a wide range of benefits to researching your own practice, whether directly feeding into improvement through action research or, more broadly, gaining understanding and knowledge on themes of interest and relevance. This is why research is embedded into initial teacher education. As research becomes embedded in your practice you can gain a range of benefits. Research can:

  • clarify purposes, processes and priorities when introducing change – for example, to  curriculum, pedagogy or assessment  
  • develop your agency, influence, self-efficacy and voice within your own school and  more widely within the profession.

Each of these can involve investigation using evidence from your own setting, along with wider research evidence. 

Chapter Icon

  • Site search

CBT Supervision

The ABC of CBT

CBT for Beginners

CBT Values and Ethics

Reflection in CBT

CBT for Older People

Overcoming Obstacles in CBT

The CBT Handbook

CBT for Personality Disorders

CBMCS Multicultural Reader

CBMCS Multicultural Training Program

CBDNA Journal: Research & Review

An Introduction to CBT Research

CBT for Common Trauma Responses

Person-centred Therapy and CBT

Low-intensity CBT Skills and Interventions

CBT for Depression: An Integrated Approach

CBT with Children, Young People and Families

CBT for Worry and Generalised Anxiety Disorder

Action Research

Journal of Research in Nursing

Product Type plus Created with Sketch. minus Created with Sketch.

  • Textbook (32) Apply Textbook filter
  • Journal (13) Apply Journal filter
  • Academic Book (5) Apply Academic Book filter
  • Professional Book (4) Apply Professional Book filter
  • Reference Book (4) Apply Reference Book filter

Disciplines plus Created with Sketch. minus Created with Sketch.

  • Education (31) Apply Education filter
  • Counselling and Psychotherapy (General) (18) Apply Counselling and Psychotherapy (General) filter
  • Research Methods & Evaluation (General) (18) Apply Research Methods & Evaluation (General) filter
  • Nursing (6) Apply Nursing filter
  • Public Health (4) Apply Public Health filter
  • Psychology (General) (3) Apply Psychology (General) filter
  • Social Work & Social Policy (General) (3) Apply Social Work & Social Policy (General) filter
  • Clinical Medicine (3) Apply Clinical Medicine filter
  • Anthropology & Archaeology (General) (1) Apply Anthropology & Archaeology (General) filter
  • Arts & Humanities (General) (1) Apply Arts & Humanities (General) filter
  • History (General) (1) Apply History (General) filter
  • Business & Management (General) (1) Apply Business & Management (General) filter
  • Communication and Media Studies (General) (1) Apply Communication and Media Studies (General) filter
  • Cultural Studies (General) (1) Apply Cultural Studies (General) filter
  • Economics & Development Studies (General) (1) Apply Economics & Development Studies (General) filter
  • Life & Biomedical Sciences (1) Apply Life & Biomedical Sciences filter
  • Politics & International Relations (1) Apply Politics & International Relations filter
  • Study Skills (General) (1) Apply Study Skills (General) filter
  • Other Health Specialties (1) Apply Other Health Specialties filter

Status plus Created with Sketch. minus Created with Sketch.

  • Published (44) Apply Published filter
  • Forthcoming (1) Apply Forthcoming filter

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Behav Anal Pract
  • v.8(2); 2015 Oct

The Importance of Research—A Student Perspective

Rachel arena.

grid.252546.20000000122978753Department of Psychology, Auburn University, Magnolia Street and Duncan Drive and West Thatch Ave, Auburn, AL 36849 USA

Sheridan Chambers

Angelyn rhames, katherine donahoe.

As students, we will focus on the importance of an objective ranking system, research, and mentorship to an applicant. We will address points raised in the (Behavior Analysis In Practice 8(1):7–15, 2015) article as well as debate the usefulness of proposed standards of objective ranking.

A Student’s Perspective on Research

A little more than a year ago each of us was madly scrambling to negotiate the process of graduate program admissions. Like many people who go to graduate school, each of us had some history of viewing academic efforts through the lens of “too much is never enough,” and we applied our obsessive habits to the challenge of gathering information about graduate programs. We pored over Web sites and printed brochures. We stalked program faculty at conferences, via email and phone, and during campus visits. We talked to trusted mentors about the programs they respected. When in professional settings, we tried to find out where people who impressed us had attended graduate school, and we sometimes eavesdropped on strangers’ conversations for potentially valuable tidbits about the graduate programs they were considering.

Based on this chaotic and exhausting experience, we agree with Dixon et al. ( 2015 ) that consumers in our field need standardized information about the relative merits of graduate programs in applied behavior analysis (ABA). When we began the process of screening graduate programs, we knew that we were uninformed but we were less sure about what we needed to learn to become better consumers. We suspect that, like us, most college seniors find it difficult to know what aspects of a graduate program are crucial to the training of highly qualified ABA practitioners. To us, the most important contribution of Dixon et al. ( 2015 ) was to emphasize that our field should not abandon students to an uncertain process of self-education.

We agree with Dixon et al. ( 2015 ) that our field is better equipped than outside bodies (e.g., U.S. News & World Report ) to determine what constitutes top-quality graduate training. We were aware that the Behavior Analysis Certification Board publishes the rates at which graduates of various programs pass its certification exam, and we considered this information during our respective searches. Even as undergraduates, however, we knew that there is more to being a capable practitioner than simply passing the certification exam, and we would have appreciated much more guidance from our field than we received.

In the absence of standardized, objective information about graduate programs, prospective graduate students have to rely heavily on hearsay. As we gathered information on program reputations from mentors and colleagues, it occurred to us that this information sometimes says as much about the person providing it as about graduate programs themselves. We learned that some people are impressed by graduate programs that have a reputation for highly selective admissions, but we were not sure how or whether this predicted the quality of training that we could hope to receive. We learned that certain mentors thought highly of certain programs, but different people thought highly of different programs, and it was not always obvious how these opinions related to specific features of the training offered by the programs. We weren’t always sure whether the opinions were generic or had been offered with our individual needs and interests in mind.

Among the features of graduate programs that interested us was the type and degree of emphasis on research. Here, a few words of explanation will provide context for our perspective. As undergraduates, we learned to value evidence-based practices, data-based case management, and the science-based critical thinking that should guide clinical case management. But each of us decided to seek graduate training not just to apply current best practices; we also wanted to contribute to clinical innovation (e.g., Critchfield 2015 ). For various reasons, none of us wished to conduct research for a living, and we chose our program at Auburn University in part because its accelerated, 12-month, non-thesis curriculum would get us swiftly into the workplace where we knew, from past field experiences, our main reinforcers are to be found. Still, program research emphasis was important to us.

Unfortunately, far too much time and effort was required for us to understand that different programs have different types of research emphases. “Research training” comprises not a single repertoire but many. One involves conducting research. Another involves locating and consuming available research on a topic of interest. Yet, another involves translating from research findings in order to develop innovative interventions (Critchfield 2015 ; Critchfield & Reed, 2005 ). It is here that we would quibble with the position of Dixon et al. ( 2015 ), which suggests a one-size-fits-all approach to assessing the research climate at ABA graduate programs.

In order to gain insight about the research environment in graduate programs, undergraduates often compare their own research interests to those of faculty as described on program web sites and as illustrated in published articles. This comparison is most relevant to students who seek to become independent researchers. Our own goal is to become life-long consumers of research. It may not be the full-time job of Masters-level practitioners to conduct research, but in a field that is growing quickly it is pivotal that people like us not be limited to the state of our field’s knowledge at the time we take a certification exam. We need skills for tracking scholarly developments across the full breath of our careers.

We agree with Dixon et al. ( 2015 ) that it is helpful for ABA program faculty to maintain active research programs, but our concern is with what program graduates are able to do with the fruits of research, not how many articles a faculty member can publish. It has been suggested that the process of developing effective and transportable interventions from research findings requires a skill set that is independent of either conducting research or implementing existing interventions (e.g., Critchfield 2015 ; Critchfield and Reed, 2005 ). No skill set seems more relevant to our lifelong professional development.

Yes, we want to learn how to read and critically evaluate research, but we want to learn to do this from faculty who know how to translate and who care about helping us to become translators. Our ideal ABA program faculty member will have the time and inclination to focus on this. We want mentors who can conduct research, but more importantly who will discuss research with us on a regular basis and explore with us how research findings relate to the behavioral processes operating in practice settings. We want mentors whose skills and schedules allow them to provide on-site clinical supervision through which the connections between research and practice can be drawn explicitly.

While we applaud the efforts of Dixon et al. ( 2015 ) to rank ABA graduate programs in terms of program research climate, we stress that this climate has multiple facets. We represent a category of consumer who cares very much about our field’s research foundations, but we wish to harness rather than add to those foundations. Faculty publication counts may not be the best measure of a program’s ability to help us to this. Unfortunately, the program attributes that we particularly value are hard to quantify and thus will be difficult to incorporate into an objective system for ranking programs. Yet, if the purpose of rankings is to assist consumers (Dixon et al., 2015 ), then the needs of consumers like us should not be ignored.

Contributor Information

Rachel Arena, Email: ude.nrubua@0200azr .

Sheridan Chambers, Email: ude.nrubua@5400cms .

Angelyn Rhames, Email: ude.nrubua@7400rza .

Katherine Donahoe, Email: ude.nrubua@4200drk .

  • Critchfield TS. What counts as high-quality practitioner training in applied behavior analysis? Behavior Analysis In Practice. 2015; 8 (1):3–6. doi: 10.1007/s40617-015-0049-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Critchfield TS, Reed DD. Conduits of translation in behavior-science bridge research. In: Burgos JE, Ribes E, editors. Theory, basic and applied research, and technological applications in behavior science: Conceptual and methodological issues. Guadalajara, Mexico: University of Guadalajara Press; 2005. pp. 45–84. [ Google Scholar ]
  • Dixon MR, Reed DD, Smith T, Belisle J, Jackson RE. Research rankings of behavior analytic graduate training programs and their faculty. Behavior Analysis In Practice. 2015; 8 (1):7–15. doi: 10.1007/s40617-015-0057-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

How Does Writing Fit Into the ‘Science of Reading’?

importance of research in education as a student

  • Share article

In one sense, the national conversation about what it will take to make sure all children become strong readers has been wildly successful: States are passing legislation supporting evidence-based teaching approaches , and school districts are rushing to supply training. Publishers are under pressure to drop older materials . And for the first time in years, an instructional issue—reading—is headlining education media coverage.

In the middle of all that, though, the focus on the “science of reading” has elided its twin component in literacy instruction: writing.

Writing is intrinsically important for all students to learn—after all, it is the primary way beyond speech that humans communicate. But more than that, research suggests that teaching students to write in an integrated fashion with reading is not only efficient, it’s effective.

Yet writing is often underplayed in the elementary grades. Too often, it is separated from schools’ reading block. Writing is not assessed as frequently as reading, and principals, worried about reading-exam scores, direct teachers to focus on one often at the expense of the other. Finally, beyond the English/language arts block, kids often aren’t asked to do much writing in early grades.

“Sometimes, in an early-literacy classroom, you’ll hear a teacher say, ‘It’s time to pick up your pencils,’” said Wiley Blevins, an author and literacy consultant who provides training in schools. “But your pencils should be in your hand almost the entire morning.”

Strikingly, many of the critiques that reading researchers have made against the “balanced literacy” approach that has held sway in schools for decades could equally apply to writing instruction: Foundational writing skills—like phonics and language structure—have not generally been taught systematically or explicitly.

And like the “find the main idea” strategies commonly taught in reading comprehension, writing instruction has tended to focus on content-neutral tasks, rather than deepening students’ connections to the content they learn.

Education Week wants to bring more attention to these connections in the stories that make up this special collection . But first, we want to delve deeper into the case for including writing in every step of the elementary curriculum.

Why has writing been missing from the reading conversation?

Much like the body of knowledge on how children learn to read words, it is also settled science that reading and writing draw on shared knowledge, even though they have traditionally been segmented in instruction.

“The body of research is substantial in both number of studies and quality of studies. There’s no question that reading and writing share a lot of real estate, they depend on a lot of the same knowledge and skills,” said Timothy Shanahan, an emeritus professor of education at the University of Illinois Chicago. “Pick your spot: text structure, vocabulary, sound-symbol relationships, ‘world knowledge.’”

The reasons for the bifurcation in reading and writing are legion. One is that the two fields have typically been studied separately. (Researchers studying writing usually didn’t examine whether a writing intervention, for instance, also aided students’ reading abilities—and vice versa.)

Some scholars also finger the dominance of the federally commissioned National Reading Panel report, which in 2000 outlined key instructional components of learning to read. The review didn’t examine the connection of writing to reading.

Looking even further back yields insights, too. Penmanship and spelling were historically the only parts of writing that were taught, and when writing reappeared in the latter half of the 20th century, it tended to focus on “process writing,” emphasizing personal experience and story generation over other genres. Only when the Common Core State Standards appeared in 2010 did the emphasis shift to writing about nonfiction texts and across subjects—the idea that students should be writing about what they’ve learned.

And finally, teaching writing is hard. Few studies document what preparation teachers receive to teach writing, but in surveys, many teachers say they received little training in their college education courses. That’s probably why only a little over half of teachers, in one 2016 survey, said that they enjoyed teaching writing.

Writing should begin in the early grades

These factors all work against what is probably the most important conclusion from the research over the last few decades: Students in the early-elementary grades need lots of varied opportunities to write.

“Students need support in their writing,” said Dana Robertson, an associate professor of reading and literacy education at the school of education at Virginia Tech who also studies how instructional change takes root in schools. “They need to be taught explicitly the skills and strategies of writing and they need to see the connections of reading, writing, and knowledge development.”

While research supports some fundamental tenets of writing instruction—that it should be structured, for instance, and involve drafting and revising—it hasn’t yet pointed to a specific teaching recipe that works best.

One of the challenges, the researchers note, is that while reading curricula have improved over the years, they still don’t typically provide many supports for students—or teachers, for that matter—for writing. Teachers often have to supplement with additions that don’t always mesh well with their core, grade-level content instruction.

“We have a lot of activities in writing we know are good,” Shanahan said. “We don’t really have a yearlong elementary-school-level curriculum in writing. That just doesn’t exist the way it does in reading.”

Nevertheless, practitioners like Blevins work writing into every reading lesson, even in the earliest grades. And all the components that make up a solid reading program can be enhanced through writing activities.

4 Key Things to Know About How Reading and Writing Interlock

Want a quick summary of what research tells us about the instructional connections between reading and writing?

1. Reading and writing are intimately connected.

Research on the connections began in the early 1980s and has grown more robust with time.

Among the newest and most important additions are three research syntheses conducted by Steve Graham, a professor at the University of Arizona, and his research partners. One of them examined whether writing instruction also led to improvements in students’ reading ability; a second examined the inverse question. Both found significant positive effects for reading and writing.

A third meta-analysis gets one step closer to classroom instruction. Graham and partners examined 47 studies of instructional programs that balanced both reading and writing—no program could feature more than 60 percent of one or the other. The results showed generally positive effects on both reading and writing measures.

2. Writing matters even at the earliest grades, when students are learning to read.

Studies show that the prewriting students do in early education carries meaningful signals about their decoding, spelling, and reading comprehension later on. Reading experts say that students should be supported in writing almost as soon as they begin reading, and evidence suggests that both spelling and handwriting are connected to the ability to connect speech to print and to oral language development.

3. Like reading, writing must be taught explicitly.

Writing is a complex task that demands much of students’ cognitive resources. Researchers generally agree that writing must be explicitly taught—rather than left up to students to “figure out” the rules on their own.

There isn’t as much research about how precisely to do this. One 2019 review, in fact, found significant overlap among the dozen writing programs studied, and concluded that all showed signs of boosting learning. Debates abound about the amount of structure students need and in what sequence, such as whether they need to master sentence construction before moving onto paragraphs and lengthier texts.

But in general, students should be guided on how to construct sentences and paragraphs, and they should have access to models and exemplars, the research suggests. They also need to understand the iterative nature of writing, including how to draft and revise.

A number of different writing frameworks incorporating various degrees of structure and modeling are available, though most of them have not been studied empirically.

4. Writing can help students learn content—and make sense of it.

Much of reading comprehension depends on helping students absorb “world knowledge”—think arts, ancient cultures, literature, and science—so that they can make sense of increasingly sophisticated texts and ideas as their reading improves. Writing can enhance students’ content learning, too, and should be emphasized rather than taking a back seat to the more commonly taught stories and personal reflections.

Graham and colleagues conducted another meta-analysis of nearly 60 studies looking at this idea of “writing to learn” in mathematics, science, and social studies. The studies included a mix of higher-order assignments, like analyses and argumentative writing, and lower-level ones, like summarizing and explaining. The study found that across all three disciplines, writing about the content improved student learning.

If students are doing work on phonemic awareness—the ability to recognize sounds—they shouldn’t merely manipulate sounds orally; they can put them on the page using letters. If students are learning how to decode, they can also encode—record written letters and words while they say the sounds out loud.

And students can write as they begin learning about language structure. When Blevins’ students are mainly working with decodable texts with controlled vocabularies, writing can support their knowledge about how texts and narratives work: how sentences are put together and how they can be pulled apart and reconstructed. Teachers can prompt them in these tasks, asking them to rephrase a sentence as a question, split up two sentences, or combine them.

“Young kids are writing these mile-long sentences that become second nature. We set a higher bar, and they are fully capable of doing it. We can demystify a bit some of that complex text if we develop early on how to talk about sentences—how they’re created, how they’re joined,” Blevins said. “There are all these things you can do that are helpful to develop an understanding of how sentences work and to get lots of practice.”

As students progress through the elementary grades, this structured work grows more sophisticated. They need to be taught both sentence and paragraph structure , and they need to learn how different writing purposes and genres—narrative, persuasive, analytical—demand different approaches. Most of all, the research indicates, students need opportunities to write at length often.

Using writing to support students’ exploration of content

Reading is far more than foundational skills, of course. It means introducing students to rich content and the specialized vocabulary in each discipline and then ensuring that they read, discuss, analyze, and write about those ideas. The work to systematically build students’ knowledge begins in the early grades and progresses throughout their K-12 experience.

Here again, available evidence suggests that writing can be a useful tool to help students explore, deepen, and draw connections in this content. With the proper supports, writing can be a method for students to retell and analyze what they’ve learned in discussions of content and literature throughout the school day —in addition to their creative writing.

This “writing to learn” approach need not wait for students to master foundational skills. In the K-2 grades especially, much content is learned through teacher read-alouds and conversation that include more complex vocabulary and ideas than the texts students are capable of reading. But that should not preclude students from writing about this content, experts say.

“We do a read-aloud or a media piece and we write about what we learned. It’s just a part of how you’re responding, or sharing, what you’ve learned across texts; it’s not a separate thing from reading,” Blevins said. “If I am doing read-alouds on a concept—on animal habitats, for example—my decodable texts will be on animals. And students are able to include some of these more sophisticated ideas and language in their writing, because we’ve elevated the conversations around these texts.”

In this set of stories , Education Week examines the connections between elementary-level reading and writing in three areas— encoding , language and text structure , and content-area learning . But there are so many more examples.

Please write us to share yours when you’ve finished.

Want to read more about the research that informed this story? Here’s a bibliography to start you off.

Berninger V. W., Abbott, R. D., Abbott, S. P., Graham S., & Richards T. (2002). Writing and reading: Connections between language by hand and language by eye. J ournal of Learning Disabilities. Special Issue: The Language of Written Language, 35(1), 39–56 Berninger, Virginia, Robert D. Abbott, Janine Jones, Beverly J. Wolf, Laura Gould, Marci Anderson-Younstrom, Shirley Shimada, Kenn Apel. (2006) “Early development of language by hand: composing, reading, listening, and speaking connections; three letter-writing modes; and fast mapping in spelling.” Developmental Neuropsychology, 29(1), pp. 61-92 Cabell, Sonia Q, Laura S. Tortorelli, and Hope K. Gerde (2013). “How Do I Write…? Scaffolding Preschoolers’ Early Writing Skills.” The Reading Teacher, 66(8), pp. 650-659. Gerde, H.K., Bingham, G.E. & Wasik, B.A. (2012). “Writing in Early Childhood Classrooms: Guidance for Best Practices.” Early Childhood Education Journal 40, 351–359 (2012) Gilbert, Jennifer, and Steve Graham. (2010). “Teaching Writing to Elementary Students in Grades 4–6: A National Survey.” The Elementary School Journal 110(44) Graham, Steve, et al. (2017). “Effectiveness of Literacy Programs Balancing Reading and Writing Instruction: A Meta-Analysis.” Reading Research Quarterly, 53(3) pp. 279–304 Graham, Steve, and Michael Hebert. (2011). “Writing to Read: A Meta-Analysis of the Impact of Writing and Writing Instruction on Reading.” Harvard Educational Review (2011) 81(4): 710–744. Graham, Steve. (2020). “The Sciences of Reading and Writing Must Become More Fully Integrated.” Reading Research Quarterly, 55(S1) pp. S35–S44 Graham, Steve, Sharlene A. Kiuhara, and Meade MacKay. (2020).”The Effects of Writing on Learning in Science, Social Studies, and Mathematics: A Meta-Analysis.” Review of Educational Research April 2020, Vol 90, No. 2, pp. 179–226 Shanahan, Timothy. “History of Writing and Reading Connections.” in Shanahan, Timothy. (2016). “Relationships between reading and writing development.” In C. MacArthur, S. Graham, & J. Fitzgerald (Eds.), Handbook of writing research (2nd ed., pp. 194–207). New York, NY: Guilford. Slavin, Robert, Lake, C., Inns, A., Baye, A., Dachet, D., & Haslam, J. (2019). “A quantitative synthesis of research on writing approaches in grades 2 to 12.” London: Education Endowment Foundation. Troia, Gary. (2014). Evidence-based practices for writing instruction (Document No. IC-5). Retrieved from University of Florida, Collaboration for Effective Educator, Development, Accountability, and Reform Center website: http://ceedar.education.ufl.edu/tools/innovation-configuration/ Troia, Gary, and Steve Graham. (2016).“Common Core Writing and Language Standards and Aligned State Assessments: A National Survey of Teacher Beliefs and Attitudes.” Reading and Writing 29(9).

A version of this article appeared in the January 25, 2023 edition of Education Week as How Does Writing Fit Into the ‘Science of Reading’?

Young writer looking at a flash card showing a picture of a dog and writing various words that begin with a "D" like dog, donut, duck and door.

Sign Up for EdWeek Update

Edweek top school jobs.

Dr. Carey Wright, the interim state superintendent for Maryland, discusses improving literacy instruction and achievement with Stephen Sawchuk, an assistant managing editor for Education Week, during the 2024 Leadership Symposium in Arlington, Va. on Friday, May 3, 2024.

Sign Up & Sign In

module image 9

  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

Your Health

  • Treatments & Tests
  • Health Inc.
  • Public Health

Why writing by hand beats typing for thinking and learning

Jonathan Lambert

A close-up of a woman's hand writing in a notebook.

If you're like many digitally savvy Americans, it has likely been a while since you've spent much time writing by hand.

The laborious process of tracing out our thoughts, letter by letter, on the page is becoming a relic of the past in our screen-dominated world, where text messages and thumb-typed grocery lists have replaced handwritten letters and sticky notes. Electronic keyboards offer obvious efficiency benefits that have undoubtedly boosted our productivity — imagine having to write all your emails longhand.

To keep up, many schools are introducing computers as early as preschool, meaning some kids may learn the basics of typing before writing by hand.

But giving up this slower, more tactile way of expressing ourselves may come at a significant cost, according to a growing body of research that's uncovering the surprising cognitive benefits of taking pen to paper, or even stylus to iPad — for both children and adults.

Is this some kind of joke? A school facing shortages starts teaching standup comedy

In kids, studies show that tracing out ABCs, as opposed to typing them, leads to better and longer-lasting recognition and understanding of letters. Writing by hand also improves memory and recall of words, laying down the foundations of literacy and learning. In adults, taking notes by hand during a lecture, instead of typing, can lead to better conceptual understanding of material.

"There's actually some very important things going on during the embodied experience of writing by hand," says Ramesh Balasubramaniam , a neuroscientist at the University of California, Merced. "It has important cognitive benefits."

While those benefits have long been recognized by some (for instance, many authors, including Jennifer Egan and Neil Gaiman , draft their stories by hand to stoke creativity), scientists have only recently started investigating why writing by hand has these effects.

A slew of recent brain imaging research suggests handwriting's power stems from the relative complexity of the process and how it forces different brain systems to work together to reproduce the shapes of letters in our heads onto the page.

Your brain on handwriting

Both handwriting and typing involve moving our hands and fingers to create words on a page. But handwriting, it turns out, requires a lot more fine-tuned coordination between the motor and visual systems. This seems to more deeply engage the brain in ways that support learning.

Feeling Artsy? Here's How Making Art Helps Your Brain

Shots - Health News

Feeling artsy here's how making art helps your brain.

"Handwriting is probably among the most complex motor skills that the brain is capable of," says Marieke Longcamp , a cognitive neuroscientist at Aix-Marseille Université.

Gripping a pen nimbly enough to write is a complicated task, as it requires your brain to continuously monitor the pressure that each finger exerts on the pen. Then, your motor system has to delicately modify that pressure to re-create each letter of the words in your head on the page.

"Your fingers have to each do something different to produce a recognizable letter," says Sophia Vinci-Booher , an educational neuroscientist at Vanderbilt University. Adding to the complexity, your visual system must continuously process that letter as it's formed. With each stroke, your brain compares the unfolding script with mental models of the letters and words, making adjustments to fingers in real time to create the letters' shapes, says Vinci-Booher.

That's not true for typing.

To type "tap" your fingers don't have to trace out the form of the letters — they just make three relatively simple and uniform movements. In comparison, it takes a lot more brainpower, as well as cross-talk between brain areas, to write than type.

Recent brain imaging studies bolster this idea. A study published in January found that when students write by hand, brain areas involved in motor and visual information processing " sync up " with areas crucial to memory formation, firing at frequencies associated with learning.

"We don't see that [synchronized activity] in typewriting at all," says Audrey van der Meer , a psychologist and study co-author at the Norwegian University of Science and Technology. She suggests that writing by hand is a neurobiologically richer process and that this richness may confer some cognitive benefits.

Other experts agree. "There seems to be something fundamental about engaging your body to produce these shapes," says Robert Wiley , a cognitive psychologist at the University of North Carolina, Greensboro. "It lets you make associations between your body and what you're seeing and hearing," he says, which might give the mind more footholds for accessing a given concept or idea.

Those extra footholds are especially important for learning in kids, but they may give adults a leg up too. Wiley and others worry that ditching handwriting for typing could have serious consequences for how we all learn and think.

What might be lost as handwriting wanes

The clearest consequence of screens and keyboards replacing pen and paper might be on kids' ability to learn the building blocks of literacy — letters.

"Letter recognition in early childhood is actually one of the best predictors of later reading and math attainment," says Vinci-Booher. Her work suggests the process of learning to write letters by hand is crucial for learning to read them.

"When kids write letters, they're just messy," she says. As kids practice writing "A," each iteration is different, and that variability helps solidify their conceptual understanding of the letter.

Research suggests kids learn to recognize letters better when seeing variable handwritten examples, compared with uniform typed examples.

This helps develop areas of the brain used during reading in older children and adults, Vinci-Booher found.

"This could be one of the ways that early experiences actually translate to long-term life outcomes," she says. "These visually demanding, fine motor actions bake in neural communication patterns that are really important for learning later on."

Ditching handwriting instruction could mean that those skills don't get developed as well, which could impair kids' ability to learn down the road.

"If young children are not receiving any handwriting training, which is very good brain stimulation, then their brains simply won't reach their full potential," says van der Meer. "It's scary to think of the potential consequences."

Many states are trying to avoid these risks by mandating cursive instruction. This year, California started requiring elementary school students to learn cursive , and similar bills are moving through state legislatures in several states, including Indiana, Kentucky, South Carolina and Wisconsin. (So far, evidence suggests that it's the writing by hand that matters, not whether it's print or cursive.)

Slowing down and processing information

For adults, one of the main benefits of writing by hand is that it simply forces us to slow down.

During a meeting or lecture, it's possible to type what you're hearing verbatim. But often, "you're not actually processing that information — you're just typing in the blind," says van der Meer. "If you take notes by hand, you can't write everything down," she says.

The relative slowness of the medium forces you to process the information, writing key words or phrases and using drawing or arrows to work through ideas, she says. "You make the information your own," she says, which helps it stick in the brain.

Such connections and integration are still possible when typing, but they need to be made more intentionally. And sometimes, efficiency wins out. "When you're writing a long essay, it's obviously much more practical to use a keyboard," says van der Meer.

Still, given our long history of using our hands to mark meaning in the world, some scientists worry about the more diffuse consequences of offloading our thinking to computers.

"We're foisting a lot of our knowledge, extending our cognition, to other devices, so it's only natural that we've started using these other agents to do our writing for us," says Balasubramaniam.

It's possible that this might free up our minds to do other kinds of hard thinking, he says. Or we might be sacrificing a fundamental process that's crucial for the kinds of immersive cognitive experiences that enable us to learn and think at our full potential.

Balasubramaniam stresses, however, that we don't have to ditch digital tools to harness the power of handwriting. So far, research suggests that scribbling with a stylus on a screen activates the same brain pathways as etching ink on paper. It's the movement that counts, he says, not its final form.

Jonathan Lambert is a Washington, D.C.-based freelance journalist who covers science, health and policy.

  • handwriting
  • Open access
  • Published: 16 May 2024

How peer relationships affect academic achievement among junior high school students: The chain mediating roles of learning motivation and learning engagement

  • Yanhong Shao 1 ,
  • Shumin Kang 2 ,
  • Quan Lu 3 ,
  • Chao Zhang 2 &
  • Ruoxi Li 4  

BMC Psychology volume  12 , Article number:  278 ( 2024 ) Cite this article

335 Accesses

Metrics details

Despite the recognition of the impact of peer relationships, learning motivation, and learning engagement on academic achievement, there is still a gap in understanding the specific mechanisms through which peer relationships impact academic achievement via learning motivation and learning engagement.

This study aims to investigate how peer relationships affect junior high school students’ academic achievement through the chain mediating roles of learning motivation and learning engagement, employing the self-system model of motivational development as the theoretical framework. In January 2024, 717 participants were selected from two middle schools in eastern China (mean age = 13.49 years, SD = 0.5). The data analysis in this study was performed using the structural equation model (SEM) in AMOS 24.0 and SPSS 24.0.

The results showed that peer relationships were directly and significantly related to junior high school students’ academic achievement, and that peer relationships were indirectly and positively related to junior high school students’ academic achievement via learning motivation and learning engagement respectively. The results also revealed a significant indirect and positive relationship between peer relationships and junior high school students’ academic achievement, mediated by the sequential mediating roles of learning motivation and learning engagement. Moreover, the path “peer relationship→learning motivation→academic achievement” has the strongest indirect effect.

For junior high school students to achieve academic success, the appropriate interventions should be implemented to improve peer relationships, learning motivation, and learning engagement.

Peer Review reports

Introduction

Academic achievement is a multifaceted construct that can be defined in broad and narrow aspects. Marsh and McCallum defined it broadly as the extent to which students achieve the objectives or goals of their educational institution or program [ 1 ]. In contrast, Hattie defined it narrowly as the progress that students make in their academic studies, demonstrated through their performance on tests, exams, and other assessments [ 2 ]. Many researchers have adopted the narrow definition, focusing on test scores in specific subjects [ 3 , 4 , 5 ]. In China, academic achievement is often measured by test scores in Chinese, Math, and English [ 6 , 7 ]. Therefore, academic achievement in this study refers to students’ test scores in these subjects. Academic achievement holds substantial importance not only for students’ future prospects but also serves as a critical indicator for evaluating the effectiveness of national educational systems [ 8 ].

Peer relationships have been recognized as influential factors in adolescents’ academic achievement [ 9 ]. Peer relationships refer to the social interactions and connections that individuals establish with their peers, including interpersonal relationship, social emotion, communication interaction [ 10 ]. They can have a profound impact on students’ academic outcomes, as peers can serve as sources of both positive and negative influence. Positive peer relationships have been associated with higher levels of academic achievement, while negative peer relationships can hinder students’ academic progress [ 11 ].

Learning motivation and learning engagement are two psychological constructs that have been extensively studied in relation to academic achievement [ 12 ]. Learning motivation encompasses the internal drive and inclination to participate in learning activities, which can be classified into two main categories: intrinsic motivation and extrinsic motivation [ 13 ]. Intrinsic motivation stems from personal interest, curiosity, and the inherent satisfaction derived from the learning process itself, while extrinsic motivation is driven by external factors such as rewards, grades, or social recognition [ 14 ]. Learning engagement encompasses the active involvement, effort, and persistence that individuals exhibit during the learning process, categorized into three components: vigor, dedication, and absorption [ 15 ]. Vigor is often used to describe an individual’s level of enthusiasm, engagement, and persistence in their studies. Dedication refers to an individual’s commitment and devotion to their academic pursuits. Absorption refers to an individual’s deep focus and concentration on what is studied [ 16 ]. Both learning motivation and learning engagement have been found to exhibit a positive correlation with academic achievement. For example, Wentzel suggested that learning motivation plays a positive role in academic achievement [ 17 ]. Similarly, Li et al. observed a noteworthy positive association between academic motivation and mathematics achievement among junior high school students [ 18 ]. Liem and Martin posited that school engagement has a positive impact on academic performance [ 19 ]. The findings highlight the importance of considering both learning motivation and learning engagement in understanding academic achievement.

Despite scholars proposing the influence of these factors on academic achievement, the specific mechanisms through which peer relationships influence academic achievement via learning motivation and learning engagement remain underexplored. To address this research gap, the primary objective of the current study is to investigate the interactive effects of peer relationships, learning motivation, and learning engagement on academic achievement, thereby providing a holistic comprehension of the interplay between these factors. Furthermore, this study endeavors to examine the chain mediating roles of learning motivation and learning engagement in the association between peer relationships and academic achievement among junior high school students. By examining these mediating pathways, this study seeks to elucidate the underlying mechanisms by which peer relationships impact academic outcomes. This study differs from those in investigating the chain mediating roles of learning motivation and learning engagement in the association between peer relationships and academic achievement within a unified conceptual framework, contributing to a deeper understanding of the factors that shape students’ academic success.

The self-system model of motivational development (SSMMD) serves as a conceptual framework for this study. Proposed by Connell and Wellborn [ 20 ] and supported by Skinner et al. [ 21 ], the SSMMD is rooted in the self-determination theory [ 22 ] and emphasizes the importance of individuals’ intrinsic motivation and psychological needs for autonomy, competence, and relatedness [ 23 ]. The SSMMD comprises four interconnected components: social context, self-system, action, and developmental results. The social context, consisting of peers, teachers, and parents, shapes an individual’s self-system. It is within this social context that an individual’s self-beliefs, motivation, and engagement in activities are developed. The self-system, as a relatively stable personal resource, is influenced by long-term interactions with the surrounding context and can effectively predict the level of involvement in activities. This level of involvement, in turn, directly influences various aspects of an individual’s development, including behavior and academic performance [ 24 ]. The SSMMD presents a linear developmental pathway, where the social context influences the self-system, which then influences actions and subsequently developmental outcomes. In this study, we utilize the SSMMD framework to explore the relationship between peer relationships, learning motivation, learning engagement, and academic achievement. The relationship between the four variables and SSMMD can be elaborated as follows: Peer relationships, as a component of the social context, shapes an individual’s self-beliefs, which significantly influences their learning motivation. Students who possess higher levels of learning motivation are more likely to get active engagement in learning activities (as a component of the action), and impact their academic achievement positively (as a developmental outcome) [ 25 ]. Based on this model, this study hypothesizes that peer relationships (as a social context factor) may influence adolescents’ learning motivation (as a self-system factor), which in turn affects their learning engagement (as individual action), ultimately resulting in a positive impact on academic achievement (as developmental outcomes). This theoretical model in the study is visually represented in Fig.  1 .

figure 1

The proposed theoretical model

Peer relationships and academic achievement

Previous research has consistently demonstrated the positive influence of peer relationships on academic achievement [ 26 ]. Several studies have examined the positive impact of peer relationships on overall academic achievement. For instance, Wentzel noted that peers’ support in homework was positively related to academic achievement [ 17 ]. Jacobson and Burdsal found that positive peer influence in middle schools predicted higher academic achievement [ 27 ]. In a longitudinal study, Gallardo et al. (2016) demonstrated the positive influence of peer relationships on mid-adolescents’ academic achievement [ 11 ]. Additionally, research has investigated the positive effects of peer relationships on academic achievement in specific subjects. For example, Li et al. reported a significantly positive effect of peer relationships on the mathematics achievement of junior high school students [ 18 ]. Li et al. (2020) identified a significantly positive connection between peer relationships and science literacy among 596 ethnic minority junior school students in China [ 28 ]. Moreover, previous studies have suggested that the positive impact of peer relationships on academic achievement increases with grade level [ 29 ] and that same-gender peer relationships are particularly important in predicting academic achievement [ 19 ]. Overall, these findings emphasize the critical role of positive peer relationships in academic achievement, highlighting that adolescents who cultivate supportive relationships with their peers are more inclined to achieve success in their academic pursuits. On the basis of this, the following hypothesis is proposed.

H1: Peer relationships are positively correlated with academic achievement.

Learning motivation as a mediator

Peer relationships have been demonstrated to have a significant influence on learning motivation [ 11 ]. Positive peer relationships can enhance students’ motivation in learning by providing support, encouragement, and a sense of belonging. For example, Li et al. have indicated that positive peer relationships could encourage students to strive towards predetermined learning goals [ 30 ]. Similarly, Kuo et al. have shown that regular peer interaction could increase students’ motivation and interest in learning [ 31 ]. Wentzel et al. conducted a questionnaire survey involving 240 participants, and found that adolescents who receive positive support from their peers are more prone to exhibit higher levels of motivation [ 32 ]. In a study by Huangfu et al. it was observed that peer support in the context of chemistry education had a significant positive impact on students’ continuing motivation in chemistry [ 33 ]. Conversely, negative peer relationships can lead to decreased motivation. For instance, Juvonen and Graham found that students who experienced bullying, as a form of negative peer relationship, reported lower levels of motivation to engage in academic tasks [ 34 ]. Similarly, Wentzel et al. revealed that peer rejection, as another form of negative peer relationship, was associated with lower levels of intrinsic motivation in students [ 35 ]. These finding underscore the crucial role of peer relationships in influencing students’ motivation in specific academic domains.

Furthermore, learning motivation has been found to have a positive correlation with academic achievement [ 36 ]. Students who possess high levels of motivation to learn tend to excel in classroom activities, put forth great effort to complete their learning assignments, and achieve their academic achievement [ 37 ]. Researchers have demonstrated that learning motivation, as a potential mechanism is associated with perceived academic achievement [ 38 ]. Moreover, intrinsic motivation has been found to have a positive correlation with students’ grades, while extrinsic motivation shows a negative association with academic outcomes [ 39 ]. In addition, researchers have shown that learning motivation exerts both direct and indirect influences on students’ academic achievement through learning activities [ 40 ]. Peer interactions have also been emphasized as influential factors in adolescent learning motivation and subsequent learning outcomes [ 41 ]. Li et al. highlighted the mediating role of learning motivation in the relationship between peer relationships and mathematics achievement [ 18 ]. Although the study focused on Zhuang ethnic minority students in China and limited the academic achievement to mathematics, it provides valuable insights and direction for the mediation hypothesis in this research. Based on these findings, the following assumptions are proposed:

H2: Peer relationships are positively correlated with learning motivation.

H3: Learning motivation is positively correlated with academic achievement.

H4: Learning motivation mediates the association between peer relationships and junior high school students’ academic achievement.

Learning engagement as a mediator

Research has consistently shown that peer relationships have an impact on students’ learning engagement [ 42 ]. For instance, Kiefer et al. have proposed that peer support may help middle school students improve their learning engagement [ 43 ]. Besides, Research has demonstrated that both academic and emotional support from peers can enhance students’ learning engagement [ 44 ]. Lee et al. have claimed that peer interaction can help students sustain their engagement in e-learning [ 45 ]. In addition, Yuan and Kim have suggested that peer appraisal in peer interactions can affect teenagers’ cognitive and emotional involvement [ 46 ].

Learning engagement is considered to be an important factor that affects students’ academic achievement [ 12 ]. High levels of learning engagement allow students to devote more time to learning activities and ultimately achieve better academic outcomes [ 47 ]. Liem and Martin found that active participation and investment in learning activities positively predict academic success [ 19 ]. Wang et al. further supported this by demonstrating that higher levels of classroom engagement are associated with better academic performance [ 4 ]. Additionally, Saqr et al. highlighted the longitudinal effects of engagement, showing that sustained high levels of engagement lead to improved academic outcomes over time [ 48 ]. Taken together, these recent studies underscore the critical role of student engagement in fostering academic achievement.

Learning motivation has been demonstrated to have a significant impact on students’ engagement in learning activities [ 49 ]. When students are motivated to learn, they are more likely to set ambitious goals and actively participate in their learning activities [ 50 ]. Research has consistently found a positive relationship between learning motivation and engagement [ 25 , 41 ]. For instance, a study by Froiland and Worrell explored the role of motivation in student engagement and found that intrinsic motivation, which stems from personal interest and enjoyment, was positively associated with higher levels of engagement [ 51 ]. Similarly, a study by Huang and Yang highlighted the importance of learning motivation, where students feel a sense of desire and enjoyment in their learning, in promoting engagement [ 52 ]. The self-system model of motivational development suggests that social contexts, including interactions with peers, can impact students’ self-systems, such as their motivation and self-efficacy in learning. When students’ self-systems, including learning motivation, are strengthened, they are more likely to engage in learning activities, leading to improved academic outcomes, such as academic achievement. Therefore, based on the aforementioned research, it is postulated that peer relationships can promote academic achievement by enhancing students’ motivation and engagement in learning activities. Hypotheses were derived from the aforesaid analysis:

H5: Peer relationships are positively correlated with learning engagement.

H6: Learning motivation is positively correlated with learning engagement.

H7: Learning engagement is positively correlated with academic achievement.

H8: Learning engagement mediates the association between peer relationships and junior high school students’ academic achievement.

H9: Learning motivation and learning engagement play a chain mediating role in the association between peer relationships and junior high school students’ academic achievement.

Materials and methods

Sampling and data collection.

Prior to conducting the survey, ethical approval and support were obtained from the Ethics Committee of Qufu Normal University. To ensure the privacy and confidentiality of the students, several measures were implemented. Firstly, the personal identification information of the students was anonymized, with the utilization of student ID numbers instead of real names on the questionnaire. Secondly, explicit assurances were provided to the participants that designated members of the research team would have access to and process the collected data. Lastly, strict adherence to legal regulations and ethical guidelines was maintained throughout the entire research process.

The sample size for the study was determined based on the guidelines of Structural Equation Modeling (SEM), which recommend a sample size of at least ten times the total number of observed variables [ 53 ]. Consistent with this recommendation, a sample of 717 participants, aged 13–14 years old, was drawn from two middle schools in Jiangsu province, Eastern China, in January 2024. The two schools selected for this study, in that they exhibit diversity in terms of student backgrounds, academic performance, and socio-economic status, reflecting the overall characteristics of students in the region. The participants were randomly chosen from Grades 7 and 8.

Data collection consisted of two distinct steps. Firstly, paper questionnaires were distributed with an explanation of the study. Students were encouraged to participate in the study voluntarily and express their ideas freely. Those who did not provide informed consent or failed to complete the questionnaire were excluded from the analysis. Totally, 717 valid questionnaires were collected, with a response rate of 89.6%. Secondly, the students’ academic achievement was also collected as part of the study. Specifically, the study collected scores from the final exams in the subjects of Chinese, math, and English as a measure of participants’ academic achievement, and matched the students’ grades with their IDs. To ensure comparability and facilitate analysis across different subjects, the overall scores, ranging from 0 to 120 were standardized. These standardized scores were then utilized as the observational variables of academic achievement.

Research instruments

Peer relationship scale.

Peer relationships were measured by the Peer Relationship Scale developed by Wei [ 10 ]. This scale comprises 20 items, categorized into three dimensions: interpersonal relationship (e.g., “My classmates all enjoy being with me.”), social emotions (e.g., “When I am with my classmates, I feel very happy.”), communication interaction (e.g., “If I see my classmates feeling upset or crying, I will go comfort them.”). The 5-point Likert scale was used, with scores ranging from 1 to 5 indicating “strongly disagree” to “strongly agree”, with higher scores indicating higher peer relationships. The scale has good reliability and validity, which has been validated by recent research [ 54 ].

Learning motivation scale

Learning motivation was measured by the Learning Motivation Scale, developed by Amabile et al. [ 55 ], and later revised by Chi et al. [ 56 ]. This scale comprises 30 items, including two subscales for intrinsic motivation (e.g., “I enjoy independently thinking to solve difficult problems.”) and extrinsic motivation (e.g., “I care a lot about how others react to my opinions.”). The scale uses a 4-point rating, with scores ranging from 1 to 4, representing “strongly disagree” to “strongly agree”. Studies have demonstrated good reliability and validity of this scale among Chinese adolescents [ 49 ].

Learning engagement scale

Learning engagement was assessed by the scale revised by Fang et al. [ 57 ] based on the Utrecht Work Engagement Scale-Student (UWES-S) [ 58 ]. This scale comprises 17 items, including three dimensions: vigor (e.g., “I feel energized when studying.”), dedication (e.g., “When I study, I feel time flying.”), and absorption (e.g., “I take pride in my learning.”). The scale uses a 7-point rating, with scores ranging from 1 to 7, representing “Never” to “Always”. The scale demonstrated good reliability, which has been validated by An et al. [ 49 ]

  • Academic achievement

Based on previous research [ 4 , 5 , 6 , 7 ], this study employed the final exam scores in Chinese, Mathematics, and English for grades 7 and 8 during the first semester as measures of academic achievement. A significant correlation was observed among the scores of these three subjects. Subsequently, the scores for each subject were standardized, and the average of these standardized scores was calculated as the overall indicator of academic achievement.

Statistical analysis

Data analysis was conducted using Amos 24.0 and SPSS 24.0. Initially, the Harman single-factor test was performed to explore the possibility of common method bias. Subsequently, descriptive analysis was carried out to provide an accurate portrayal of the sample’s characteristics. Then, a structural equation modeling (SEM) analysis was conducted to test both the measurement and structural models. The measurement model was assessed through confirmatory factor analysis, while the structural model was evaluated by analyzing goodness-of-fit indices and path coefficients. Lastly, the significance of mediating effects was determined using the bootstrapping approach.

Common method variance

To mitigate potential bias inherent in self-reported data obtained from junior high school students, the Harman single-factor test was conducted using SPSS 24.0 [ 59 ]. According to the test result, 11 factors exhibited characteristic roots exceeding 1, with the first factor accounting for 31.029% of the total variance, which fell below the critical threshold of 40% [ 60 ]. These findings suggest that no significant common method variance was present, indicating that the study’s reliability and validity were not substantially impacted.

Sample characteristics

The sample was composed of 717 participants selected from two middle schools in eastern China. The average age of participants was 13.49 years (SD = 0.5, range = 13–14 years). As indicated in Table  1 , the sample was gender-balanced, with males accounting for 50.1% and females accounting for 49.9%. The distribution of students across different grades was as follows: 53.7% in Grade Seven and 46.3% in Grade Eight. The majority of students resided in towns. Regarding the educational level of the participants’ fathers, 48.8% had completed junior high school or below, 36.8% had attended senior high school or vocational school, 8.9% had attended college, and 5.4% had attended university. Similarly, for the participants’ mothers, 51.9% had completed junior high school or below, 33.8% had attended senior high school or vocational school, 9.2% had graduated from colleges, and 5.2% had attended university.

Measurement model

The conventional approach to assessing a measurement model involves examining its reliability and validity [ 53 ]. In this study, the skewness of the 4 variables ranged from − 1.867 to 1.111, and the kurtosis ranged from − 0.351 to 3.512, which conforms to the normal distribution standards proposed by Hair et al. [ 61 ], providing a basis for the subsequent analysis. Reliability is commonly evaluated using Cronbach’s alpha, with coefficients from 0.80 to 0.89 considered acceptable. Convergent validity is evaluated through standardized factor loadings, composite reliability (CR), and average variance extracted (AVE), where values exceeding 0.5 are deemed acceptable [ 62 ]. Discriminant validity is assessed by comparing the square root value of AVE with the correlation coefficient value between constructs. It is generally expected that the square root value of AVE will exceed the correlation coefficient value [ 63 ].

Table  2 presents the results of the reliability and convergent validity analysis. The measurement model demonstrated acceptable reliability, as indicated by Cronbach’s alpha coefficients ranging from 0.839 to 0.961. Additionally, the standardized factor loadings ranged from 0.762 to 0.922, while the composite reliability (CR) and average variance extracted (AVE) values ranged from 0.835 to 0.937 and from 0.678 to 0.832, respectively, indicating acceptable convergent validity. Table  3 shows that the square root values of AVE for each construct were larger than the correlation coefficient values between the other constructs, indicating acceptable discriminant validity.

Structural model

The structural model was evaluated using the goodness-of-fit indices and path coefficients. Jackson et al. have suggested that a structural model fits the data when the goodness-of-fit index is between 1 and 3 for x 2 / df, greater than 0.9 for GFI, AGFI, NFI, TLI, and CFI, less than 0.08 for SMSEA [ 64 ]. Table  4 displays the following fit indices: X 2 / df = 1.142 (X 2  = 2663.1543, df = 2331), GFI = 0.946, AGFI = 0.942, CFI = 0.993, TII = 0.993, NFI = 0.946. All the values met the recommended thresholds, indicating a good fit for the structural model. Additionally, sensitivity analysis indicated that the effect size was 0.49, meeting the threshold proposed by Cohen [ 65 ] for a strong statistical test with a sample size of 717.

Hypothesis test

As depicted in Table  5 , the results revealed a significant and positive association between peer relationships and academic achievement (β =  0.178 , P  < 0.001), providing support for H1. A significant and positive correlation was observed between peer relationships and learning motivation (β =  0.534 , P  < 0.001 ), conforming H2. Learning motivation was found to have a significant and positive impact on academic achievement (β =  0.181, P  <  0.001 ), thus supporting H3. Peer relationships exhibited a significant and positive influence on learning engagement (β =  0.183 , P  < 0.001 ), providing support for H5. Learning motivation had a significant and positive effect on learning engagement (β =  0.224 , P  < 0.001 ), thus H6 was supported. Learning engagement demonstrated a significant and positive impact on academic achievement (β =  0.217 , P  < 0.001 ), providing support for hypothesis H7. Overall, the empirical data supported the expected directions of H1, H2, H3, H5, H6, and H7, indicating the significance of these relationships.

Analyses of the mediating effect of peer relationship on academic achievement

In this study, Structural Equation Modeling (SEM) was employed as the statistical technique to examine the mediating effect of learning motivation and learning engagement. SEM is considered more appropriate for examining mediation [ 66 ]. To determine the confidence intervals for the mediation effects in SEM, the bootstrap method was utilized [ 67 ]. Specifically, a mediating effect is considered statistically significant when the 95% bias-corrected confidence intervals (95% bias-corrected CI)does not include 0, and t exceeds 1.96 [ 68 ]. For data analysis, Amos 24.0 software was utilized. In this analysis, academic accomplishment was considered as the dependent variable, while peer relationship was treated as the independent variable. Additionally, learning motivation and learning engagement were regarded as mediating variables. To enhance the reliability of our results, a bootstrap resample size of 5000 was utilized, and the bias-corrected confidence interval level was set at 95%.

The results indicated in Table  6 demonstrate the statistical significance of the total effect and direct effect of peer relationships on academic achievement. The total effect of peer relationships on academic achievement was 2.510 (t = 6.213, 95% bias-corrected CI [1.745, 3.309], P  < 0.01), while the direct effect was 1.313 (t = 3.712, 95% bias-corrected CI [0.487, 2.178], P  < 0.01). Furthermore, the analysis revealed significant indirect effects in three pathways. The pathway of peer relationships→learning motivation→learning engagement→academic achievement had an indirect effect of 0.191 (t = 2.653, 95% bias-corrected CI [0.076, 0.365], P  < 0.01). The pathway of peer relationships→learning motivation→learning engagement had an indirect effect of 0.713 (t = 2.493,95% bias-corrected CI [0.193, 1.326], P  < 0.01). Lastly, the pathway of peer relationships→learning engagement→academic achievement had an indirect effect of 0.293 (t = 2.307, 95% bias-corrected CI [0.081, 0.585], P  < 0.01). These results indicate that the three mediating effects were all statistically significant, providing support for H4, H8, and H9.

In addition, the indirect effect percentage of learning motivation and learning engagement as partial mediators were examined. As indicated in Table  6 , among the three significant indirect mediators, the indirect effect of learning motivation accounts for 59.5% of the total indirect effect, while the indirect effect of learning engagement accounts for 24.5% of the total indirect effect. Besides, the indirect effect of earning motivation and learning engagement accounts for 16% of the total indirect effect. The pathway “peer relationships → learning motivation → academic achievement” exhibited the strongest effect. The specific pathways of peer relationship acting on academic achievement through learning motivation and learning engagement are detailed in Fig.  2 .

figure 2

The path diagram, *** p  <  0.001

This study aimed to examine the interactive effects of peer relationships, learning motivation, learning engagement, and academic achievement among junior high school students. Additionally, the study sought to investigate the potential mediating roles of learning motivation and learning engagement in the association between peer relationships and academic achievement within this specific context. The study tentatively demonstrated the applicability of SSMMD in explaining the factors influencing academic achievement in junior high school settings. The findings of the study are presented below.

The results of the study revealed a direct and positive association between peer relationships and academic achievement among junior high school students. This finding not only confirms the research result of Jacobson and Burdsal [ 27 ], and that of Gallardo et al. [ 11 ], showing a positive correlation between peer relationships and academic achievement among middle school students but also reflects the idea presented by Escalante et al. [ 69 ] that academic achievement is affected by school climate, of which peer relationships are the dominant factor. This finding can be attributed to the notion that junior high school students in China who have stronger peer relationships within their school environment may receive greater support in their learning endeavors. This increased support may help alleviate learning-related stress, bolster their confidence levels, and enhance their self-esteem, thereby contributing to improved academic performance [ 26 ]. Additionally, it is noteworthy that peer influence exerts a substantial impact on shaping students’ academic behavior. For instance, students may observe their peers’ self-regulated behavior and diligence and be inclined to imitate them, thereby adopting similar study habits and strategies [ 70 ]. This study further demonstrates that peer relationships are a predictive factor of academic achievement.

The results of the study indicated that learning motivation partially mediated the association between peer relationships and academic achievement among Chinese middle school students. The finding builds upon previous research conducted by Wentzel [ 17 ], as it further elucidates the mediating role of learning motivation as a mediator between peer relationships and academic achievement among junior high school students. This finding can be explained by the increased reliance on peers for support and guidance, particularly after transitioning to junior high school. In Chinese culture, where collective values and social harmony are emphasized, peer relationships serve as a crucial source of support and guidance for students [ 71 ]. This heightened interaction with peers positively influences their learning attitude and personal values [ 72 ]. Consequently, this positive influence on learning attitudes and personal values contributes to the enhancement of learning motivation, ultimately leading to improved academic achievements among junior high school students. Additionally, the study’s results indicated the most substantial mediating role of learning motivation, supporting the notion that motivation is a more critical contributor to academic achievement [ 25 ]. This finding provides further evidence of the significant role of learning motivation in mediating the correlation between peer relationships and junior high school students’ academic achievement.

The results of the study demonstrated that learning engagement also partially mediated the association between peer relationships and academic achievement among junior high school students. This suggests that a high level of learning engagement can help elucidate why junior high school students who foster positive relationships with their peers tend to exhibit improved academic performance. When students have positive peer relationships, their increased learning engagement is reflected in their active participation in class, eagerness to complete assignments, and proactive pursuit of additional learning opportunities, ultimately leading to enhanced academic achievement [ 19 ]. This finding aligns with prior research [ 73 , 74 ], which postulates that learning engagement is a pivotal factor linking peer relationships and junior high school students’ academic achievement. The connections that teenagers forge with their contemporaries will facilitate increased participation in the educational process, which in turn will lead to enhanced academic performance [ 75 ]. The finding provided more evidence that learning engagement plays a significant role in the link between peer relationships and academic achievement.

The study further revealed that learning motivation and learning engagement played a chain mediation role in the association between peer relationships and academic achievement, which is one of the most astonishing conclusions drawn from the investigation. This result aligns with the self-system model of motivational development [ 20 ], which suggests that positive interactions and support from peers contribute to the development of individuals’ learning motivation. This motivation, in turn, influences their level of learning engagement, leading to improved academic achievement. Furthermore, the study revealed that junior high school students’ learning motivation contributed less to their level of learning engagement (β = 0.244, P  < 0.001) than their peer relationships (β = 0.183, P  < 0.001). This suggests that junior high school students’ primary source of learning engagement was learning motivation, because motivation plays a crucial role in driving their interest, effort, and persistence in academic tasks [ 49 ].

The theoretical and practical implications

This study holds significant theoretical implications. Firstly, it un derscores the complex interplay between peer relationships, learning motivation, learning engagement, and academic achievement. This expands our understanding of the underlying mechanisms that link these variables together. Secondly, it provides empirical support for the self-system model of motivational development, which suggests that peer relationships have an indirect influence on academic achievement through the mediating roles of learning motivation and learning engagement. This highlights the significance of social factors in shaping students’ motivation and engagement in the learning process.

This study carries practical implications for educators. Firstly, fostering positive peer relationships should be prioritized in educational settings. Teachers should implement strategies to promote a supportive and external classroom environment, such as peer mentoring programs or cooperative learning activities. Besides, teachers should create an inclusive and internal classroom environment that values diversity and promotes respect, empathy, and cooperation. By enhancing positive interactions among students, the motivation and engagement of individuals can be positively influenced, leading to improved academic achievement. Secondly, interventions targeting learning motivation and learning engagement should be implemented. Regarding learning motivation, teachers should encourage students to participate in problem-solving activities that connect learning to students’ lives and experiences, and motivate students to embrace challenges and solve problems [ 76 ]. Furthermore, teachers should provide timely and constructive feedback that helps students monitor their learning progress and adjust their strategies accordingly to foster students’ sense of intrinsic motivation. Additionally, teachers should understand the pressures students face in the learning process and provide appropriate support and strategies, such as offering flexible deadlines and providing alternative assignments. To enhance learning engagement, teachers should strive to gain a deeper understanding of teenagers’ needs and employ tactics and skills that strengthen their commitment to learning through meaningful classroom activities. Additionally, emotional support should be provided to help prevent learning fatigue and promote a positive attitude toward the learning process.

This study contributes to the literature in two ways. Firstly, it investigates the complex relationships among peer relationships, learning motivation, learning engagement, and academic achievement utilizing the self-system model of motivational development, which may provide insights for future research in other countries. Secondly, it explores the mediating mechanism between peer relationships and junior high school students’ academic achievement through examining the roles of learning motivation and learning engagement. The novel perspective can enrich our understanding of the link between peer relationships and academic achievement among junior high school students.

Limitations and future research directions

There are some limitations that should be acknowledged. Firstly, the study was carried out in a cross-sectional manner, making it difficult to establish a causal relationship between variables. Therefore, future longitudinal research is needed to investigate the association between peer relationships and academic achievement more conclusively. Secondly, this study was conducted within the context of China’s test-oriented learning environment, which may limit the generalizability of the findings to other educational settings. To enhance the external validity of the study, future research should be conducted in different countries. Thirdly, the study did not account for potential confounding factors such as academic pressure and self-evaluation, which may also influence academic achievement. Future research should consider these factors within a comprehensive theoretical framework. Finally, apart from academic achievement, all other variables were self-reported by participants, which may introduce potential bias. Future studies could benefit from incorporating observational data from parents, teachers, and classmates to provide a more objective perspective.

Data availability

The datasets generated and/or analysed during the current study are not publicly available due to ethical issues but are available from the corresponding author on reasonable request.

Marsh HW, McCallum JH. The measurement of academic achievement: methods and background. Wiley; 1984.

Hattie J, Visible Learning. A synthesis of over 800 Meta-analyses relating to achievement. Routledge; 2009.

Genesee F, Lindholm-Leary K, Saunders W, Christian D. Educating English Language Learners. Cambridge.UK: Cambridge University Press; 2006.

Book   Google Scholar  

Wang M, Deng X, Du X. Harsh parenting and academic achievement in Chinese adolescents: potential mediating roles of effortful control and classroom engagement. J Sch Psychol. 2017;SX002244051730095–. https://doi.org/10.1016/j.jsp.2017.09.002 .

Corcoran RP, Cheung A, Kim E, Xie C. Effective Universal school-based social and emotional learning programs for improving academic achievement: a systematic review and meta-analysis of 50 years of research. Educational Res Rev. 2017;S1747938:X17300611–. https://doi.org/10.1016/j.edurev.2017.12.001 .

Article   Google Scholar  

Cheng L, Li M, Kirby JR, Qiang H, Wade-Woolley L. English language immersion and students’ academic achievement in English, Chinese and mathematics. Evaluation Res Educ. 2010;23(3):151–69. https://doi.org/10.1080/09500790.2010.489150 .

Zhang W, Zhang L, Chen L, Ji L, Deater-Deckard K. Developmental changes in longitudinal associations between academic achievement and psychopathological symptoms from late childhood to middle adolescence. J Child Psychol Psychiatry. 2019;60(2):178–88. https://doi.org/10.1111/jcpp.12927 .

Article   PubMed   Google Scholar  

Steinmayr R, Meiǹer A, Weideinger AF, Wirthwein L. Academic achievement. UK: Oxford University Press; 2014.

Wang M, Kiuru N, Degol JL, Salmela-Aro K. Friends, academic achievement, and school engagement during adolescence: a social network approach to peer influence and selection effects. Learn Instruction. 2018;58:148–60. https://doi.org/10.1016/j.learninstruc.2018.06.003 .

Wei Y. Study on the influence of school factors on self-esteem development of children. Psychol Dev Educ. 1998;2:12–6.

Google Scholar  

Gallardo LO, Barrasa A, Fabricio G. Positive peer relationships and academic achievement across early and mid-adolescence. Social Behav Personality:An Int J. 2016;44(10):1637–48. https://doi.org/10.2224/sbp.2016.44.10.1637 .

Dogan U, Student, Engagement. Academic Self-efficacy, and academic motivation as predictors of academic achievement. Anthropol. 2015;20(3):553–61. https://doi.org/10.1080/09720073.2015.11891759 .

Tanaka M. Examining kanji learning motivation using self-determination theory. System. 2013;41:804–16. https://doi.org/10.1016/j.system.2013.08.004 .

Ryan RM, Deci EL. Intrinsic and extrinsic motivation from a self-determination theory perspective: definitions, theory, practices, and future directions. Contemp Educ Psychol. 2020;101860–. https://doi.org/10.1016/j.cedpsych.2020.101860 .

Schaufeli WB, Martinez IM, Pinto AM, Salanova M, Bakker AB. Burnout and Engagement in University students: a cross-national study. J Cross-Cult Psychol. 2002;33:464–81. https://doi.org/10.1177/0022022102033005003 .

Li Y, Yao C, Zeng S, Wang X, Lu T, Li C, Lan J, You X. How social networking site addiction drives university students’ academic achievement: the mediating role of learning engagement. J Pac Rim Psychol. 2019;13:e19. https://doi.org/10.1017/prp.2019.12 .

Wentzel KR. Peer relationships, motivation, and academic achievement at school. In: Elliot AJ, Dweck CS, Yeager DS, editors. Handbook of competence and motivation: theory and application. The Guilford; 2017. pp. 586–603.

Li L, Peng Z, Lu L, Liao H, Li H, Peer relationships, self-efficacy, academic motivation, and mathematics achievement in Zhuang adolescents: a Moderated Mediation Model. Child Youth Serv Rev. 2020;105358. https://doi.org/10.1016/j.childyouth.2020.105358 .

Liem GA, Martin AJ. Peer relationships and adolescents’ academic and non-academic outcomes: same-sex and opposite-sex peer effects and the mediating role of school engagement. Br J Educ Psychol. 2011;81(2):183–206. https://doi.org/10.1111/j.2044-8279.2010.02013.x .

Connell JP, Wellborn JG. Competence, autonomy, and relatedness: a motivational analysis of self-system processes. In: Gunnar MR, Sroufe LA, editors. The Minnesota symposia on child psychology. Self-processes and development. Volume 23. Lawrence Erlbaum Associates, Inc; 1991. pp. 43–77.

Skinner E, Furrer C, Marchand G, Kindermann T. Engagement and disaffection in the classroom: part of a larger motivational dynamic? J Educ Psychol. 2008;100(4):765–81. https://doi.org/10.1037/a0012840 .

Deci E. Intrinsic motivation. New York, NY: Plenum; 1975.

Deci EL, Ryan RM. Intrinsic motivation and self-determination in human behavior. New York: Springer Science + Business Media; 1985. P.11.

Wang M, Wang M, Wang J. Parental conflict damages academic performance in adolescents: the mediating roles of Effortful Control and Classroom Participation. Psychol Dev Educ. 2018;34(04):434–42.

Wu H, Li S, Zheng J, Guo J. Medical students’ motivation and academic performance: the mediating roles of self-efficacy and learning engagement. Med Educ Online. 2020;25(1):1742964. https://doi.org/10.1080/10872981.2020.1742964 .

Article   PubMed   PubMed Central   Google Scholar  

Ma D. Research on the relationship between parent-child relationship, peer relationship and academic performance of junior high school students [Unpublished manuscript]. Qufu Normal University, China; 2020.

Jacobson LT, Burdsal CA. Academic Performance in Middle School: Friendship Influences. Global Journal of Community Psychology Practice. 2012; 2(3). Retrieved from https://journals.ku.edu/gjcpp/article/view/20901 .

Li L, Liu Y, Peng Z, Liao M, Lu L, Liao H, Li H. Peer relationships, motivation, self-efficacy, and science literacy in ethnic minority adolescents in China: a moderated mediation model. Child Youth Serv Rev. 2020;119:105524–. https://doi.org/10.1016/j.childyouth.2020.105524 .

Llorca A, Cristina Richaud M, Malonda E. Parenting, peer relationships, academic self-efficacy, and academic achievement: Direct and mediating effects. Front Psychol. 2017;8:316809. https://doi.org/10.3389/fpsyg.2017.02120 .

Li M, Frieze IH, Nokes-Malach TJ, Cheong J. Do friends always help your studies? Mediating processes between social relations and academic motivation. Soc Psychol Educ. 2013;16:129–49. https://doi.org/10.1007/s11218-012-9203-5 .

Kuo YC, Walker AE, Schroder KEE, Belland BR. Interaction, internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet High Educ. 2014;20:35–50. https://doi.org/10.1016/j.iheduc.2013.10.001 .

Wentzel KR, Muenks K, McNeish D, Russell S. Peer and teacher supports in relation to motivation and effort: a multi-level study. Contemp Educ Psychol. 2017;49:32–45. https://doi.org/10.1016/j.cedpsych.2016.11.002 .

Huangfu Q, Wei N, Zhang R, Tang Y, Luo G. Social support and continuing motivation in chemistry: the mediating roles of interest in chemistry and chemistry self-efficacy. Chem Educ Res Pract. 2023;24(2):478–93. https://doi.org/10.1039/D2RP00165A .

Juvonen J, Graham S. Bullying in schools: the power of bullies and the plight of victims. Ann Rev Psychol. 2014;65:159–85. https://doi.org/10.1146/annurev-psych-010213-115030 .

Wentzel KR, Barry CM, Caldwell KA. Friendships in middle school: influences on motivation and school adjustment. J Educ Psychol. 2004;96(2):195. https://doi.org/10.1037/0022-0663.96.2.195 .

Tella A. The impact of motivation on student’s academic achievement and learning outcomes in mathematics among secondary school students in Nigeria. Eurasia J Math Sci Technol Educ. 2007;3(2):149–56. https://doi.org/10.12973/ejmste/75390 .

Law KMY, Geng S, Li T. Student enrollment, motivation and learning performance in a blended learning environment: the mediating effects of social, teaching, and cognitive presence. Comput Educ. 2019;S0360131519300508–. https://doi.org/10.1016/j.compedu.2019.02.021 .

Datu JAD, Yang W. Academic buoyancy, academic motivation, and academic achievement among Filipino high school students. Curr Psychol. 2021;40:3958–65. https://doi.org/10.1007/s12144-019-00358-y .

Lepper M, Corpus J, Iyengar S. Intrinsic and extrinsic motivational orientations in the classroom: age differences and academic correlates. J Educ Psychol. 2005;97(2):184–96. https://doi.org/10.1037/0022-0663.97.2.184 .

Meng X, Hu Z. The relationship between student motivation and academic performance: the mediating role of online learning behavior. Qual Assur Educ. 2022;31(1):167–80. https://doi.org/10.1108/QAE-02-2022-0046 .

Martin AJ, Dowson M, Interpersonal relationships, motivation, engagement, and achievement: Yields for theory, current issues, and educational practice. Rev Educ Res. 2009;79(1):327–65. https://doi.org/10.3102/0034654308325583 .

Shao Y, Kang S. The association between peer relationship and learning engagement among adolescents the chain mediating roles of self-efficacy and academic resilience. Front Psychol. 2022;13:938756. https://doi.org/10.3389/fpsyg.2022.938756 .

Kiefer SM, Alley KM, Ellerbrock CR. Teacher and peer support for young adolescents’ motivation, engagement, and school belonging. RMLE Online. 2015;38(8):1–18. https://doi.org/10.1080/19404476.2015.11641184 .

Valiente C, Swanson J, DeLay D, Fraser AM, Parker JH. Emotion-related socialization in the classroom: Considering the roles of teachers, peers, and the classroom context. Dev Psychol. 2020;56(3):578–94. https://doi.org/10.1037/dev0000863 .

Lee J, Song H, Hong AJ. Exploring factors, and indicators for measuring students’ sustainable engagement in e-learning. Sustainability. 2019;11(4):985. https://doi.org/10.3390/su11040985 .

Yuan J, Kim C. The effects of autonomy support on student engagement in peer assessment. Educ Tech Res Dev. 2018;66:25–52. https://doi.org/10.1007/s11423-017-9538-x .

Kim HJ, Hong AJ, Song HD. The roles of academic engagement and digital readiness in students’ achievements in university e-learning environments. Int J Educational Technol High Educ. 2019;16(1):1–18. https://doi.org/10.1186/s41239-019-0152-3 .

Saqr M, López-Pernas S, Helske S, Hrastinski S. The longitudinal association between engagement and achievement varies by time, students’ profiles, and achievement state: a full program study. Comput Educ. 2023;199:104787. https://doi.org/10.1016/j.compedu.2023.104787 .

An F, Yu J, Xi L. Relationship between perceived teacher support and learning engagement among adolescents: mediation role of technology acceptance and learning motivation. Front Psychol. 2022;13:992464. https://doi.org/10.3389/fpsyg.2022.992464 .

Semenova T. The role of learners’ motivation in MOOC completion. Open Learning: J Open Distance e-Learning. 2020;1–15. https://doi.org/10.1080/02680513.2020.1766434 .

Froiland JM, Worrell FC. Intrinsic motivation, learning goals, engagement, and achievement in a diverse high school. Psychol Sch. 2016;53(3):321–36. https://doi.org/10.1002/pits.21901 .

Huang C, Yang Y. Research on the relationships among learning motivation, learning engagement, and learning effectiveness. Educational Rev. 2021;5(6):182–90. https://doi.org/10.26855/er.2021.06.004 .

Zhang W, Xu M, Su H. Dance with structural equations. Xiamen: Xiamen University; 2020.

Li J, Wang J, Li JY, Qian S, Jia RX, Wang YQ, … Xu Y. How do socioeconomic status relate to social relationships among adolescents: a school-based study in East China.BMC pediatrics. 2020; 20:1–10. https://doi.org/10.1186/s12887-020-02175-w .

Amabile TM, Hill KG, Hennessey BA, Tighe EM. The work preference inventory: assessing intrinsic and extrinsic motivational orientations. J Personal Soc Psychol. 1994;66(5):950. https://doi.org/10.1037/0022-3514.66.5.950 .

Chi L, Xin Z. Measurement of college students’ learning motivation and its relationship with self-efficacy. Psychol Dev Educ. 2006; (02): 64–70.

Fang L, Shi K, Zhang K. Reliability and validity of the Chinese version of the learning engagement scale. Chin J Clin Psychol. 2008;6:618–20.

Schaufeli WB, Salanova M, Gonzalez-roma V, Bakker AB. The measurement of Engagement and Burnout: a two sample confirmatory factor Analytic Approach. J Happiness Stud. 2002;3:71–92. https://doi.org/10.1023/a:1015630930326 .

Podsakoff PM, MacKenzie SB, Podsakoff NP. Sources of Method Bias in Social Science Research and recommendations on how to control it. Ann Rev Psychol. 2012;63:539–69. https://doi.org/10.1146/annurev-psych-120710-100452 .

Zhou H, Long LR. Statistical remedies for common method biases. Adv Psychol Sci. 2004;12:942–50. https://doi.org/10.1037/0021-9010.88.5.879 .

Hair JF, BlackWC, Babin BJ, Anderson RE. 8th ed. Multivariate data analysis (2019). Andover, Hampshire: Cengage learning EMEA; 2019.

Yockey RD. In: Translating C, Liu, Wu Z, editors. SPSS is actually very simple. Beijing: China Renmin University; 2010.

Fornell C, Larcker DF. Evaluating Structural equation models with unobservable variables and measurement error. J Mark Res. 1981;66(6):39–50. https://doi.org/10.1177/002224378101800104 .

Jackson DL, Gillaspy JA Jr, Purc-Stephenson R. Reporting practices in confirmatory factor analysis: an overview and some recommendations. Psychol Methods. 2009;14(1):6–23. https://doi.org/10.1037/a0014694 .

Cohen J. A power primer. Psychol Bull. 1992;112:155–9. https://doi.org/10.1037/0033-2909.112.1.155 .

Cheung MWL. Comparison of approaches to constructing confidence intervals for Mediating effects using Structural equation models. Structural equation modeling: a Multidisciplinary Journal. 2007; 14(2): 227–46. https://doi.org/10.1080/10705510709336745 .

Cheung GW, Lau RS. Testing mediation and suppression effects of latent variables. Organizational Res Methods. 2007;11(2):296–325. https://doi.org/10.1177/1094428107300343 .

MacKinnon DP. Introduction to statistical mediation analysis. Mahwah: Erlbaum; 2008.

Escalante MN, Fernández-Zabala A, Goñi Palacios E, Izar-de-la-Fuente DI. School Climate and Perceived academic achievement: direct or resilience-mediated relationship? Sustainability. 2020;13(1):68. https://doi.org/10.3390/su13010068 .

Berndt TJ. Friends’ influence on student adjustment to school. Educational Psychol. 1999;34(1):15–28. https://doi.org/10.1207/s15326985ep3401_2 .

Chen X, French DC. Children’s social competence in cultural context. Ann Rev Psychol. 2008;59:591–616. https://doi.org/10.1146/annurev.psych.59.103006.093606 .

Véronneau MH, Dishion TJ. Predicting change in early adolescent problem behavior in the middle school years: a mesosystemic perspective on parenting and peer experiences. J Abnorm Child Psychol. 2010;38:1125–37. https://doi.org/10.1007/s10802-010-9431-0 .

Lubbers MJ, Van Der Werf MPC, Snijders TAB, Creemers BPM, Kuyper H. The impact of peer relations on academic progress in junior high. J Sch Psychol. 2006;44(6):491–512. https://doi.org/10.1016/j.jsp.2006.07.005 .

Wentzel KR, Jablansky S, Scalise NR. Peer social acceptance and academic achievement: a meta-analytic study. J Educ Psychol. 2021;113(1):157–80. https://doi.org/10.1037/edu000046883 .

Chen JJL. Relation of academic support from parents, teachers, and peers to Hong Kong adolescents’ academic achievement: The mediating role of academic engagement. Genetic, social, and general psychology monographs. 2005; 131(2): 77–127. https://doi.org/10.3200/MONO.131.2.77-127 .

Chen Y. The effect of thematic video-based instruction on learning and motivation in e-learning. Int J Phys Sci. 2012;7(6):957–65. https://doi.org/10.5897/IJPS11.1788 .

Download references

Acknowledgements

Not applicable.

This work was supported by the International Chinese Language Education Research Program [Grant no. 23YH82C].

Author information

Authors and affiliations.

Jiangsu Xiangshui High School, Yancheng, China

Yanhong Shao

College of Foreign Languages, Qufu Normal University, Qufu, China

Shumin Kang & Chao Zhang

College of Economics and Management, Tarim University, Alar, China

Shandong Vocational Animal Science and Veterinary College, Weifang, China

You can also search for this author in PubMed   Google Scholar

Contributions

YS designed the study, performed the statistical analysis, and contributed to writing the manuscript. QL also contributed to writing the manuscript. SK supervised all aspects of the study’s implementation, and reviewed the manuscript. CZ proofread the English expression and reviewed the manuscript. RL collected the data and performed the statistical analysis. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Shumin Kang .

Ethics declarations

Ethics approval and consent to participate.

This manuscript is not under review elsewhere and the results have not been published previously or accepted for publication. This manuscript has been seen and approved by all authors. All methods were performed in accordance with the relevant guidelines and regulations. The questionnaire and methodology for this study was approved by the research ethics committee of the College of Education at Qufu Normal University before data collection.

Consent for publication

Competing interests.

The authors declare no competing interests.

Informed consent

Informed consent was obtained from all participants included in the study. And their parents provided their written informed consent to participate in this study.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Shao, Y., Kang, S., Lu, Q. et al. How peer relationships affect academic achievement among junior high school students: The chain mediating roles of learning motivation and learning engagement. BMC Psychol 12 , 278 (2024). https://doi.org/10.1186/s40359-024-01780-z

Download citation

Received : 25 April 2023

Accepted : 09 May 2024

Published : 16 May 2024

DOI : https://doi.org/10.1186/s40359-024-01780-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Peer relationship
  • Learning motivation
  • Learning engagement
  • Junior high school students

BMC Psychology

ISSN: 2050-7283

importance of research in education as a student

Logo UOC

UOC launches three research projects to improve its educational model

computer with elearning icons

The projects seek to tackle current challenges that have an impact on the organization while encouraging the development of online higher education worldwide (Image: Adobe Stock)

The Universitat Oberta de Catalunya's (UOC) educational model is constantly improving and evolving in accordance with the evidence obtained from its own research. The UOC, through its specific programme for the promotion of e-learning research, has just awarded grants worth a total of €36,000 to three research projects by e-learning experts with a view to applying the results to the university's methodology. In the words of Albert Sangrà , Professor of Education and co-director of the eLearning Research Programme at the UOC together with Xavier Vilajosana , Vice rector for Research, Knowledge Transfer and Entrepreneurship, the call seeks to " boost the use of the learning data collected on the Campus by introducing researchers to the university's procedures on using these data and generating value and impact from this unique and special resource that we have".

The UOC thus seeks to tackle current and short-term challenges through research projects that have an impact on the organization while encouraging the development of online higher education worldwide through its expertise. The knowledge obtained from this research can be extrapolated to other organizations around the world and help solve the challenges facing e-learning.

“The aim is to boost the use of the learning data collected on the Campus by introducing researchers to the university's procedures on using these data and generating value and impact from this unique and special resource”

Research in AI and learning analytics

" Experimenting with support mechanisms based on AI and analytical evidence " is one of the projects that has been awarded an internal UOC research grant. The project is  LISFeed+  led by  David Bañeres , a member of the  Faculty of Computer Science, Multimedia and Telecommunications  and the IN3's  SOM Research Lab , and  Anna Espasa , from the  Faculty of Psychology and Education Sciences  and the  Feed2Learn  research group. The study  aims to   improve the support given to students during their learning process  through analytical evidence-based tools. The goal is to put in place an  early warning system and a nudge system  to guide students at risk.

A second project tackles the " implementation of an assistant for teachers to provide immediate, formative and personalized feedback through AI ". The project is led by  David García , from the Faculty of Computer Science, Multimedia and Telecommunications and the  EduSTEAM  research group, and  Nati Cabrera , from the Faculty of Psychology and Education Sciences and the  EduL@b  group. The study examines  how artificial intelligence can improve feedback in higher education . The aim is to contribute to the development of new tools to improve the educational experience of students through the use of AI.

The third project backed by the UOC seeks to find out " how to improve the monitoring and assessment of online discussions through learning analytics ". The study is led by  Teresa Romeu , from the Faculty of Psychology and Education Sciences and the Edul@b research group, and  Javier Luis Cánovas , from the Faculty of Computer Science, Multimedia and Telecommunications and the SOM Research Lab. The initiative  analyses collaborative dynamics, especially through online discussions, an activity that is common to many courses and part of the UOC's educational model . Teachers must be able to access data in real time to adjust the paths of students at risk of not achieving their academic goals, as well as to facilitate the proper assessment of their development. The use of real-time data will also make it possible to use smart systems to predict student behaviour.

These three research projects reaffirm the UOC's work on and commitment to the innovative use of technology to democratize access to higher education. The UOC uses an interdisciplinary approach to promote cutting-edge research on e-learning, ranging from education sciences to information technologies.

Research in e-learning at the UOC contributes to the continuous improvement of teaching, facilitating knowledge transfer and promoting educational innovation, with the support and collaboration of the UOC's  eLearning Innovation Center . The main aim is to consolidate research in e-learning to address the global challenges of education, both within and beyond the university. The UOC thus continues to contribute to the dissemination of best practices and innovative educational solutions.

These UOC research projects contribute to the Sustainable Development Goal ( SDG ), 4,  Quality Education .

importance of research in education as a student

UOC R&I

The UOC's research and innovation (R&I) is helping overcome pressing challenges faced by global societies in the 21st century by studying interactions between technology and human & social sciences with a specific focus on the network society, e-learning and e-health .

Over 500 researchers and more than 50 research groups work in the UOC's seven faculties, its eLearning Research programme and its two research centres: the Internet Interdisciplinary Institute ( IN3 ) and the eHealth Center ( eHC ).

The university also develops online learning innovations at its eLearning Innovation Center ( eLinC ), as well as UOC community entrepreneurship and knowledge transfer via the Hubbik platform.

Open knowledge and the goals of the United Nations 2030 Agenda for Sustainable Development serve as strategic pillars for the UOC's teaching, research and innovation. More information: research.uoc.edu .

Experts UOC

Press contact.

Related news:

Technology with empathy: using conversational agents in education

Technology with empathy: using conversational agents in education

New UOC AI system lets the university monitor online students at risk of dropping out

New UOC AI system lets the university monitor online students at risk of dropping out

You may also be interested in…, most popular, related courses.

Georgetown University.

School of Medicine Students Honored for Excellence in Education, Research and Service

Lauren Yap and Princy Kumar stand next to each other

Posted in News Stories  |  Tagged Commencement 2024 , student achievement

(May 20, 2024) — School of Medicine faculty honored graduating medical students in the Class of 2024 who excelled during their medical education during the Warwick Evans Awards Ceremony.

Dean Jones speaks from a podium

The annual event, named for the first Georgetown medical school graduate, was held May 17 in the storied Gaston Hall.

As Lee Jones, MD, dean for medical education, welcomed family and friends, he reflected on his years of getting to know the students.

“I continue to marvel at their capacity for work and study, their diligence and dedication, growth and maturation,” Jones said. “Even more important, I am so impressed by them as wonderful human beings, compassionate caregivers, who are dedicated to the care of the whole person as well as committed to their community through volunteer service and participation in health care.”

Jones said the achievements warranted acknowledgement in the presence of their loved ones. The awards recognize excellence in various specialties, research, outstanding patient care, academic achievement, student leadership, advocacy and commitment to social justice, and community service.

Paul Henderson speaks from a podium

The most prestigious award, the Kober Award, was presented to Lauren Yap (M’24). It recognizes academic excellence and is bestowed upon the medical student with the highest overall academic record and performance. The award was established by George M. Kober, MD, dean of the School of Medicine from 1901 to 1928. (A full list of award recipients is below).

The Class of 2024 chose Paul Henderson (M’24) to deliver the student address at the ceremony. Henderson was recognized earlier in the evening with four awards: the Stephen Ray and Ellen Mitchell Leadership Award, the Jesuit Leadership and Service Award, the William P. Argy, MD, Teaching Award, and the Medical Education Development & Culture Award.

‘Remember Your Purpose’

“Today, we come together to celebrate the culmination of years of dedication, sacrifice and unwavering determination in our graduates, and I am filled with immense gratitude and pride,” Henderson said. “Graduating from medical school is more than just an academic achievement; it’s a testament to our resilience, passion for healing, and commitment to making a difference in the world.”

Henderson recalled his classmates met the challenge of beginning courses virtually in 2020, as the COVID-19 pandemic gripped the world.

Nancy Hu reaches for Irma Zhang's hand while onstage

“Instead of succumbing to despair, our community came together with resilience and determination. Despite the limitations of the pandemic, we found creative ways to continue our medical education and serve our community,” he said.

“We might be the first Georgetown class to hold a virtual white coat ceremony, to palpate a pillow, or percuss a tissue box,” Henderson said. “Although our experiences were unique, we weren’t deprived of the quintessential Georgetown medical journey.”

Henderson urged his classmates to persist in defining their personal significance.

“I would encourage our graduates to continue to advocate for their own personal meaning and continue to shape these experiences for the future doctors who will join this profession one day,” he said. “Remember your purpose.”

2024 Warwick Evans Awards Recipients

The family medicine community service award.

Meaghan Brophy and Emily Phelps

The Family Medicine Research and Scholarship Award

The phillip l. calcagno, md, award.

Freesia Quezada

The Bridget Fawcett MacNamara Award

Claire Ressel

The Gregory M. Chirikjian Award

The faustino r. suarez, md, award.

Allie Roverud

The Michael A. Rolnick, MD, Award

Michael Ezeana

The Society for Academic Emergency Medicine Excellence in Emergency Medicine Award (Commemorative Award)

Ruba Omeira

The Thomas F. Keliher Award

Jack Stylli

The William P. Argy, MD, Teaching Award

Paul Henderson

The Mario Mollari Award

Alison Hill, Anna Molotkova, Esteban Molina

The Edward B. Healton, MD, Clinical Scholar Award

Barbara bregman neuroscience department award.

Brian Fitzgerald

The Stacy L. Rollins Jr. MD Award

Lily McLaughlin

The Raymond T. Holden Award

Megan Wallace

The Hematology/Oncology Award

Samantha Rizzo

The Lombardi Comprehensive Cancer Center Award

The ophthalmology achievement award, the john n. delahay, md, award, the jennifer woo, md, memorial award.

Mohamad Almasri

The Donald M. Kerwin, MD, Award

Emma Piliponis

The Frank G. Standaert Award

Brian Fitzgerald, Anna Molotkova

The Award for Excellence in Physiology

Kyle Reichard

The Lawrence S. Lilienfield, MD, PhD, Award for Excellence in Physiology

Mahdi Barkhordar

SMP Excellence in Academics Award

Kyle Wallace

The Francis L. Clark Jr. Award

Hassan Bazzi

The Excellence in Education and Research Award

Lindsey Gallagher

The James A. Cahill, MD, Award

Anna Fishbein

The Pellegrino Center for Clinical Bioethics Award

Francisca Finkel

The Robert R. Huntley, MD, Award

Lauren Havens

The Family Medicine Leadership and Advancing Student Interest Award

The william c. maxted, md, award.

Grant Fabrizio

The Learning Societies Award

Jake Whitney

The Michael J. Caruso, MD, Memorial Award

Thomas Chameli

The Medical Education Development & Culture Award

Irma Zhang, Paul Henderson, Naveen Gupta

The Edward Bunn, SJ, Award

The leonard tow humanism in medicine award, the health justice scholar award.

Rimsha Rana

The Health Justice Alliance Award

Aditi Gadre

The Milton Corn, MD, Award

The stephen ray and ellen mitchell leadership award, the georgetown clinical society award.

Ruba Omeira, Kyle Wallace, Hunter Vandolah

The Jesuit Leadership and Service Award

Paul Henderson, Lizzie Torrez, Jake Whitney and Victoria Fubara

The Student Mentorship Award

Alexandra O’Kane, Heidi Chang, Freesia Quezada, Jake Whitney and Crystal Yi

The Heinz Bauer, MD, PhD, Award

United states public health services (usphs) physician professional advisory committee (ppac) excellence in public health award.

Heidi Chang

The Sarah E. Stewart Award

Alexandra O’Kane

The Charles E. Becker, MD, Excellence Award

The donald m. knowlan, md, award, kober award.

Home

  • Become a member
  • For the Public

Career Center

  • Secondary School Employment Grant
  • Sample Job Descriptions
  • 25th Percentile Salary Guidelines
  • AT Salary Survey
  • Online Learning Opportunities
  • Forward Motion
  • Timely Topics
  • COPA Con 2024
  • Degree Change Frequently Asked Questions
  • Education Workgroups
  • Leadership Academy
  • Job Settings
  • College /University
  • Higher Education
  • Professional Sports
  • Secondary School
  • Emerging Settings
  • Private Practice and Emerging Settings
  • Young Professionals
  • International
  • State Leaders
  • Bills We Support
  • Capitol Hill Day
  • Legislative Action Center
  • Youth Sports Safety
  • Public Relations
  • At Your Own Risk
  • National Athletic Training Month
  • Success Through Strategy

About Membership

  • Join Or Renew
  • NATA Member Resource Library
  • Membership Dues Calculator
  • Benefits of Membership
  • Member Categories
  • Athletic Training Manifesto
  • Membership Standards and Sanctions

Get Involved

  • Volunteer Committees
  • Volunteer Resources

Honors and Awards

  • Hall of Fame
  • Other Awards

Health Care Topics

  • COVID-19 (Coronavirus)
  • Cultural Competence
  • More Health Topics
  • Education Advancement
  • NATA Foundation

Risk and Liability

  • Documentation
  • Press Releases
  • Publications
  • Journal of Athletic Training
  • AT Education Journal
  • Sports Medicine Legal Digest
  • Range of Motion

Do Business with NATA

  • Sponsorships

Athletic Training

  • Terminology
  • Board of Directors
  • Districts and States
  • NATA Strategic Plan
  • Diversity, Equity, Inclusion & Access
  • NATA History
  • Strategic Alliance

More Information

  • For Students

Given to Education and Research

Photo of Naoko Giblin, Asian/Pacific American Heritage Month

In honor of Asian/Pacific American Heritage Month in May, NATA Now is highlighting some of our Asian American and Pacific Islander leaders at the state, district and national levels.

Naoko Giblin, PhD, LAT, ATC, came into the athletic training profession with a desire to serve people.

“I wanted to become an athletic trainer because I wanted to contribute to other people’s success, especially in sports,” Giblin said.

Not only did Giblin want to help people perform at their best, she said she was also drawn to the pace at which ATs treated their patients.

“[The] quickness of decision making was very exciting to me,” she said.

Giblin now teaches athletic training students at the University of Wisconsin-La Crosse as an associate professor. Beyond the workplace, she also gives back to the profession at the state level with the Wisconsin Athletic Trainers’ Association and the international level with the Japan Athletic Trainers’ Organization.

Below, she delves into her volunteer beginnings and the impact she’s had on professional development and research in athletic training.  

What was your first volunteer position within the athletic training profession and why did you get involved?

It took me a while to volunteer in athletic training, mainly because I thought I wasn’t skilled enough to serve on committees. During my first year as a professor, I was asked to moderate a session at the NATA Clinical Symposia & AT Expo. That was my first volunteer experience. Since then, I have served as a moderator several times, and have served and chaired in the state association’s research committee. Again, I was very timid about volunteering, but someone else thought I was knowledgeable and competent enough to do these tasks. So, that’s the main reason I got involved. I continue to serve now because it’s a great way to connect with fellow athletic trainers and students.

Tell us about your current position as the Wisconsin Athletic Trainers’ Association Research and Outcomes Committee coordinator and what you hope to accomplish in this role.

My main responsibility is to review proposals for research grants, and abstracts submitted by students and certified members for free communication sessions at the WATA’s annual meeting. I also coordinate the committee members and ad hoc certified members to score students’ poster presentations for the student poster presentations contest during the annual meeting. I submit regular reports to the WATA Board of Directors regarding the committee’s activities and accomplishments.

The goal of the WATA Research and Outcomes Committee is to promote athletic training-related research in Wisconsin. With that, I strive to celebrate research efforts and pursuits from all members, regardless of their status (students, certified, etc.), by sharing their work and providing funding for their work.

Why is representation in leadership important and how does it impact the profession? I think it’s important because it shows that anyone can volunteer and contribute to the profession. Leadership personnel don’t need to be the most famous, most skilled, richest people. So, the more variety of people serving in leadership roles, the better reflection of the organization/profession supporting all who are involved. Greater representation in leadership ultimately makes the profession stronger, because greater advocacy from leadership for all individuals gives people more drive to contribute to the profession.

How has volunteering helped you grow personally and professionally?

Personally, it has helped me gain more confidence and leadership skills. It has also helped me connect with other researchers/colleagues in the state, which has helped me professionally as an educator and researcher.

Professionally, it has helped me contribute to reemphasizing the importance of research and scholarship in our state. It has helped me understand the innerworkings of the state, national and international associations that hopefully would lead to enhancing the associations and whole AT profession.

What’s your fondest memory of serving so far?

Seeing students engaging confidently with certified members who provide insights gained from their scholarly work.

What advice do you have for other athletic trainers who want to give back to the profession? 

Don’t be afraid to sign up. Any seemingly small role you can devote your time to is a significant investment that strengthens you, your community and the profession.

Related Posts

NATA Hall of Fame Class of 2024: Mentors

NATA Hall of Fame Class of 2024: Mentors

Inside the AT settings professional football

Inside the Professional Football Setting

Most recent.

Inside the AT Settings: Professional Soccer

Inside the Professional Soccer Setting

75 Things to Know About Convention: 5 Ways to Form Relationships

Five Ways To Form Relationships at Convention

  • Patient Care
  • Professional Development
  • College/University
  • Professional Interests
  • Career Advancement
  • 15 May 2024
  • 19 April 2024
  • 18 March 2024
  • 5 February 2024
  • 1 January 2024
  • Future Students
  • Current Students
  • Faculty/Staff

Stanford Graduate School of Education

News and Media

  • News & Media Home
  • Research Stories
  • School's In
  • In the Media

You are here

70 years after brown v. board of education, new research shows rise in school segregation.

Kids getting onto a school bus

As the nation prepares to mark the 70th anniversary of the landmark U.S. Supreme Court ruling in Brown v. Board of Education , a new report from researchers at Stanford and USC shows that racial and economic segregation among schools has grown steadily in large school districts over the past three decades — an increase that appears to be driven in part by policies favoring school choice over integration.

Analyzing data from U.S. public schools going back to 1967, the researchers found that segregation between white and Black students has increased by 64 percent since 1988 in the 100 largest districts, and segregation by economic status has increased by about 50 percent since 1991.

The report also provides new evidence about the forces driving recent trends in school segregation, showing that the expansion of charter schools has played a major role.  

The findings were released on May 6 with the launch of the Segregation Explorer , a new interactive website from the Educational Opportunity Project at Stanford University. The website provides searchable data on racial and economic school segregation in U.S. states, counties, metropolitan areas, and school districts from 1991 to 2022. 

“School segregation levels are not at pre- Brown levels, but they are high and have been rising steadily since the late 1980s,” said Sean Reardon , the Professor of Poverty and Inequality in Education at Stanford Graduate School of Education and faculty director of the Educational Opportunity Project. “In most large districts, school segregation has increased while residential segregation and racial economic inequality have declined, and our findings indicate that policy choices – not demographic changes – are driving the increase.” 

“There’s a tendency to attribute segregation in schools to segregation in neighborhoods,” said Ann Owens , a professor of sociology and public policy at USC. “But we’re finding that the story is more complicated than that.”

Assessing the rise

In the Brown v. Board decision issued on May 17, 1954, the U.S. Supreme Court ruled that racially segregated public schools violated the Equal Protection Clause of the Fourteenth Amendment and established that “separate but equal” schools were not only inherently unequal but unconstitutional. The ruling paved the way for future decisions that led to rapid school desegregation in many school districts in the late 1960s and early 1970s.

Though segregation in most school districts is much lower than it was 60 years ago, the researchers found that over the past three decades, both racial and economic segregation in large districts increased. Much of the increase in economic segregation since 1991, measured by segregation between students eligible and ineligible for free lunch, occurred in the last 15 years.

White-Hispanic and white-Asian segregation, while lower on average than white-Black segregation, have both more than doubled in large school districts since the 1980s. 

Racial-economic segregation – specifically the difference in the proportion of free-lunch-eligible students between the average white and Black or Hispanic student’s schools – has increased by 70 percent since 1991. 

School segregation is strongly associated with achievement gaps between racial and ethnic groups, especially the rate at which achievement gaps widen during school, the researchers said.  

“Segregation appears to shape educational outcomes because it concentrates Black and Hispanic students in higher-poverty schools, which results in unequal learning opportunities,” said Reardon, who is also a senior fellow at the Stanford Institute for Economic Policy Research and a faculty affiliate of the Stanford Accelerator for Learning . 

Policies shaping recent trends 

The recent rise in school segregation appears to be the direct result of educational policy and legal decisions, the researchers said. 

Both residential segregation and racial disparities in income declined between 1990 and 2020 in most large school districts. “Had nothing else changed, that trend would have led to lower school segregation,” said Owens. 

But since 1991, roughly two-thirds of districts that were under court-ordered desegregation have been released from court oversight. Meanwhile, since 1998, the charter sector – a form of expanded school choice – has grown.

Expanding school choice could influence segregation levels in different ways: If families sought schools that were more diverse than the ones available in their neighborhood, it could reduce segregation. But the researchers found that in districts where the charter sector expanded most rapidly in the 2000s and 2010s, segregation grew the most. 

The researchers’ analysis also quantified the extent to which the release from court orders accounted for the rise in school segregation. They found that, together, the release from court oversight and the expansion of choice accounted entirely for the rise in school segregation from 2000 to 2019.

The researchers noted enrollment policies that school districts can implement to mitigate segregation, such as voluntary integration programs, socioeconomic-based student assignment policies, and school choice policies that affirmatively promote integration. 

“School segregation levels are high, troubling, and rising in large districts,” said Reardon. “These findings should sound an alarm for educators and policymakers.”

Additional collaborators on the project include Demetra Kalogrides, Thalia Tom, and Heewon Jang. This research, including the development of the Segregation Explorer data and website, was supported by the Russell Sage Foundation, the Robert Wood Johnson Foundation, and the Bill and Melinda Gates Foundation.   

More Stories

Albaraa Basfar, a Stanford postdoc in a pilot fellowship program led by the GSE and the School of Medicine, presents research in progress at a meeting in March.

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

Make a gift now

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

  • Share full article

Advertisement

Supported by

The Mind-Expanding Value of Arts Education

As funding for arts education declines worldwide, experts ponder what students — and the world at large — are losing in the process.

importance of research in education as a student

By Ginanne Brownell

This article is part of our special report on the Art for Tomorrow conference that was held in Florence, Italy.

Awuor Onguru says that if it were not for her continued exposure to arts education as a child, she never would have gotten into Yale University.

Growing up in a lower-middle-class family in Nairobi, Kenya, Ms. Onguru, now a 20-year-old junior majoring in English and French, started taking music lessons at the age of four. By 12, she was playing violin in the string quartet at her primary school, where every student was required to play an instrument. As a high school student on scholarship at the International School of Kenya, she was not only being taught Bach concertos, she also became part of Nairobi’s music scene, playing first violin in a number of local orchestras.

During her high school summer breaks, Ms. Onguru — who also has a strong interest in creative writing and poetry — went to the United States, attending the Interlochen Center for the Arts ’ creative writing camp, in Michigan, and the Iowa Young Writers’ Studio . Ms. Onguru, who recently returned to campus after helping organize Yale Glee Club’s spring tour in Kenya, hopes to become a journalist after graduation. She has already made progress toward that goal, serving as the opinion editor for the Yale Daily News, and getting her work published in Teen Vogue and the literary journal Menacing Hedge.

“Whether you’re in sports, whether you end up in STEM, whether you end up in government, seeing my peers — who had different interests in arts — not everyone wanted to be an artist,” she said in a video interview. “But they found places to express themselves, found places to be creative, found places to say things that they didn’t know how else to say them.”

Ms. Onguru’s path shows what a pivotal role arts education can play in a young person’s development. Yet, while the arts and culture space accounts for a significant amount of gross domestic product across the globe — in the United Kingdom in 2021, the arts contributed £109 billion to the economy , while in the U.S., it brought in over $1 trillion that year — arts education budgets in schools continue to get slashed. (In 2021, for instance, the spending on arts education in the U.K. came to an average of just £9.40 per pupil for the year .)

While experts have long espoused the idea that exposure to the arts plays a critical role in primary and secondary schooling, education systems globally have continually failed to hold it in high regard. As Eric Booth, a U.S.-based arts educator and a co-author of “Playing for Their Lives: The Global El Sistema Movement for Social Change Through Music,” said: “There are a whole lot of countries in the world that don’t have the arts in the school, it just isn’t a thing, and it never has been.”

That has led to the arts education trajectory heading in a “dark downward spiral,” said Jelena Trkulja, senior adviser for academic and cultural affairs at Qatar Museums , who moderated a panel entitled “When Arts Education is a Luxury: New Ecosystems” at the Art for Tomorrow conference in Florence, Italy, organized by the Democracy & Culture Foundation, with panels moderated by New York Times journalists.

Part of why that is happening, she said, is that societies still don’t have a sufficient and nuanced understanding of the benefits arts education can bring, in terms of young people’s development. “Arts education is still perceived as an add-on, rather than an essential field creating essential 21st-century skills that are defined as the four C’s of collaboration, creativity, communication and critical thinking,” Dr. Trkulja said in a video interview, “and those skills are being developed in arts education.”

Dennie Palmer Wolf, principal researcher at the U.S.-based arts research consultancy WolfBrown , agreed. “We have to learn to make a much broader argument about arts education,” she said. “It isn’t only playing the cello.”

It is largely through the arts that we as humans understand our own history, from a cave painting in Indonesia thought to be 45,000 years old to “The Tale of Genji,” a book that’s often called the world’s first novel , written by an 11th-century Japanese woman, Murasaki Shikibu; from the art of Michelangelo and Picasso to the music of Mozart and Miriam Makeba and Taylor Swift.

“The arts are one of the fundamental ways that we try to make sense of the world,” said Brian Kisida, an assistant professor at the University of Missouri’s Truman School of Public Affairs and a co-director of the National Endowment for the Arts-sponsored Arts, Humanities & Civic Engagement Lab . “People use the arts to offer a critical perspective of their exploration of the human condition, and that’s what the root of education is in some ways.”

And yet, the arts don’t lend themselves well to hard data, something educators and policymakers need to justify classes in those disciplines in their budgets. “Arts is this visceral thing, this thing inside you, the collective moment of a crescendo,” said Heddy Lahmann , an assistant professor of international education at New York University, who is conducting a global study examining arts education in public schools for the Community Arts Network. “But it’s really hard to qualify what that is.”

Dr. Lahmann’s early research into the decrease in spending by public schools in arts education points to everything from the lack of trained teachers in the arts — partly because those educators are worried about their own job security — to the challenges of teaching arts remotely in the early days of the Covid pandemic. And, of course, standardized tests like the Program for International Student Assessment, which covers reading, math and science, where countries compete on outcomes. “There’s a race to get those indicators,” Dr. Lahmann said, “and arts don’t readily fit into that.” In part, that is because standardized tests don’t cover arts education .

“It’s that unattractive truth that what gets measured gets attended to,” said Mr. Booth, the arts educator who co-authored “Playing for Their Lives.”

While studies over the years have underscored the ways that arts education can lead to better student achievement — in the way that musical skills support literacy, say, and arts activities lead to improved vocabulary, what have traditionally been lacking are large-scale randomized control studies. But a recent research project done in 42 elementary and middle schools in Houston, which was co-directed by Dr. Kisida and Daniel H. Bowen, a professor who teaches education policy at Texas A&M, is the first of its kind to do just that. Their research found that students who had increased arts education experiences saw improvements in writing achievement, emotional and cognitive empathy, school engagement and higher education aspirations, while they had a lower incidence of disciplinary infractions.

As young people are now, more than ever, inundated with images on social media and businesses are increasingly using A.I., it has become even more relevant for students these days to learn how to think more critically and creatively. “Because what is required of us in this coming century is an imaginative capacity that goes far beyond what we have deliberately cultivated in the schooling environment over the last 25 years,” said Mariko Silver, the chief executive of the Henry Luce Foundation, “and that requires truly deep arts education for everyone.”

IMAGES

  1. Importance of Research

    importance of research in education as a student

  2. Why research? Exploring the reasons for The Education Hub’s raison d

    importance of research in education as a student

  3. 40+ Reasons Why Research Is Important in Education

    importance of research in education as a student

  4. PPT

    importance of research in education as a student

  5. Why is Research Important for Undergraduate Students?

    importance of research in education as a student

  6. Why Research is Important for Students, Humans, Education

    importance of research in education as a student

VIDEO

  1. Research, Educational research

  2. Introduction to Educational Research

  3. The Importance of Education!

  4. What Your Humor Style Can Reveal About Your Personality

  5. Importance of Research Methodology in Tamil

  6. Educational research

COMMENTS

  1. PDF The Vital Role of Research in Improving Education

    The American Educational Research Association (AERA) defines education research in part as "the scientific field of study that examines education and learning processes and the human attributes, interactions, organizations, and institutions that shape educational outcomes." Education research uncovers the evidence that policymakers

  2. 40+ Reasons Why Research Is Important in Education

    Research gives us better knowledge workers. There is a tremendous value for our society from student participation in scientific research. At all levels - undergraduate, master's, and Ph.D. —students learn the scientific method that has driven progress since the Enlightenment over 300 years ago.. They learn to observe carefully and organize collected data efficiently.

  3. What is the Importance of Research in Education

    Here are the following major 5 importance of educational research: i. Improving Teaching Methods: Educational research helps teachers find better ways to teach students. By studying different methods and strategies, teachers can understand what works best for different learners. ii.

  4. How educational research could play a greater role in

    For the past 20 years, I have taught research methods in education to students here in the U.S. and in other countries. While the purpose of the course is to show students how to do effective ...

  5. The Importance of Research to Students

    Learn how research can enhance your education and career in health sciences at CUKC. Students can participate in various research projects, learn critical appraisal skills, and publish their work with faculty mentorship.

  6. Editorial: Educational Research and Why It's Important

    The New Zealand Journal of Educational Research (NZJES) is aptly named, because the distinction between 'education' research and 'educational' research is critical. As Lingard has argued, "When we use the descriptor 'educational' attached to research, we are arguing that such research has educational or educative purposes, that is, such research is progressive in the sense of ...

  7. Empowering students to develop research skills

    Empowering students to develop research skills. February 8, 2021. This post is republished from Into Practice, a biweekly communication of Harvard's Office of the Vice Provost for Advances in Learning. Terence D. Capellini, Richard B Wolf Associate Professor of Human Evolutionary Biology, empowers students to grow as researchers in his Building the Human Body course through a comprehensive ...

  8. Undergraduate students' involvement in research: Values, benefits

    1. Introduction. As the world evolves, the need for research grows, and it remains a factor of key importance in creating a knowledge-driven economy and supporting development initiatives as well as driving innovations across all fields [].It is becoming more and more important to increase undergraduate student involvement in research [].Academic institutions, faculty mentors, and students can ...

  9. What Is Research, and Why Do People Do It?

    Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students. One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers' shared instructional problems.

  10. Undergraduate students' involvement in research: Values, benefits

    1. Introduction. As the world evolves, the need for research grows, and it remains a factor of key importance in creating a knowledge-driven economy and supporting development initiatives as well as driving innovations across all fields [1].It is becoming more and more important to increase undergraduate student involvement in research [2].Academic institutions, faculty mentors, and students ...

  11. The importance of research and its impact on education

    From an individual point of view, the advantages of research extend beyond having an impressive degree certificate. Through detailed research, students develop critical thinking expertise, as well as effective analytical, research, and communication skills that are globally sought-after and incredibly beneficial.

  12. A Critical Analysis of the Impact of Research in Education: A

    It further provides a broader understanding of how the research impact affects teaching approaches, education policy, and how it influences education management. Discover the world's research 25 ...

  13. Using Research and Reason in Education: How Teachers Can Use ...

    Teachers as independent evaluators of research evidence. One factor that has impeded teachers from being active and effective consumers of educational science has been a lack of orientation and training in how to understand the scientific process and how that process results in the cumulative growth of knowledge that leads to validated educational practice.

  14. (PDF) The Importance of Research in Schools

    1. The importance of research in schools. As a PhD researcher I thought to take this opportunity to emphasise the importance of. research in our schools. R esearch is too often s een as an ...

  15. Importance of Research in Education by Mayurakshi Basu :: SSRN

    The core purpose of this paper is to understand the importance of research in education. Research is widely regarded as providing benefits to individuals and to local, regional, national, and international community's involved in the education system. The thrust areas of this paper are characteristics, purposes of research in education, steps ...

  16. The Role Of Research At Universities: Why It Matters

    Strength in research helps to define a university's "brand" in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting ...

  17. What is Educational Research? + [Types, Scope & Importance]

    Research. What is Educational Research? + [Types, Scope & Importance] Education is an integral aspect of every society and in a bid to expand the frontiers of knowledge, educational research must become a priority. Educational research plays a vital role in the overall development of pedagogy, learning programs, and policy formulation.

  18. What are the benefits of educational research for teachers?

    As research becomes embedded in your practice you can gain a range of benefits. Research can: help you find solutions to particular problems arising in your classroom or school. underpin professional learning of knowledge, skills and understanding. connect you with sources of information and networks of professional support.

  19. Enhancing research and scholarly experiences based on students

    However, later-stage students had a greater appreciation for the relevance, importance and clinical applicability that research served, discussing evidence-based practice and how their understanding of what research means has changed after doing research or as they progress through their course and experience how research impacts on clinical ...

  20. (PDF) Significance of Research in Education

    The significance and importance of research in education are enormous. For Kapur (2018) research in education has enabled substantial progress to be made in curriculum development and reform ...

  21. The Importance of Research—A Student Perspective

    Abstract. As students, we will focus on the importance of an objective ranking system, research, and mentorship to an applicant. We will address points raised in the (Behavior Analysis In Practice 8 (1):7-15, 2015) article as well as debate the usefulness of proposed standards of objective ranking. Keywords: Graduate school, Graduate training ...

  22. How Does Writing Fit Into the 'Science of Reading'?

    Writing is intrinsically important for all students to learn—after all, it is the primary way beyond speech that humans communicate. But more than that, research suggests that teaching students ...

  23. As schools reconsider cursive, research homes in on handwriting's brain

    In kids, studies show that tracing out ABCs, as opposed to typing them, leads to better and longer-lasting recognition and understanding of letters. Writing by hand also improves memory and recall ...

  24. How peer relationships affect academic achievement among junior high

    Academic achievement is a multifaceted construct that can be defined in broad and narrow aspects. Marsh and McCallum defined it broadly as the extent to which students achieve the objectives or goals of their educational institution or program [].In contrast, Hattie defined it narrowly as the progress that students make in their academic studies, demonstrated through their performance on tests ...

  25. UOC launches three research projects to improve its educational model

    UOC R&I. The UOC's research and innovation (R&I) is helping overcome pressing challenges faced by global societies in the 21st century by studying interactions between technology and human & social sciences with a specific focus on the network society, e-learning and e-health.. Over 500 researchers and more than 50 research groups work in the UOC's seven faculties, its eLearning Research ...

  26. School of Medicine Students Honored for Excellence in Education

    The Excellence in Education and Research Award. Lindsey Gallagher. The James A. Cahill, MD, Award. Anna Fishbein. The Pellegrino Center for Clinical Bioethics Award. Francisca Finkel. The Robert R. Huntley, MD, Award. Lauren Havens. The Family Medicine Leadership and Advancing Student Interest Award. Thu Dao. The William C. Maxted, MD, Award ...

  27. Given to Education and Research

    Given to Education and Research. May 15, 2024 by Lydia Hicks. In honor of Asian/Pacific American Heritage Month in May, NATA Now is highlighting some of our Asian American and Pacific Islander leaders at the state, district and national levels. Naoko Giblin, PhD, LAT, ATC, came into the athletic training profession with a desire to serve people ...

  28. 70 years after Brown v. Board of Education, new research shows rise in

    As the nation prepares to mark the 70th anniversary of the landmark U.S. Supreme Court ruling in Brown v.Board of Education, a new report from researchers at Stanford and USC shows that racial and economic segregation among schools has grown steadily in large school districts over the past three decades — an increase that appears to be driven in part by policies favoring school choice over ...

  29. The Mind-Expanding Value of Arts Education

    But a recent research project done in 42 elementary and middle schools in Houston, which was co-directed by Dr. Kisida and Daniel H. Bowen, a professor who teaches education policy at Texas A&M ...